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SOBOLEV INEQUALITIES VIA MURAMATU’S INTEGRAL
FORMULA

YOICHI MIYAZAKI

For the Sobolev space W m
p (Rn) with positive integer m and 1< p<∞,

sometimes replaced by 1≤ p < ∞, we consider the case m−n/p < 0 and
the case m− n/p = 0, and give new proofs of the Sobolev embedding
theorems by Muramatu’s integral formula. When m− n/p < 0, the em-
bedding into Lq(Rn) with q satisfying m−n/p =−n/q is derived without
the Hardy-Littlewood-Sobolev inequality by incorporating the method to
prove it. When m−n/p= 0, we prove the embedding into the BMO space
or the VMO space as well as Trudinger’s inequality.

1. Introduction

This paper supplements the previous paper [8] that presented an introduction to
the Lp-based Sobolev spaces of integer order using Muramatu’s integral for-
mula. Compared with the paper [9] due to Muramatu who had derived an
advanced-form integral formula [9, Theorem 1] from the basic integral formula
[9, Corollary 1], and developed the theory of the Sobolev and Besov spaces of
fractional order, the previous paper [8] put a priority to simplicity and showed
usefulness of the basic integral formula [9, Corollary 1], which we call Mura-
matu’s integral formula, for the study of the Sobolev spaces of integer order.
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In this paper, we will apply Muramatu’s integral formula to improve the proof
given in [8] for the embedding into the Lebesgue space and to prove the embed-
ding into the BMO or VMO space as well as Trudinger’s inequality.

For a positive integer m and 1≤ p<∞ we consider the embedding theorems
for the Sobolev space W m

p (Rn) on the n-dimensional Euclidean space Rn. The
embedding theorems take different forms according to the sign of m− n/p. If
m−n/p > 0, then W m

p (Rn) is embedded into the the Hölder-Zygmund space of
order m−n/p. As shown in [9, 10] (see also [8]), Muramatu’s integral formula
enables us to prove this embedding theorem easily.

This paper deals with the two remaining cases. First let m− n/p < 0 with
1 < p < ∞. Take q so that m−n/p =−n/q, which implies 1 < p < q < ∞. Then
W m

p (Rn) is embedded into Lq(Rn). In [8] we proved this embedding theorem by
deriving the inequality

| f (x)| ≤C
∫
Rn
|x− y|m−n|∇m f (y)|dy (1.1)

from Muramatu’s integral formula, and invoking the Hardy-Littlewood-Sobolev
(HLS) inequality for the integral operator related to the Riesz potential; the idea
comes from Muramatu [9] and goes back to Sobolev. In Section 2 we prove
this embedding theorem without relying on the HLS inequality by combining
Muramatu’s formula with the techniques used in the proof of HLS inequality.
Inspection of our proof shows that Muramatu’s integral formula is more ad-
justable than the integral involved with the Riesz potential, when applying the
techniques used in the proof of HLS inequality.

Next let m− n/p = 0 with 1 ≤ p < ∞. This case has two types of embed-
ding theorems. One theorem states that W m

p (Rn) is embedded into BMO(Rn),
the space of functions of bounded mean oscillation, and more strongly into
VMO(Rn), the space of functions of vanishing mean oscillation. The usual way
to prove the BMO or VMO embedding (see e.g. [3, 4]) is based on Poincaré’s
inequality

‖ f − fΩ‖Ln(Ω) ≤C(n,Ω)‖∇ f‖Ln(Ω)

for f ∈W 1
n (Ω), where Ω is a bounded domain with smooth boundary in Rn, and

fΩ denotes the mean of f over Ω. In Section 3 we prove this theorem by Mu-
ramatu’s integral formula. Another theorem states that Trudinger’s inequality
holds except for the case p = 1, namely that a function f in W m

p (Rn) belongs
to the Orlicz space described by the function exp(t p/(p−1)). Unlike the BMO
embedding theorem, Trudinger’s inequality involves not only ‖∇m f‖Lp but also
‖ f‖Lp . As in the usual proof (see e.g. [2, 12, 15] and the references therein),
the key lies in evaluating the Lq norms of f for q≥ p. We do so by Muramatu’s
integral formula in Section 4. We note that there is another type of embedding
theorem (see [13]), which is outside the aim of this paper.
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We quickly review Muramatu’s integral formula. Choose a function ρ ∈
C∞

0 (Rn) satisfying
∫
Rn ρ(x)dx = 1 and suppρ ⊂ {x ∈ Rn : |x|< 1}. For a posi-

tive integer N we set

ϕ(x) = ∑
|α|<N

1
α!

∂
α
x {xα

ρ(x)},

M(x) = ∑
|α|=N

∂
α
x Mα , Mα =

N
α!

xα
ρ(x).

Let f ∈W m
p (Rn) with m ∈N, the set of positive integers, and 1≤ p < ∞. Let p′

denote the conjugate exponent of p, i.e.

p−1 +(p′)−1 = 1.

For t > 0 and a function u(x) we set

ut(x) = t−nu(x/t).

Using the relation ∂t{ϕt(x)}=−t−1Mt(x) and the fact that the convolution

ϕt ∗ f (x) =
∫
Rn

ϕt(x− y) f (y)dy

converges to f (x) as t → 0+ in the Lp(Rn) norm, and also for a.e. x ∈ Rn, we
have

f =
∫ R

0
Mt ∗ f

dt
t
+ϕR ∗ f , R > 0.

Noting that (∂ αMα)t ∗ f = t |β |(∂ α−β Mα)t ∗ (∂ β f ) for 0 < β ≤ α , and taking N
sufficiently large, we find that there exist C∞ functions K j supported on the unit
ball |x|< 1 with j = 1, . . . ,n such that

f =
n

∑
j=1

∫ R

0
tm(K j)t ∗ (∂ m

j f )
dt
t
+ϕR ∗ f . (1.2)

Since ‖ϕR ∗ f‖L∞
≤ R−n/p‖ϕ‖Lp′‖ f‖Lp by Hölder’s inequality, letting R→ ∞ in

(1.2) gives

f =
n

∑
j=1

∫
∞

0
tm(K j)t ∗ (∂ m

j f )
dt
t

(1.3)

for a.e. x ∈ Rn. We use (1.2) or (1.3) as Muramatu’s integral formula.
Throughout this paper we often omit Rn in the symbol Lp(Rn). The symbol

C stands for constants which may differ from line to line. For pure derivatives
we use the symbols

∇
m f = (∂ m

1 f , . . . ,∂ m
n f ), ‖∇m f‖Lp =

n

∑
j=1
‖∂ m

j f‖Lp .
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2. Sobolev inequality for m−n/p < 0

When m−n/p < 0, the Sobolev embedding theorem is formulated as follows.

Theorem 2.1. Let m ∈ N and 1 < p < ∞ satisfy m−n/p < 0. Choose q so that
m− n/p = −n/q, which implies p < q < ∞. Then W m

p (Rn) is embedded into
Lq(Rn), and the inequality

‖ f‖Lq(Rn) ≤C(m,n, p)‖∇m f‖Lp(Rn)

holds for f ∈W m
p (Rn).

Remark 2.2. As is well known, Theorem 2.1 also holds for p = 1 (see e.g.
[14]), which is outside the scope of our method.

As stated in the Introduction, we proved this theorem in [8] relying on the
HLS inequality, which asserts that the Lq norm of the right-hand side in (1.1) is
estimated by C‖∇m f‖Lp . There are several methods to prove the HLS inequality.
We will incorporate two of them separately into the proof of Theorem 2.1.

We first take up Hedberg’s method [7] of using the Hardy-Littlewood max-
imal function. Remember that for a locally integrable function f the maximal
function M f is defined by

M f (x) = sup
B3x

1
|B|

∫
B
| f (y)|dy,

where the supremum is taken over all balls B centered at x, and |B| denotes the
volume of B, and that M is a bounded operator on Lp (see e.g. [14, Chapter 1,
Theorem 1]).

Proof of Theorem 2.1 by Hedberg’s method. We use Muramatu’s formula (1.3).
Let b be the volume of the unit ball. For simplicity we temporarily set K = K j

and u = ∂ m
j f . By the definition of the maximal function we have

|Kt ∗u(x)| ≤ ‖K‖L∞
t−n

∫
|y|≤t
|u(x− y)|dy≤ b‖K‖L∞

Mu(x).

On the other hand, Hölder’s inequality gives

|Kt ∗u(x)| ≤ ‖Kt‖Lp′‖u‖Lp = t−n/p‖K‖Lp′‖u‖Lp .

Setting g = |∇m f | and using the above inequalities, we have

| f (x)| ≤C
(∫ R

0
tmMg(x)

dt
t
+
∫

∞

R
tm−n/p‖g‖Lp

dt
t

)
≤C

(
RmMg(x)+Rm−n/p‖g‖Lp

)
.
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Choosing R so that the two terms in the parentheses are equal, we get

| f (x)| ≤C‖g‖mp/n
Lp

Mg(x)1−mp/n =C‖g‖1−p/q
Lp

Mg(x)p/q.

The theorem follows by the Lp boundedness of the maximal operator M.

We next take up the method of using the weak Lebesgue space and the
Marcinkiewicz interpolation theorem (see e.g. [14, Appendix B], [5, Section
6.28]), which is essentially the same as the method used to prove the theorem on
a certan integral operator [5, Theorem 6.36]. Application of this method to the
HLS inequality can be found in [6, Theorem 6.2.6] (see also [16, Proposition
II.2.6]), where the Riesz potential is expressed by the integral representation
with the Gauss kernel, which is very similar to Muramatu’s integral formula
(1.3).

Let µ denote the Lebesgue measure on Rn. For λ > 0 and a measurable
function f we simply write µ( f > λ ) for µ({x ∈ Rn : f (x)> λ}).

Lemma 2.3. Let m, p, q be as in Theorem 2.1, and let χ be the characteristic
function of the unit ball |x|< 1. For g ∈ Lp(Rn) set

T g =
∫

∞

0
tm

χt ∗g
dt
t
.

Then the operator T is of weak type (p,q). Namely,

µ(|T g|> λ )≤C(m,n, p)λ−q‖g‖q
Lp(Rn). (2.1)

Moreover, T is a bounded operator from Lp(Rn) to Lq(Rn):

‖T g‖Lq(Rn) ≤C(m,n, p)‖g‖Lp(Rn). (2.2)

Proof. Without loss of generality we may assume that ‖g‖Lp = 1. For R > 0 we
set

T g = G0 +G1

with

G0 =
∫ R

0
tm

χt ∗g
dt
t
, G1 =

∫
∞

R
tm

χt ∗g
dt
t
.

Minkowski’s inequality and Young’s inequality give

‖G0‖Lp ≤
∫ R

0
tm‖χ‖L1‖g‖Lp

dt
t
=C0Rm.

Similarly,

‖G1‖L∞
≤
∫

∞

R
tm−n/p‖χ‖Lp′‖g‖Lp

dt
t
=C1Rm−n/p.
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Given λ > 0, we choose R so that C1Rm−n/p = λ . Since |T g| > 2λ implies
|G0|> λ , Chebyshev’s inequality gives

µ(|T g|> 2λ )≤ µ(|G0|> λ )≤ λ
−p(C0Rm)p

= (C0C−1
1 Rn/p)p =Cp

0Cq−p
1 λ

−q.

Thus we get (2.1).
To show (2.2) we note that 1 < p < n/m and take p0, p1, q0, q1 so that

1 < p0 < p < p1 < n/m,

m−n/p0 =−n/q0, m−n/p1 =−n/q1.

Observe that 1 < pl < ql < ∞ with l = 0,1 and that there exists θ ∈ (0,1) such
that

1
p
=

1−θ

p0
+

θ

p1
,

1
q
=

1−θ

q0
+

θ

q1
.

Since T is of weak-type (p0,q0), and of weak-type (p1,q1) by (2.1), we get
(2.2) by the Marcinkiewicz interpolation theorem.

Proof of Theorem 2.1 by the weak Lq space. Since |(K j)t ∗(∂ m
j f )| ≤ ‖K j‖L∞

χt ∗
|∂ m

j f |, Muramatu’s formula (1.3) and Lemma 2.3 yield the theorem.

3. Sobolev inequality with the BMO or VMO space for m−n/p = 0

In order to formulate the embedding theorem for m−n/p = 0 we remember the
definition of the BMO and VMO spaces. For a locally integrable function f on
Rn and a ball B in Rn we denote by fB the mean of f over B, and by IB( f ) the
mean of | f − fB| over B:

fB =
1
|B|

∫
B

f (x)dx, IB( f ) =
1
|B|

∫
B
| f (x)− fB|dx.

We say that f belongs to the space BMO(Rn) if

sup
B

IB( f )< ∞,

where the supremum is taken over all balls B. Let rB denote the radius of a ball
B. A function f in BMO(Rn) is said to belong to VMO(Rn) if

lim
ε→0

sup
B:rB≤ε

IB( f ) = 0.
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As is easily seen, IB( f ) satisfies

IB( f )≤ 2
|B|

∫
B
| f (x)|dx, (3.1)

IB( f )≤ 1
|B|2

∫∫
B×B
| f (x)− f (y)|dxdy≤ 2rB‖∇ f‖L∞(B). (3.2)

Theorem 3.1. Let m ∈ N and 1≤ p < ∞ satisfy m−n/p = 0. Then W m
p (Rn) is

embedded into BMO(Rn), and the inequality

‖ f‖BMO(Rn) ≤C(n, p)‖∇m f‖Lp(Rn) (3.3)

holds for f ∈W m
p (Rn). More strongly, we have W m

p (Rn)⊂ VMO(Rn).

Proof. We use Muramatu’s formula (1.3). Interchanging the order of integration
gives

IB( f )≤
n

∑
j=1

∫
∞

0
tmIB((K j)t ∗ (∂ m

j f ))
dt
t

for a ball B. For simplicity we temporarily set K = K j and u = ∂ m
j f . Using (3.1)

with Jensen’s inequality and Young’s inequality, we have

IB(Kt ∗u)≤ 2
|B|1/p ‖Kt ∗u‖Lp(B) ≤Cr−n/p

B ‖K‖L1‖u‖Lp . (3.4)

By (3.2) and Hölder’s inequality we have

IB(Kt ∗u)≤ 2rB‖∇(Kt ∗u)‖L∞(B) ≤ 2rB‖∇Kt‖Lp′‖u‖Lp

≤ 2rBt−1−n/p‖∇K‖Lp′‖u‖Lp .

Combining these inequalities gives, with g = |∇m f |,

IB( f )≤C
∫ R

0
tmr−n/p

B ‖g‖Lp

dt
t
+C

∫
∞

R
tm−1−n/prB‖g‖Lp

dt
t

≤C
{(

R
rB

)m

‖g‖Lp +
rB

R
‖g‖Lp

}
for R > 0, where we used m− n/p = 0. Setting R = rB, we get (3.3) for the
BMO space.

To show the assertion for VMO(Rn) we need only modify the proof for
BMO(Rn) by elaborating the second inequality in (3.4). Set

JB(u) = sup
y∈Rn
‖u‖Lp(B−y),
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where B− y = {x− y : x ∈ B}. Inspecting the proof of Young’s inequality gives

IB(Kt ∗u)≤Cr−n/p
B ‖K‖L1JB(u).

Using this inequality in place of (3.4), and setting R = lrB with l > 0, we get

IB( f )≤C1{lmJB(g)+ l−1‖g‖Lp}.

Given ε > 0, choose l so that C1l−1‖g‖Lp(Rn) < ε/2. In addition, by taking rB

sufficiently small we get C1lmJB(g)< ε/2, since g ∈ Lp(Rn). Hence IB( f )< ε .
This implies f ∈ VMO(Rn).

4. Trudinger’s inequality for m−n/p = 0

Following the papers [1, 11], we formulate Trudinger’s inequality so that it is
scale-invariant; the inequality is stable if f (x) is replaced by f (λx) with a pa-
rameter λ > 0. For 1 < p < ∞ we define the function Φp by

Φp(t) = exp(t)− ∑
k∈N∪{0},k<p−1

1
k!

tk.

Theorem 4.1. Let m ∈ N and 1 < p < ∞ satisfy m−n/p = 0. Then there exist
positive constants c and C depending only on n, p such that for f ∈W m

p (Rn)
with f 6= 0 we have

∫
Rn

Φp

c

(
| f (x)|

‖∇m f‖Lp(Rn)

)p/(p−1)
 dx≤C

(
‖ f‖Lp(Rn)

‖∇m f‖Lp(Rn)

)p

.

Proof. We may assume that ‖∇m f‖Lp = 1 by replacing f by f/‖∇m f‖Lp . We
use Muramatu’s formula (1.2) and write f = f0 +ϕR ∗ f with

f0 =
n

∑
j=1

∫ R

0
tm(K j)t ∗ (∂ m

j f )
dt
t

for R > 0. Let χ be the characteristic function of the unit ball |x| < 1, and set
g = ∑

n
j=1 |∂ m

j f |. By Fubini’s theorem

| f0(x)| ≤
∫
Rn

H(x− y)g(y)dy

with

H(x) = max
1≤ j≤n

‖K j‖L∞

∫ R

0
tm−n

χ(x/t)
dt
t
.
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Noting that |x| ≤ t ≤ R in the above integral, and making the change of variables
|x|/t = s, we know that H(x) = 0 for |x| > R, and H(x) ≤C0|x|m−n for |x| < R
with C0 =C0(n, p).

Let q, r satisfy

p≤ q < ∞, p−1 + r−1 = 1+q−1.

Note that r−1 = (p′)−1 + q−1. Let b be the volume of the unit ball. Since
‖g‖Lp ≤ 1, a calculation with Young’s inequality shows that

‖ f0‖Lq ≤ ‖H‖Lr =C0

(
nbR(m−n)r+n

(m−n)r+n

)1/r

≤C0

(
bq
r

)1/r

Rn/q (4.1)

≤C1

(
1+

q
p′

)(p′)−1+q−1

Rn/q.

On the other hand, Young’s inequality gives

‖ϕR ∗ f‖Lq ≤ R−n(1−1/r)‖ϕ‖Lr‖ f‖Lp ≤C2R−m+n/q‖ f‖Lp . (4.2)

Combining (4.1) and (4.2), and choosing R so that Rn/q = R−m+n/q‖ f‖Lp , we
have

‖ f‖q
Lq
≤Cq

3

(
1+

q
p′

)1+q/p′

‖ f‖p
Lp

with C3 = 2max{C1,C2}. We apply this inequality with q = kp′ for all integers
k satisfying kp′ ≥ p, i.e. k ≥ p−1. Given c > 0, we set

C4 = ∑
k≥p−1

(cCp′
3 )k (1+ k)k+1 /k!.

Then we get ∫
Rn

Φp(c| f (x)|p
′
)dx≤C4‖ f‖p

Lp
.

Here we find by the ratio test that C4 is finite if cCp′
3 e < 1, since the ratio is

dominated by
cCp′

3
k+1

(k+2)k+2

(k+1)k+1 ≤ cCp′
3 e
(

1+
1

k+1

)
.

Thus we complete the proof.
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