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SPECTRAL ANALYSIS FOR A DISCONTINUOUS

SECOND ORDER ELLIPTIC OPERATOR

PAOLO MANSELLI - FRANCESCO RAGNEDDA

The spectrum of a second order elliptic operator S , with ellipticity
constant α discontinuous in a point, is studied in L p spaces. It turns out
that, for (α, p) in a set A, classical results for the spectrum of smooth elliptic
operators (see e.g. [3]) remain true for S ; in particular, it is proved that S is
the in�nitesimal generator of an holomorphic semigroup . If (α, p) � ∈A, then
the spectrum of S is the whole complex plane.

Let S = Sα be the second order uniformly elliptic operator, in two
dimensions, de�ned as:

(1) S := α�+ (1− 2α)

2�

h,k=1

xhxk

(x 1)2 + (x 2)2
∂

∂xh

∂

∂xk
;

α ∈ (0, 1
2
) is the (lower) ellipticity constant, 1 − α is the (upper) ellipticity

constant ( if α = 1
2
, then: S = 1

2
�). The operator above, discontinuous at

the origin, has been mainly used to construct counterexamples (see e.g. [5],
[7], [11]). The existence and uniqueness theorem for the Dirichlet problem in
Sobolev spaces has been proved in [8].

In the present work the spectrum of S is studied in L p spaces (in a disk,
with Dirichlet boundary conditions). It turn out that there exists A ⊂ R2 with
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the property that, if (α, p)∈A, then S behaves as the Laplace operator: (i) it has
a pure point spectrum, with eigenvalues and eigenvectors explicitly constructed
using Bessel functions; (ii) the resolvent is a compact operator and its norm goes
to zero as O(|λ|−1) when λ → +∞ in a sector around the positive real axis,
with opening larger than π . On the other hand, if (α, p) � ∈A, then the spectrum
of the operator coincides with the complex plane.

The classical techniques, used to get (i) and (ii) above for the Laplacian
and for elliptic equations, cannot be used in the present case, due to the
discontinuity of the coef�cients; we had to construct ad hoc a priori bounds. The
asymptotic behavior of the resolvent will enables us, in a forthcoming paper, to
study the Cauchy problem for the parabolic operator, discontinuous on an axis:
u̇ = Su, u|t=0 = u0.

In section 1, notations, preliminary facts on Bessel functions and separation
of variables techniques for S are considered. In section 2 the closed operator S,

acting in L p , de�ned by S with homogeneous Dirichlet boundary conditions in
a disk, is considered; the spectrum of S and S∗ is studied. In section 3 several
a priori bounds are proved and the asymptotic behavior of (S− λ)−1 is studied,
when λ →∞ in a sector |argλ| ≤ π

2
+ �, � > 0.

The authors thank the referee for his usefull suggestions.

1. Notations and preliminary results.

Let us introduce several constants and functions used later: let α ∈ (0, 1
2
),

α� := 1 − α, p ∈ (1,+∞), p� := p
p−1

. Let {lν , ν ∈ Z} be the sequence, de�ned
as:

(2) l0 := 0, lν = lν (α) := 1−
1

2α�
+

�

(1−
1

2α�
)2 +

α

α�
ν2 ν ∈ Z \ {0}.

Notice that: l±1 = 1, lν ∈ (1, |ν|) if ν ∈ Z \ {−1, 0, 1}; for �xed ν, lν is an
increasing function of α ∈ (0, 1

2
).

Let us also introduce the sequence:

(3) hν = hν (α) := lν (α)− (1−
1

2α�
).

Let us notice that: h0 = −1+ 1
2α�
∈ (−1

2
, 0), and hν (ν ∈Z \ {0}) is positive.

From now on, the spaces R2 and C will be identi�ed, by writing: z =
(x , y) = ρeiθ , where: x = �z = ρ cos θ, y = Iz = ρ sin θ .
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Let z ∈ C; in what follows
√

z will always be the principal value of the
square root.

Bessel functions of �rst kind J±hν
(z), linearly independent solutions to the

Bessel equation:

(4) z2wzz + zwz + (z2 − h2
ν)w = 0

will be considered ( hν not an integer ). If hν is an integer, then linearly
independent solutions to (4) are Jhν

(z) and Yhν
(z) := (π )−1 [ ∂

∂µ
Jµ(z) −

(−1)hν ∂
∂µ

J−µ(z)]µ=hν
.

Modi�ed Bessel functions of �rst kind I±hν
(z) = e∓hν

π
2 i J±hν

(iz), of index
±hν , ν ∈ Z will also be used.

Let us list some of the properties of the functions above, for later use (for
them, see e.g. Watson�s book [13]).

(i)

(5) J±hν
(z) = (

z

2
)±hν

1

�(1± hν)
0F1(1± hν,−(

z

2
)2)

(6) I±hν
(z) = (

z

2
)±hν

1

�(1± hν )
0F1(1± hν , (

z

2
)2);

here 0F1 is the entire generalized hypergeometric function, de�ned as :

0F1(a, z) := 1+

∞�

m=1

zm

a(a + 1) · · · (a + m − 1)m!
.

The functions Yhν
(z) (hν integer) can also be written as:

(7) Yhν
(z) = 2[γ + log(

z

2
)]Jhν

(z) −

hν−1�

m=0

(hν − m − 1)!

m!
(
z

2
)2m−hν

(here γ is Euler�s constant).

(ii) Let 0 < ω0 ≤
π

4
; as a consequence of the asymptotic expansion of Ihν

,
we have:

(8) lim
z→∞, |argz|≤ω0

Ihν
(z) e−z

√
2π z = 1
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(see e.g. [13]).

(iii) For any integer ν , the functions: z−hν Jhν
(z) are entire even functions

with real simple zeros only; let:

(9) 0 < jν,1 < jν,2 < · · · < jν,n < · · · n ∈N

be the increasing sequence of the positive zeros of z−hν Jhν
(z); then:

(10) Jhν
(z) =

( z
2
)hν

�(1+ hν)

∞�

n=1

�
1−

z2

j 2
ν,n

�
,

(11) Ihν
(z) =

( z
2
)hν

�(1+ hν)

∞�

n=1

�
1+

z2

j 2
ν,n

�
.

Lemma 1. Let ν ∈Z, |ω| ≤ π
4

; σ ≥ 0, ρ > 0, 0 ≤ r ≤ ρ . The bound:

(12)

�
�
�
�
�

�
r

ρ

�1− 1
2α� Ihν

(rσeiω)

Ihν
(ρσeiω)

�
�
�
�
�
≤

� r

ρ

�lν

holds.

Proof. By (11),

�
�
�
�
�

�
r

ρ

�1− 1
2α� Ihν

(rσeiω)

Ihν
(ρσeiω)

�
�
�
�
�
=

� r

ρ

�lν ·

�
�
�
�
�

�∞
n=1

�
1+ (rσeiω )2

j2ν,n

�

�∞
n=1

�
1+ (ρσei≤)2

j2ν,n

�

�
�
�
�
�
.

As:

(13)

�
�
�
�
�

�
1+ (rσeiω )2

j2ν,n

�

�
1+ (ρσeiω )2

j2ν,n

�

�
�
�
�
�
≤
|(rσeiω)2 + j 2

ν,n|

|(ρσeiω)2 + j 2
ν,n|

≤ 1,

the thesis follows. �

Lemma 2. Let ν ∈ Z; there exists K (α, ν), depending on α, ν only, such that if
ρ > 0, 0 ≤ r ≤ ρ , σ ≥ 0, |ω| ≤ π

4
, the bound:

(14)

�
�
�
�
�

�
r

ρ

�1− 1
2α� Ihν

(rσeiω)

Ihν
(ρσeiω)

�
�
�
�
�
≤ K (α, ν) e

σ

2
√

2
(r−ρ)

holds.
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Proof. Let J be the left hand side of (14) and let κ be any constant (not
necessarily the same) depending on α, ν only.

From (8), there exists σ0 depending on α, ν only, with the property that, if
|z| ≥ σ0

2
, and |arg z| ≤ π

4
, then:

(15) k1 |z|
− 1

2 e�z ≤
�
�Ihν

(z)
�
� ≤ k2|z|

− 1
2 e�z

(k1 = (2
√

2π)−1, k2 = 2(
√

2π)−1 will do ) .
Let us write w := ρσeiω , � := r

ρ
∈ [0, 1]; then:

J = |�1− 1
2α� Ihν

(�w) · (Ihν
(w))−1 |.

The condition |ω| ≤ π

4
, implies that w ∈ W := {|w| ≤

√
2�w} and

|w|e−
�w
2 ≤

√
2e−1 in W .

Several subcases will be considered.

(A) Let: |w| ≥ σ0, � ≥ 1
2
; then: |�w| ≥ σ0

2
, and (15) gives us:

J ≤ κ · k2|�w|−
1
2 e��w [k1|w|

− 1
2 e�w]−1

= κ ·
k2

k1
�−

1
2 e(�−1)�w

≤ κ ·
k2

k1

2
1
2 e

σ

2
√

2
(r−ρ)

.

(B) Let: |w| ≥ σ0, 0 ≤ � ≤ 1
2
, |�w| ≤ σ0; then (6) gives us:

|(�w)1−
1

2α� Ihν
(�w)| ≤ κ|�w|lν 0F1(1+ hν , (

σ0

2
)2) ≤ κ;

Last inequality, (15) and the fact that w ∈W , give us:

J ≤ κ [k1|w|
− 1

2+1− 1
2α� e�w]−1 ≤ κ|w|

1
2 e−�w

≤ κ(

√
2

e
)

1
2 e−(1−�)�w

2

≤ κ e
σ

2
√

2
(r−ρ)

.
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(C) Let: |w| ≥ σ0, 0 ≤ � ≤ 1
2
, |�w| > σ0. As in (A) :

J ≤ κ ·
k2

k1

�−
1
2 e(�−1)�w.

then:

J ≤ κ

�
1

�|w|

� 1
2

|w|
1
2 e

�w
2 e

�−1
2
�w ≤ κe

σ

2
√

2
(r−ρ)

.

(D) Let: |w| < σ0. As in the previous lemma:

J ≤
� r

ρ

�lν ≤ 1 ≤ e
σ0

2
√

2 e
σ

2
√

2
(r−ρ)

.

From (A), (B), (C), (D), the thesis follows. �

The operator S , de�ned in (1), is a second order, uniformly elliptic opera-
tor, regular in R2 \ {(0, 0)} and discontinuous at (0, 0). Its formal adjoint is:

S∗u = α�u + (1− 2α)

2�

h,k=1

∂

∂xh

∂

∂xk

� xhxk

(x 1)2 + (x 2)2
u
�
;

in polar coordinates:

(16) Su(ρeiθ ) =
�
α�

∂2

∂ρ2
u +

1− α�

ρ

∂

∂ρ
u +

α

ρ2
uθθ

�
(ρeiθ ),

(17) S∗u(ρeiθ ) =
�
α

�
uρρ +

1

ρ
uρ +

1

ρ2
uθθ

�
+

1− 2α

ρ
(ρu)ρρ

�
(ρeiθ ).

In polar form, solutions to both S and S∗ can be constructed by using separation
of variables.

Remark 1.1. Let u be of the form: u(ρeiθ ) = uν (ρ)eiνθ ; then:

(18) Su(ρeiθ ) = (sνuν(ρ))eiνθ

(19) S∗u(ρeiθ ) = (s∗νuν (ρ))eiνθ

where:

sνuν(ρ) :=
�
α�u��ν +

1− α�

ρ
u�ν −

ν2α

ρ2
uν

�
(ρ)

s∗νuν (ρ) :=
�
αu��ν +

α

ρ
u�ν −

ν2α

ρ2
uν +

1− 2α

ρ

�
ρuν

���
�
(ρ).
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By using Lommel transformations, the following facts can be proved.

Remark 1.2. Let λ∈C, α ∈ (0, 1
2
), ν ∈ Z. The equation:

(20) sνu(ρ)− λu(ρ) = 0 in (0,+∞)

has the two independent solutions:

ρ
(1− 1

2α�
) Jhν

�
�

−
λ

α�
ρ
�
, ρ

(1− 1
2α�

) J−hν

�
�

−
λ

α�
ρ
�
.

(If hν is not an integer, J−hν
= Jhν

must be substituted by the Bessel function of
second kind, Yhν

).
The two independent solutions (if hν is not an integer) can also been

written as:

ρ
(1− 1

2α�
) Ihν

�
�

λ

α�
ρ
�
, ρ

(1− 1
2α�

) I−hν

�
�

λ

α�
ρ
�

The equation:

(21) s∗νu(ρ)− λu(ρ) = 0 in (0,+∞)

has the two independent solutions:

ρ
( 1
2α�
−1) Jhν

�
�

−
λ

α�
ρ
�
, ρ

( 1
2α�
−1)J−hν

�
�

−
λ

α�
ρ
�

(If hν is integer, the Bessel function J−hν
= Jhν

in the second solution must be
substituted by the Bessel function of second kind, Yhν

).
The two independent solutions (if hν is not an integer) can also been

written as:

ρ
( 1
2α�
−1) Ihν

�
�

λ

α�
ρ
�
, ρ

( 1
2α�
−1)I−hν

�
�

λ

α�
ρ
�
.

2. Spectral properties of S and S∗.

It will always assumed in what follows (except in theorem 4 below) that
the lower ellipticity constant α of S and the exponent p belong to:

A =

�

(α, p)∈ R2 : 0 < α <
1

2
, 2α� < p <

2

2− l2(α)

�

.
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The operator S will be studied in the open disk BR , centered in (0, 0) with radius
R. W 2,p will be the space of (complex valued) functions in L p with �rst and

second derivatives in L p ; W
2,p
γ0 (BR) := {u ∈W 2,p(BR) : u = 0 on ∂BR}.

Let us recall an existence-uniqueness theorem for the Dirichlet problem for
S (see [8]).

Fact 1. Let (α, p) ∈ A; for every (complex valued) f ∈ L p(BR) the
Dirichlet problem:

(23) u ∈W 2,p
γ0

(BR), Su = f a.e. in BR

has a unique solution, satisfying the a priori bound:

(24) ||u||W 2, p(BR ) ≤ k(α, p, R) ||Su||L p(B(R);

the constant k(α, p, R) depends on α, p, R only.
Let (α, p) ∈A ; let us de�ne the operator S = Sα,p,R in L p(BR) in the

following way: let D(S) = W
2,p
γ0 (BR); then, if u ∈ D(S), let us set: Su := Su.

Theorem 1. Let (α, p)∈A, R > 0. The following properties hold.

(i) S is closed, densely de�ned, with range L p(BR).
(ii) S−1 is de�ned in L p(BR) and is compact.
(iii) The spectrum �(S) consists of isolated eigenvalues of �nite multiplicity.

Proof. Proposition (i) is immediate consequence of Fact 1.
Again by Fact 1, the map:

L p(BR)� f �→ u ∈W 2,p
γ0

(BR)

is continuous; thus, by Rellich-Kondrachev theorem, the map:

L p(BR)� f �→ u ∈ L p(BR)

is a compact operator in L p(BR); (ii) and (iii) are consequence of classical
theorems in the theory of compacts operators (see e. g. [6], III, thm. 6.29).
�

Remark 2.1. Let (α, p)∈A, R > 0, λ∈ P(S) := C \ �(S); then, there exists
k(α, p, R, λ), such that, for every f ∈ L p(BR), the problem:

(25) u ∈W
2,p
γ 0 (BR), Su − λu = f a.e. in BR

has a unique solution, satisfying:

(26) ||u||W 2, p
γ 0

(BR) ≤ k(α, p, R, λ)|| f ||L p(BR).

Let C be a compact subset of P(S). Then, there exists k(α, p, R, C), such that,
for every f ∈ L p(BR), λ∈C the solution of (25) satis�es:

(27)
||D2u||L p(BR) +

√
|λ| ||Du||L p(BR ) + |λ| ||u||L p(BR) ≤

≤ k(α, p, R, C) || f ||L p(BR).
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Proof. Let λ ∈ P(S) and u = uλ := (S − λ)−1 f . Clearly u is the unique
solution of (25).

As ||uλ||L p(BR) is a continuous function of λ in P(S), then there exists
k(α, p, R, C), depending on α, p, R, C only, such that, |λ| ||u||L p(BR) ≤
k(α, p, R, C) || f ||L p(BR) .

By (24) and interpolation theorems, then (26) and (27) follow.
�

By using remarks 1.1 and 1.2 a more precise analysis of the spectrum of S

can be done. If (α, p)∈A, spectrum and eigenvectors closely look like those of
Laplace operator.

Theorem 2. Let (α, p) ∈A. The spectrum �(S) of S lies on the real negative
axis. More precisely:

(28) �(S) = {−α�( jν,m)2R−2 : ν ∈N ∪ {0}, m ∈N}.

Let:

(29) ων,m(ρ) = ρ
(1− 1

2α�
) Jhν

( jν,m
ρ

R
).

If Jhν
and Jhν�

(ν � =ν�) have no common zeros outside of the origin: (i) the
eigenvalues −α� j 2

0,m R−2 (m ∈ N), have multiplicity one, with eigenfunction

ω0,m(ρ) in C∞(BR); (ii) the eigenvalues −α� j 2
1,m R−2 (m ∈ N ), have two lin-

early independent eigenfunctions ω1,m(ρ)eiθ , ω1,m(ρ)e−iθ , in C∞(BR); (iii) the
eigenvalues −α� j 2

ν,m R−2(ν ∈ N, ν ≥ 2, m ∈ N), have two linearly indepen-

dent eigenfunctions ων,m(ρ)eiνθ , ων,m(ρ)e−iνθ , in C∞(BR \ {(0, 0)}), that in
a neighborhood of (0, 0) are of the form: a smooth even function of ρ times
ρlν eiνθ , ρlν e−iνθ (respectively); if 1 < lν (α) < 2, the second factor is in

W
2, p̃
γ0 (BR), for every p̃ ∈ [2, 2

2−lν (α)
); if lν (α) ≥ 2 then ρlν e±iνθ is in C2(BR).

Proof. Let λ be an eigenvalue of S, de�ned as a complex number such that

there exists a nonzero u ∈ D(S) = W
2,p
γ0 (BR) satisfying:

(30) Su − λu = 0 in BR, u∂ BR
= 0.

As S is smooth in R2 \ (0, 0), then u ∈ C∞(B R) \ (0, 0); by Fact 1, for some

p̃ > 2, u ∈W
2, p̃
γ0 (BR); then u has Hölder continuous �rst derivatives in BR .

Let us expand u in Fourier series in θ :

(31) u(ρeiθ ) ∼

∞�

ν=−∞

uν(ρ)eiνθ
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where:

uν(ρ) =
1

2π

� 2π

0

u(ρeiθ )e−iνθdθ ;

the functions uν satisfy the conditions: (i) uν ∈C∞(0, R] with Hölder continu-
ous �rst derivatives in [0, R]; (ii):

sνuν = λuν in (0, R], uν (R) = 0;

(iii) if ν �= 0, then uν(0) = 0; if ν = 0, then u�0(0) = 0. By remark 1.2, uν

must be of the form:

(32) uν (ρ) = c(1)
ν ρ (1− 1

2α�
) Jhν

�
�

−
λ

α�
ρ
�
+ c(2)

ν ρ (1− 1
2α�

) J−hν

�
�

−
λ

α�
ρ
�
.

(if hν is a positive integer, then J−hν
must be substituted with Yhν

).
Let ν be nonzero, then, by (5), the �rst term in (32) is of the form ρlν times

a smooth even function of ρ ; the second term does not have continuous �rst
derivative and in almost all the cases is unbounded; then c(2)

ν must be zero. It is

not dif�cult to see that uν(ρ)eiνθ ∈W
2, p̃
γ0 (BR).

Let ν = 0; by (5), the �rst term in (32) is a smooth even function of ρ ; the

second term is ρ2− 1
α� times a smooth even function of ρ , not vanishing at zero;

as 2 − 1
α�
∈ (0, 1), the second term cannot satisfy the condition u�0(0) = 0, so

c
(2)
0 must be zero.

The condition uν (R) = 0, implies that:
�

−
λ

α�
R = jν̃,m̃ for some ν̃ ∈N ∪ {0}, m̃ ∈N.

Then, the eigenvalues of S are of as in (28) and the eigenvectors of S related to
the eigenvalue −α�( jν̃,m̃)2R−2 are of the form:

(33)
�

{ν∈Z: j|ν|,m= jν̃,m̃}

c(1)
ν ρ (1−12α�) Jhν

�
j|ν|,m

ρ

R

�
eiνθ .

The thesis follows. �

Let S∗ be the adjoint operator to S, de�ned and valued in L p� (BR); then,

D(S∗) := {v ∈ L p�(BR) : ∃ g ∈ L p�(BR) such that ∀u ∈ D(S)
�

BR

v Su dxdy =

�

BR

g u dxdy }.

The properties of S stated in theorem 1 imply similar properties for S∗ .
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Remark 2.2. Let (α, p)∈A, R > 0.

(i) S∗ is closed, densely de�ned, with range L p�(BR).
(ii) (S∗)−1 is de�ned in L p(BR) and is compact.

(iii) As �(S) is real, then: S∗ and S have the same eigenvalues with same
multiplicity.

An equivalent de�nition of D(S∗) follows.

Lemma 3. D(S∗) is the subset of {v ∈ W
2,p�

loc (BR \ {(0, 0)}) ∩ L p� (BR)}, satis-
fying: (i) S∗v ∈ L p� (BR), v|∂ BR

= 0; (ii) v ∈ C0(BR \ {(0, 0)}) and, for every
r ∈ (0, R), vr (re

i(·))∈ L p�(0, 2π ); (iii) ∀u ∈C∞(BR), u|∂ BR
= 0:

(34)
0 = limr→0+

� 2π

0
{(1− 2α)u(reiθ ) v(reiθ ) +

− α�r [ur (re
iθ ) v(reiθ ) − vr (re

iθ ) u(reiθ )]}dθ.

Proof. Let v ∈ D(S∗); thus there exists g ∈ L p�(BR), with the property that, for

every complex valued u ∈W
2,p
γ0 (BR), vanishing in a neighborhood of the origin,

�

BR

v u dxdy =

�

BR

g u dxdy.

Classical regularity theorems for elliptic equations with smooth coef�cients,

imply that v ∈W
2,p�

loc (BR \ {(0, 0)}}), v|∂ BR
= 0; and that g = S∗v a. e.; then,

(i) follows. (ii) follows from (i) and immersion theorems in Sobolev spaces.
Let us recall (see e. g. [8]) that ∀r > 0, ∀u ∈ W 2,p(BR \ Br ), ∀v ∈

W 2,p�(BR \ Br ), satisfying u|∂ BR
= 0, v|∂ BR

= 0, the equality

(35)

�

BR\Br

[ v Su − u S∗v] dxdy =
2π�

0

{(1− 2α)u(reiθ ) v(reiθ ) +

− α�r [ur (re
iθ ) v(reiθ ) − vr (re

iθ ) u(reiθ )]}dθ.

holds.
Let us use (35) in the present case: as r → 0+, the left hand side of last

equation tends to zero; (iii) follows.

On the other hand, if v ∈ W
2,p�

loc (BR \ {(0, 0)}}), and satis�es (i) and (34),
then by (35), v ∈ D(S∗). �

Remark 2.3. Let v ∈ W
2,p�

loc (BR \ {(0, 0)}). Suf�cient condition for (34) to
hold is: there exist δ, K positive, such that the bounds |v(ρeiθ )| ≤ Kρδ ,
|vρ (ρeiθ )| ≤ Kρδ−1, hold.
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Remark 2.4. Let v ∈W
2,p�

loc (BR \ {(0, 0)}). Suf�cient condition for (34) to hold
is: there exist a constant c ∈ C and a function w satisfying the conditions of

previous remark, such that: v(ρeiθ ) = cρ
1
α�
−2 + w(ρeiθ ).

By using previous statements, the eigenvectors of S∗ can be studied, as in
theorem 2.

Theorem 3. Let (α, p) ∈ A. Let us consider the spectrum of S∗ . If Jhν
and

Jhν�
(ν � =ν�) have no common zeros outside of the origin: (i) The eigenvalues:

−α� j 2
0,m R−2(m ∈ N), have one eigenfunction of the form: ρ

1
α�
−2 · ω0,m(ρ); (ii)

the eigenvalues: −α� j 2
ν,m R−2(ν ∈ N, m ∈ N), have two linearly independent

eigenfunctions, of the form: ρ
1
α�
−2ων,m(ρ)eiνθ , ρ

1
α�
−2 · ων,m(ρ)e−iνθ .

If (α, p) � ∈A, the spectrum of S is completely different from the previous
case.

Theorem 4. Let (α, p) ∈ (0, 1
2
) × (1,+∞) \ A; then S is a closable operator,

but:
�(Sα,p,R) = �(S∗α,p,R) = C.

Proof. Let us prove that S is a closable operator. Let un ∈ D(S), and

un → 0, Sun → g in L p(BR). Let 0 < r < R, v ∈ W
2,p�

γ0 (BR), v ≡ 0. in
a neighbourhood of Br . Let us write ( 35 ) with u = un and pass to the limit as
n →∞; then:

�
BR\Br

v g dxdy = 0; thus g = 0 a. e. in BR \ Br . Then, g = 0
a. e. in BR, i.e. S is closable.

Let us study now the spectrum of S.
Several subcases will be considered.
(A) Let: 0 < α < 1

2
, 1 < p < 2 (1− α). Let us show that every A∈C, is

an eigenvalue to S.

Let
�
− λ

α�
R = j0,m , (for some m ∈ N); then, as in theorem 2, λ is an

eigenvalue for S, with eigenfunction uλ(ρ) = ω0,m(ρ) in C∞(BR).

Let
�
− λ

α�
R = ĵ0,m ( for some m ∈ N), where {⊃̂0,m} (m ∈ N ), are

the positive zeros of J−h0
(z) (clearly Jh0

and J−h0
have no common zero

outside of the origin); then, λ is an eigenvalue for S, with eigenfunction:

uλ(ρ) = ρ
(1− 1

2α�
) J−h0

��
− λ

α�
ρ
�

of the form: ρ
2− 1

α� times a smooth even

function of ρ ; thus: uλ ∈W
2,p
γ0 (BR) if p < 2 (1− α).

Let λ∈C, satisfying the condition:

�

−
λ

α�
R �= j,
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where j is an arbitrary positive zero to Jh0
(z) or to J−h0

(z). Then, by remarks
(1.1), (1.2), λ is an eigenvalue to S with the eigenfunction:

uλ(ρ) :=

�
ρ

R

�(1− 1
2α�

) Jh0

��
− λ

α�
ρ
�

Jh0

��
− λ

α�
R
� −

�
ρ

R

�(1− 1
2α�

) J−h0

��
− λ

α�
ρ
�

J−h0

��
− λ

α�
R
� λ �=0,

uλ(ρ) := 1−

�
ρ

R

�2− 1
α�

λ = 0;

the function uλ is of the form: a smooth even function of ρ minus ρ
2− 1

α� times
a smooth even function of ρ ; thus uλ ∈W

2,p
γ0 (BR) if p < 2 (1− α).

(B) Let: 0 < α < 1
2
, p = 2 (1− α).

Let
�
− λ

α�
R = jν,m , ( for some ν ∈N ∪ {0}, m ∈N); then, as in theorem 2,

λ is an eigenvalue for S.
Let λ∈C be not an eigenvalue for S. For every � > 0, let us introduce the

functions:

bλ,�(ρ) := �
1

2α�
−1

ρ
�+1− 1

2α� J−h0

�
�

−
λ

α�
ρ
�

λ �=0,

bλ,�(ρ) := �
1

2α�
−1ρ�+2− 1

α� λ = 0.

Notice that, by (5), bλ,� is of the form: �
1

2α�
−1ρ�+1− 1

2α� f (ρ2), where f is a
smooth function and f (0) = 1.

It is not dif�cult to show that:

(36) lim
�→0

�

BR

|(S − λ)bλ,� |
2α�dxdy = �nite and positive

(37) lim
�→0

�

BR

|bλ,�|
2α�dxdy = +∞.

Let
�
− λ

α�
R = ĵ0,m (for some m ∈ N), where { ĵ0,m} (m ∈ N ), are the positive

zeros of J−h0
(z); then bλ,� ∈ W 2,2α�

γ0
(BR) and (36), (37) imply that a bound of

the form:
||(S − λ)u||L2α� (BR) ≥ K ||u||L2α� (BR)
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(for every u ∈ D(S)), cannot hold. Thus λ is in the spectrum of S.
Let λ∈C, satisfying the condition:

�

−
λ

α�
R �= j,

where j is an arbitrary positive zero of Jh0
(z) or of J−h0

(z). Then: bλ,�(R) �=0.
Let us de�ne :

vλ,� (ρ) := �
1

2α�
−1

��
ρ

R

�( 1
2α�
−1) Jh0

��
− λ

α�
ρ
�

Jh0

��
− λ

α�
R
� −

bλ,�(ρ)

bλ,�(R)

�

λ �=0,

v0,�(ρ) := �
1

2α�
−1

�

1−
b0,�(ρ)

b0,�(R)

�

λ = 0;

the functions vλ,� ∈W 2,2α�

γ0
(BR) and by (36), (37):

lim
�→0

�

BR

|(S − λ)vλ,� |
2α�dxdy = �nite and positive

lim
�→0

�

BR

|vλ,� |
2α�dxdy = +∞

Therefore, a bound of the form:

||(S − λ)u||L2α� (BR) ≥ K ||u||L2α� (BR)

(for every u ∈ D(S)), cannot hold. Thus λ is in the spectrum of S.

(C) Let 0 < α < 1
2
, 2

2−l2 (α)
< p. Let us show that every λ ∈ C, is an

eigenvalue of S∗ .

Let
�
− λ

α�
R = j2,m , ( for some m ∈ N); then (theorem 3), λ is an eigen-

value for S∗ , with eigenfunctions: vλ(ρeiθ ) := ρ (−1+ 1
2α�

) Jh2

��
− λ

α�
ρ
�
e±2iθ .

Let
�
− λ

α�
R = ĵ2,m ( for some m ∈ N), where {⊃̂2,m} (m ∈ N ), are the

zeros of J−h2
(z) (clearly Jh2

and J−h2
have no common zeros); then, λ is an

eigenvalue for S∗, with eigenfunctions: ṽλ(ρeiθ ) := ρ (−1+ 1
2α�

) J−h2

��
− λ

α�
ρ
�

e±2iθ ;let us notice explicitly that ṽλ ∈ L p�(BR) if and only if p� < 2
l2

i. e. if and

only if p > 2
2−l2

.
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Let λ∈C, satisfying the condition:

�

−
λ

α�
R �= j,

where j is an arbitrary positive zero of Jh2
(z) or of J−h2

(z). Then, λ is an
eigenvalue to S∗ with eigenfunctions:

�
ρ

R

�(1− 1
2α�

)
�

Jh2

��
− λ

α�
ρ
�

Jh2

��
− λ

α�
R
� −

J−h2

��
− λ

α�
ρ
�

J−h2

��
− λ

α�
R
�

�

e±2iθ λ �=0,

��
ρ

R

�(l2−2+ 1
α�

)

−

�
ρ

R

�(−l2)
�

e±2iθ λ = 0.

(D) Let 0 < α < 1
2
, p = 2

2−l2(α)
.

Let ψ ∈C∞(BR), ψ |∂ BR
= 0, ψ = 1 in a neighbourhood U of (0, 0).

Let:

v0(ρeiθ ) := ψ(ρeiθ ) · ρ (1− 1
2α�

) Jh2

�
�

−
λ

α�
ρ
�
e2iθ λ �=0,

v0(ρeiθ ) := ψ(ρeiθ ) · ρl2e2iθ λ = 0.

Notice that: (i) in U, by (5), v0 is of the form: ρl2 f (ρ2)e2iθ , where f is a

smooth function and f (0) = 1; (ii) (S − λ)v0 ∈ C∞(BR) and v0 ∈ W
2, p̃
γ0 (BR)

(for every 1 < p̃ < 2
2−l2 (α)

), but v0 � ∈W
2, 2

2−l2(α)

γ0 (BR).

Therefore, the problem

(S − λ)u = (S − λ)v0 in BR, u ∈W 2, p̃
γ0

(BR)

has the unique solution u = v0 if 1 < p̃ < 2
2−l2(α)

, and no solution if

p̃ = 2
2−l2(α)

. Thus λ is in the spectrum of S∗ . �
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3. A priori bounds and asymptotic behaviour of S.

Theorem 5. Let (α, p)∈ λ, R > 0, s ∈ [1,∞), λ∈C, �λ ≥ 0, φ ∈ Ls [0, 2π ],
φ(θ ) ∼

�∞
ν=−∞ φνe

iνθ .
The problem:

(38) w ∈W
2,p
loc (BR), Sw− λw = 0 a.e. in BR,

(39) lim
ρ→R

� 2π

0

|w(ρeiθ )− φ(θ )|sdθ = 0,

has a unique solution:

(40) w(ρeiθ ) =

+∞�

ν=−∞

γν,ρ,Rφν eiνθ ,

where:

(41) γν,ρ,R :=
� ρ

R

�1− 1
2α�

·
Ihν

��
λ

α�
ρ
�

Ihν

��
λ

α�
R
� .

The function w satis�es the bounds:

(42)
� � 2π

0

|w(ρeiθ )|s dθ

� 1
s

≤
� � 2π

0

|φ(θ )|s dθ

� 1
s

, 0 ≤ ρ ≤ R;

(43) ||w||W 2, p
loc

(Br )
≤ k(α, p, λ, r, s)||φ||Ls(∂ BR), 0 < r < R;

here k(α, p, λ, r, s) depends on α, p, λ, r, s only. If, moreover , φν = 0 for
|ν| < ν0 , then there exists a constant k(α, ν0, s) depending on α, ν0, s only,
such that the bounds:

(44)
�� 2π

0

|w(ρeiθ )|s dθ

� 1
s

≤ k(α, ν0, s)
� ρ

R

�lν0
�� 2π

0

|φ(θ )|s dθ

� 1
s

( 0 ≤ ρ ≤ R ) hold.
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Proof. The condition �λ ≥ 0 gives us

�
�
�
� arg

�
λ
α�

�
�
�
� ≤

π
4
. By lemma 1:

(45)

�
�
�
�

�
ρ

R

�1− 1
2α� Ihν

(ρ
�

λ
α�

)

Ihν
(R

�
l
α�

)

�
�
�
� ≤

� ρ

R

�lν
.

Let us assume for a moment that φ is a trigonometric polynomial; one can look
for a solution w to Sw − λw = 0 a. e. in BR , trigonometric polynomial in θ ;
by remark 1.2 and (39), it is not dif�cult to see that w is of the form (40); then,
using standard techniques, one can see that the problem: (38), (39) has such a
function as unique solution in W 2, p̃(BR) ∩ C∞(BR \ (0, 0)), for some p̃ > 2;

By using a complex maximum principle (see [2]), we have that S|w| ≥ 0
in BR \ {|w| = 0}.

In [9] it has been shown that the problem: v ∈W
2, p̃
loc (BR)∩C0(BR), Sv = 0

in BR , v|∂ BR
= |φ| has a unique positive solution, satisfying the inequalities:

(46)

� 2π

0

�
v(ρeiθ

�s

dθ ≤

� 2π

0

(|φ(θ )|)s dθ 0 ≤ ρ ≤ R.

By the maximum principle |w| ≤ v in BR . Then (42) follows from (46).
The bounds (43) follow with standard arguments using Fact 1, (42) and

classical bounds for smooth elliptic equations.
Let us prove (44). Let φν = 0 for |ν| < ν0 and 0 < ρ ≤ R

2
; thus, by (45):

� 2π

0

|w(ρeiθ )|s dθ ≤ 2π ·

�
�

|ν|≥ν0

�
�
�
�
�

� ρ

R

�1− 1
2α�

Ihν

��
λ
α�

ρ

�

Ihν

��
λ

α�
R
�

�
�
�
� |φν |

�s

≤

2π ·

�
�

|ν|≥ν0

� ρ

R

�lν
|φν |

�s

≤ 2π ·
� ρ

R

�slν0
�

sup ν |φν |
�s

�
�

|ν≥ν0

�1

2

�lν−lν0

�s

.

Since: lν ≥ |ν|
�

α

α�
, the last series has a �nite sum depending on α, ν0.

Moreover, as: |φν | ≤ const ·||φ||Ls[0,2π] , then (44) holds when 0 ≤ ρ ≤ R
2
.

If R
2
≤ ρ ≤ R, by (42):

�� 2π

0

|w(ρeiθ )|s dθ

� 1
s
≤ 2lν0

� ρ

R

�lν0 ||φ||Ls [0,2π]

and (44) follows.
Assume now that φ is an arbitrary function in Ls[0, 2π ]; the thesis follows

using a sequence of trigonometric polynomials that have limit φ, (42), (43),
(44) and classical approximation theorems. �
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De�nition 1. Let N ∈N, R > 0; let us de�ne:

FN (BR) := {u ∈ L1(BR) : u(ρeiθ ) ∼
�

|ν|≤N

uν (ρ)eiνθ ρ a. e. in (0, R)}.

Lemma 4. Let (α, p) ∈ A, R > 0, λ ∈ C�λ ≥ 0, N ∈ N, f ∈ FN (BR) ∩
L p(BR), of the form: f (reiθ ) =

�
|ν|≤N fν (r)e

iνθ . Then, the solution u of the
problem:

u ∈W 2,p
γ0

(BR), Su − λu = f

can be written as:

(47) u(reiθ ) =
�

|ν|≤N

1

α�

� r

R

γν,r,ρdρ

� ρ

0

� t

ρ

� 1
α�
−1

γν,t ,ρ fν (t)dt eiνθ .

Proof. The proof is similar to the proof of lemma 4 in [8]. �

Lemma 5. Let: (α, p) ∈ A, R > 0, N ∈ N, λ ∈ C, �λ ≥ 0, let u ∈
W

2,p
γ0 (BR) ∩ FN ; there exists k(α, p, N, R), depending on α, p, N, R only, for

which the bound:

(48)
||D2u||L p(BR) +

√
|λ| ||Du||L p(BR ) + |λ| ||u||L p(BR ) ≤

≤ k(α, p, R, N ) ||Su − λu||L p(BR ).

holds.

Proof. By Fact 1 and interpolation theorems, the left hand side of (48) can be
bound by k(α, p, R)[|λ| ||u||L p(BR) + ||Su − λu||L p(BR)].

Therefore it is enough to prove:

(49) |λ| ||u||L p(BR ) ≤ K (α, p, N ) ||Su − λu||L p(BR).

Let:
u(reiθ ) =

�

|ν|≤N

uν (r)e
iνθ ,

f := Su − λu and:

f (reiθ ) :=
�

|ν|≤N

fν (r)e
iνθ .

Let:

vν (r) :=

� r

0

� t

r

� 1
α�
−1

γν,t ,r fν (t)dt;
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then uν(r) can be written as:

uν(r) :=
1

α�

� r

R

γν,r,ρ vν (ρ)dρ.

Notice that for some K (p, N ):

�u�L p(BR) ≤ K (p, N )
�

|ν|≤N

�
� R

0

|uν(r)|
prdr

� 1
p ,

�

|ν|≤N

�
� R

0

| fν (r)|
prdr

� 1
p ≤ K (p, N ) � f �L p(BR);

thus, the bound (49) will be proved if, for every ν ∈ Z, there exists K (α, p, ν)
such that the bounds:

(50) |λ|
1
2

�
� R

0

|uν(r)|
prdr

� 1
p ≤ K (α, p, ν)

�
� R

0

|vν(r)|
prdr

� 1
p

and:

(51) |λ|
1
2

�
� R

0

|vν(r)|
prdr

� 1
p ≤ K (α, p, ν)

�
� R

0

| fν (r)|
prdr

� 1
p

hold.
In the remaining part of the proof, κ will be any constant (not necessarily

the same), depending on α, p, ν only.

Let
�

λ

α�
:= σeiω; |ω| ≤ π

4
; then, by (14):

(52) |γν,r,ρ | ≤ K (α, p, ν) e
σ

2
√

2
(r−ρ)

;

thus:

J :=

�

|λ|
1
2

�
� R

0

|uν (r)|
prdr

� 1
p

�p

≤ σ p

� R

0

�
�
�
�K (α, p, ν)

� R

r

e
σ

2
√

2
(r−ρ)

vν(ρ)dρ

�
�
�
�

p

rdr;

let us make the change of variables: r � = σ r
R
, ρ � = σ

ρ

R
; then:

J ≤ κ
R2

σ 2

� σ

0

� � σ

r �
e

R(r �−ρ� )

2
√

2 |vν(
Rρ �

σ
)|Rdρ �

�p

r �dr �;
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let us use Hölder inequality in the inside integral; then:

(53) J ≤ κ
Rp+2

σ 2

� σ

0

��� σ

r �
e

R(r �−ρ� )

2
√

2 dρ �
� p

p�
� σ

r �
e

R(r �−ρ�)

2
√

2 |vν(
Rρ �

σ
)|pdρ �

�

r �dr �;

as:

(54)

� σ

r �
e

R(r �−ρ� )

2
√

2 dρ � = (
R

2
√

2
)−1(1− e

R(r �−σ )

2
√

2 ) ≤
2
√

2

R
,

(53) becomes:

J ≤ κ
R

p+2−
p

p�

σ 2

� σ

0

r � dr �
� σ

r �
e

R(r �−ρ� )

2
√

2 |vν (
Rρ �

σ
)|pdρ �;

let us exchange the last two integrals; then, as p + 2− p
p�
= 3 :

(55) J ≤ κ
R3

σ 2

� σ

0

�
� ρ�

0

e
R(r �−ρ�)

2
√

2 r �dr �
�
|vν(

Rρ �

σ
)|pdρ �;

as: � ρ�

0

e
R(r �−ρ� )

2
√

2 r �dr � ≤ ρ �
2
√

2

R
,

by making the change of variable ρ � = (R)−1σρ , (55) becomes:

J ≤ κ
R2

σ 2

� σ

0

|vν(
Rρ �

σ
)|pρ �dρ � = κ

� R

0

|vν(ρ)|pρdρ

and (50) follows.
Let us prove (51). By (52):

J1 :=

�

|λ|
1
2

�
� R

0

|vν (ρ)|pρdρ
� 1

p

�p

≤ κσ p

� R

0

�
�
� ρ

0

e
σ (t−ρ)

2
√

2

� t

ρ

� 1
α�
−1�� fν (t)

�
�dt

�
�p

ρdρ;

let us make the change of variables: ρ � = σ
ρ

R
, t � = σ t

R
; then:

J1 ≤ κ
Rp+2

σ 2

� σ

0

� � ρ�

0

(
t �

ρ �
)

1
α�
−1− 1

p e
R(t�−ρ� )

2
√

2 | fν (
Rt �

σ
)|(t �)

1
p dt �

�p

dρ �;
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let us use Hölder inequality in the inside integral; then:

(56)
J1 ≤ κ Rp+2

σ 2

� σ

0

�
� ρ�

0
( t �

ρ�
)p�( 1

α�
−1− 1

p
)e

R(t�−ρ� )

2
√

2 dt �
� p

p�

·

·

�
� ρ�

0
e

R(t�−ρ�)

2
√

2 | fν (
Rt �

σ
)|pt �dt �

�

dρ �;

let us notice that :

(57)

�
� ρ�

0 ( t �

ρ�
)p�( 1

α�
−1− 1

p
)e

R(t�−ρ�)

2
√

2 dt �
� p

p�

≤ κ R
−

p

p� ; then :

J1 ≤ κ R
p+2−

p

p�

σ 2

� σ

0

�
� ρ�

0 e
R(t�−ρ� )

2
√

2 | fν (
Rt �

σ
)|pt �dt �

�

dρ �

let us exchange the integrals:

J1 ≤ κ
R3

σ 2

� σ

0

| fν (
Rt �

σ
)|p

� � σ

t �
e

R(t�−ρ� )

2
√

2 dρ �
�

t �dt �;

let us use (54) and let us come back to the original variable t; thus:

J1 ≤ κ

� R

0

| fν (t)|
ptdt;

(51) follows. �

Lemma 6. Let (α, p) ∈A, R > 0, λ ∈ C, �A ≥ 0, u ∈ W
2,p
γ0 (BR) \F2(BR).

Then, there exists K (α, p) depending on α, p only, such that the bound:

(58) || | · |−2u||L p(BR) ≤ K (α, p)||Su − λu||L p(BR)

holds. Moreover, for every � ∈ (0, 1), there exists C(α, p, R, �) depending on
α, p, R, � only, such that the bound:

(59) || | · |−1Du||L p(BR) ≤ �||D2u||L p(BR ) + C(α, p, R, �)||Su − λu||L p(BR)

holds.

Proof. It is suf�cient to prove the bound (58) for every N ∈N, u ∈ (FN \F2)∩
C∞(BR), u|∂ BR

= 0.
Let f := Su− λu; then: f (reiθ ) =

�
3≤|ν|≤N fν (r)e

iνθ and by lemma 4:

u(reiθ ) =

� r

R

dρ

� ρ

0

dt
�

3≤|ν|≤N

1

α�
γν,r,ρ

� t

ρ

� 1
α�
−1

γν,t ,ρ fν (t) eiνθ
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Let (Gρ,Rφ)(θ ) be the solution of problem (38); then:

�

3≤|ν|≤N

γν,r,ργν,t ,ρ fν (t) eiνθ = [Gr,ρ · Gt ,ρ f (tei(·))](θ )

and u can also be written as:

u(reiθ ) =
1

α�

� r

R

dρ

� ρ

0

[Gr,ρ

� t

ρ

� 1
α�
−1

Gt ,ρ f (tei(·))](θ )dt

Thus, by (44) and (42):

|| r−2u(rei·)||L p(0,2π) ≤

≤
k(α, p)

α�r2

� R

r

� r

ρ

�l3dρ

� ρ

0

� t

ρ

� 1
α�
−1
||Gt ,ρ f (tei(·))||L p(0,2π)dt

≤
k(α, p)

α�r2

� R

r

� r

ρ

�l3dρ

� ρ

0

� t

ρ

� 1
α�
−1
|| f (tei(·))||L p(0,2π)dt .

This formula, as in [8] ( lemma 6 ), gives (58).
Let � > 0 and let κ� be any constant depending on α, p, R, � only.
Let us prove the the bound:

(60) || | · |−1 ∂u

∂ρ
||L p(BR ) ≤ �||D2u||L p(BR) + κ� ||Su − λu||L p(BR).

Let k := 2
p
− 1+ 1

�
; as u(0, 0) = uρ (0, 0) = 0, the identity:

ρ−1 ∂u

∂ρ
(ρeiθ ) = kρ−2u(ρeiθ )+ρ−1

� ρ

0

(
t

ρ
)k [

∂2u

∂ρ2
(teiθ )−k(k−1)t−2u(teiθ )]dt

holds; by Hardy inequality in ρ and L p norm in θ , one gets the bound:

|| | · |−1 ∂u

∂ρ
||L p(BR) ≤ �||

∂2u

∂ρ2
||L p(BR ) + κ� ||| · |

−2u||L p(BR ).

This inequality and (58) give (60).
Let us prove the the bound:

(61) || | · |−2 ∂u

∂θ
||L p(BR ) ≤ �||D2u||L p(BR) + κ� ||Su − λu||L p(BR).



SPECTRAL ANALYSIS FOR A DISCONTINUOUS. . . 89

Let us �x ρ ∈ (0, R); the interpolation bound:

||
∂u

∂θ
(ρei·)||L p(0,2π) ≤ �||

∂2u

∂θ 2
(ρei·)||L p(0,2π) + κ� ||u(ρei·)||L p(0,2π)

holds; the (
� R

0
|ρ−2 ( · ) |pρdρ)

1
p norm of both members gives:

(62) || | · |−2 ∂u

∂θ
||L p(BR) ≤ �|| | · |−2 ∂2u

∂θ 2
||L p(BR) + κ|| | · |−2 u ||L p(BR ).

As | · |−2 ∂ 2u
∂θ2 = �u − ∂ 2u

∂ρ2 − | · |
−1 ∂u

∂ρ
, the bounds (62), (60), (58) give (61).

From (60), (61), then (59) follows. �

Let us recall the following result (see e. g. [3] ).

Fact 2. Let p > 1, R > 0, �λ ≥ 0, w ∈ W
2,p
γ0 (BR). Then, there exists

K (p, R) depending on p, R only, such that the bound:

(63)
||D2w||L p (BR) +

√
|λ| ||Dw||L p (BR ) + |λ| ||w||L p (BR) ≤

≤ K (p, R) ||�w − λw||L p (BR)

holds.

Lemma 7. Let (α, p) ∈A, R > 0, λ ∈ C, �λ ≥ 0, u ∈ W
2,p
γ0 (BR) \ F2(BR).

Then, there exists K (α, p, R) depending on α, p, R only, such that the bound:

(64)
||D2u||L p(BR) +

√
|λ| ||Du||L p(BR ) + |λ| ||u||L p(BR ) ≤

≤ K (α, p, R) ||Su − λu||L p(BR)

holds.

Proof. In the proof κ, κ �, κ �� will be constants depending on α, p, R only. Let
I1, · · · , Im be open sectors in R2 with vertex in (0, 0), of the form: Ij =
{(ρ cos θ, ρ sin θ ) : ρ > 0, |θ−θj | < δj , with 2δj < π

√
α/α� } j = 1, · · · , m,

satisfying: ∪m
j=1 Ij = R2 \ (0, 0).

Let I∗1 , · · · , I∗m be open sectors in R2 with vertex in (0, 0) of the form:
I∗j = {(ρ cos θ, ρ sin θ ) : ρ > 0, |θ − θj | < δ∗j , with 2δj < 2δ∗j <

π
√

α/α� } j = 1, · · · , m.
Let �1, · · · , �m be a partition of unity in R2 \ (0, 0), satisfying:

(i) �j ∈C∞(R2 \ (0, 0)), �j homogeneous of degree zero;
(ii) 1/2 ≤ �j ≤ 1 in Ij , �j ≡ 0 outside I∗j , j = 1, · · · , m;
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(iii)
�m

j=1 �j ≡ 1 in R2 \ (0, 0).

Let u ∈ C∞(BR) \ F2(BR), u|∂ BR
= 0. Then (see e.g. [12] ) u is of the

form u(ρeiθ ) = ρ3v(ρeiθ ), where v ∈C∞(BR).

Let g := Su−λu
α�

− ( 1
α�
− 2) 1

ρ
∂u
∂ρ

; then:

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

α

α�

1

ρ2

∂2u

∂θ 2
−

λ

α�
u = g.

Let us de�ne:
u( j ) := u�j ,

g( j ) := g�j +
α

α�ρ2

�
2
∂�j

∂θ

∂u

∂θ
+ u

∂2�j

∂θ 2

�

j = 1, · · · , m; then, u( j ) ∈C∞(BR \ {(0, 0)}); moreover u can be extended to a
function ∈C2(BR) ; furthermore:

∂2u( j )

∂ρ2
+

1

ρ

∂u( j )

∂ρ
+

α

α�

1

ρ2

∂2u( j )

∂θ 2
−

λ

α�
u( j ) = g( j )

j = 1, · · · , m.

Let us de�ne: v( j )(ρeiθ � ) := u( j )(ρei(θj+
√

α

α�
θ �)) (ρ > 0, |θ �| ≤ 2π ),

j = 1, · · · , m. Then:
v( j ) ∈C2(BR), v( j ) := 0 in x ≤ 0 and

[�v( j ) −
λ

α�
v( j )](ρeiθ � ) = g( j )(ρei(θj+

√
α

α�
θ �)).

The following relations hold.

|| u( j )||L p(BR) ≤ κ|| v( j )||L p(BR)

|| Du( j )||L p(BR ) ≤ κ �|| Dv( j )||L p(BR)

|| D2u( j )||L p(BR) ≤ κ�|| D2v( j )||L p(BR) + || | · |
−1 ∂u( j )

∂ρ
||L p(BR )

j = 1, · · · , m.
Now let us prove (64). The properties of u( j ), v( j ) give us:

J := ||D2u||L p(BR) +
�
|λ| ||Du||L p (BR) + |λ| ||u||L p(BR) ≤
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≤

m�

j=1

�
||D2u( j )||L p(BR) +

�
|λ| ||Du( j )||L p(BR ) + |λ| ||u( j )||L p(BR)

�

≤ κ

m�

j=1

�
||D2v( j )||L p(BR ) +

�
|λ|

α�
||Dv( j )||L p(BR ) +

|λ|

α�
||v( j )||L p(BR)+

+|| | · |−1 ∂u( j )

∂ρ
||L p(BR)

�
;

then, by Fact 2,

J ≤ κ

m�

j=1

�
||�v( j ) −

λ

α�
v( j )||L p(BR) + || | · |

−1 ∂u( j )

∂ρ
||L p(BR)

�
≤

≤ κ

m�

j=1

�
||g( j )||L p(BR ) + || | · |

−1 ∂u( j )

∂ρ
||L p(BR)

�

≤ κ
�
||g||L p(BR) + || | · |

−2 ∂u

∂θ
||L p(BR)+

+ || | · |−2 u ||L p(BR)

�
+ || | · |−1 ∂u

∂ρ
||L p(BR)

�
.

Thus:

J ≤ κ
�
|| Su − λu ||L p(BR) + || | · |

−1 ∂u

∂ρ
||L p(BR)+

+|| | · |−2 ∂u

∂θ
||L p(BR) + || | · |

−2 u ||L p(BR )

�
.

The last three terms on the right hand side can be bound using lemma 6. Then:

J ≤ κ || Su − λu ||L p(BR ) + �||D2u||L p(BR) + C(α, p, R, �)||Su− λu||L p(BR ).

By choosing � suf�ciently small, the thesis follows. �

Theorem 6. Let (α, p)∈A, R > 0, λ∈C�λ ≥ 0, u ∈W
2,p
γ0 (BR). There exists

K (α, p) depending on α, p only, such that the bound:

(65)
||D2u||L p(BR) +

√
|λ| ||Du||L p(BR ) + |λ| ||u||L p(BR ) ≤
≤ K (α, p) ||Su − λu||L p(BR)

holds.
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Proof. A function u ∈ W
2,p
γ0 (BR) can be decomposed as u = u2 + v, where

u2 ∈W
2,p
γ0 (BR) ∩F2(BR) and v ∈W

2,p
γ0 (BR) \F2(BR).

Then by lemmas 5 and 7,

||D2u2||L p(BR ) +
�
|λ| ||Du2||L p(BR) + |λ| ||u2||L p(BR ) ≤

≤ K (α, p, R)||Su2 − λu2||L p(BR ),

||D2v||L p(BR) +
�
|λ| ||Dv||L p(BR ) + |λ| ||v||L p(BR) ≤

≤ K (α, p, R)||Sv− λv||L p(BR).

As:
||Su2 − λu2||L p(BR ) ≤ K (α, p, R)||Su− λu||L p(BR),

and (65) follows, with a constant on the right hand side depending on α, p, R .
A simple scaling technique shows that in (65), the constant on the right

hand side, actually, does not depend on R. �

Immediate consequence of previous theorem is the asymptotic behaviour
of the resolvent of S. Let us denote by ||| · ||| the operator norm for bounded
operators acting in L p(BR).

Theorem 7. Let (α, p)∈A, R > 0; then, there exists η > 0 and Mη , such that,
if |argλ| < π

2
+ η, then

|||(S− λ)−1||| ≤
Mη

|λ|
.

Proof. The thesis follows from previous theorem using a classical fact (see e.g.
[3] 1.19, [6] IV 1.1. �
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