ON THE PROOF OF A MINIMAX PRINCIPLE

DUMITRU MOTREANU

The aim of this note is to point out that the basic argument in the proof of Theorem 2 in [5] does not work. Comments on this topic are given.

This short paper deals with a minimax principle in the nonsmooth critical point theory for functionals $I: X \to (-\infty, +\infty]$ on a real Banach space X which have the following structure

(H) $I = \Phi + \Psi$, with $\Phi : X \to \mathbb{R}$ locally Lipschitz and $\Psi : X \to (-\infty, +\infty)$ proper (i.e., $\neq +\infty$), convex and lower semicontinuous.

In Chapter 3 of the book [8] a critical point theory has been developed for the class of nonsmooth functionals verifying (H). A preliminary version of it has been given in [4]. In the setting of this nonsmooth critical point theory the main concepts are the following.

Definition 1. ([8], page 64). An element $u \in X$ is called a critical point of the functional I in (H) if

$$\Phi^0(u; v-u) + \Psi(v) - \Psi(u) \ge 0, \quad \forall v \in X.$$

Entrato in redazione il 4 Marzo 2004.

Definition 2. ([8], page 64). The functional I in (H) is said to satisfy the Palais-Smale condition at the level $c \in \mathbb{R}$ if every sequence $\{u_n\} \subset X$ verifying $I(u_n) \to c$ and

$$\Phi^0(u_n; v - u_n) + \Psi(v) - \Psi(u_n) \ge -\varepsilon_n \|v - u_n\|, \quad \forall v \in X,$$

for a sequence $\{\varepsilon_n\} \subset \mathbb{R}^+$ with $\varepsilon_n \to 0$, contains a convergent subsequence. If the Palais-Smale condition is fulfilled for all $c \in \mathbb{R}$, *I* is said to satisfy the Palais-Smale condition (for short, (PS)).

Here the notation Φ^0 stands for the generalized directional derivative of Φ in the sense of Clarke [2], i.e.,

$$\Phi^{0}(u; v) = \limsup_{w \to u \atop t \to 0^+} \frac{1}{t} (\Phi(w + tv) - \Phi(w)), \quad \forall u, v \in X.$$

In order to see the area of applicability of the approach related to Definitions 1 and 2, we briefly discuss some significant situations.

Example 1. If in (H) one has $\Phi \in C^1(X)$, then Definitions 1 and 2 reduce to the corresponding definitions in the nonsmooth critical point theory of Szulkin [9]. If in (H) one has $\Psi = 0$, then Definitions 1 and 2 coincide with the corresponding ones in the nonsmooth critical point theory of Chang [1]. For $\Phi \in C^1(X)$ and $\Psi = 0$ in (H), one obtains the basic concepts in the smooth critical point theory.

Example 2. Every local extremum (minimum or maximum) $u \in X$ with $I(u) < +\infty$ of a nonsmooth functional $I : X \to (-\infty, +\infty]$ satisfying (H) is a critical point in the sense of Definition 1. Indeed, if $u \in X$ with $I(u) < +\infty$ is a local minimum of I, then for any $v \in X$ and a small t > 0 we have

$$0 \le I((1-t)u + tv) - I(u) \le \Phi(u + t(v-u)) - \Phi(u) + t(\Psi(v) - \Psi(u)),$$

where the convexity of Ψ has been used. Dividing by t and letting $t \to 0^+$ we deduce that u is a critical point of I as required in Definition 1. Suppose now that $u \in X$ is a local maximum of I satisfying (H) with $I(u) < +\infty$. Then u is in the interior of the effective domain of Ψ , and thus Ψ is Lipschitz near u. Then the calculus with generalized gradients (see [2]) yields

$$0 \in \partial I(u) \subset \partial \Phi(u) + \partial \Psi(u),$$

where $\partial \Phi(u)$ is the generalized gradient of Φ and $\partial \Psi(u)$ is the subdifferential of Ψ in the sense of convex analysis, so 0 = z + w, with $z \in \partial \Phi(u)$ and $w \in \partial \Psi(u)$. By the definition of the generalized gradient and using the convexity of Ψ we infer that

$$\Phi^{0}(u; v-u) + \Psi(v) - \Psi(u) \ge \langle z, v-u \rangle + \langle w, v-u \rangle = 0, \quad \forall v \in X.$$

Thus *u* is a critical point like in Definition 1.

The minimax principle for nonsmooth functionals with the structure (H) formulated in Theorem 3.2 of [8] provides critical points in the sense of Definition 1 which generally are not local extrema, thus being of saddle point type. This minimax principle makes use of the following notion of linking (see, e.g., [3]).

Definition 3. Let *S* be a closed nonempty subset of the Banach space *X* and let *Q* be a compact topological submanifold of *X* with nonempty boundary ∂Q (in the sense of manifolds with boundary). We say that *S* and *Q* link if $S \cap \partial Q = \emptyset$ and $f(Q) \cap S \neq \emptyset$ whenever $f \in \Gamma$, for

$$\Gamma := \{ f \in C(Q, X) : f |_{\partial Q} = \mathrm{id}_{\partial Q} \}.$$

We now recall from [8] the minimax principle for nonsmooth functionals of type (H).

Theorem 1. ([8], Theorem 3.2, page 74). Let the functional $I : X \rightarrow (-\infty, +\infty]$ on the Banach space X satisfy assumptions (H) and (PS) (see Definition 2). Let S and Q link in the sense of Definition 3. Assume further that

$$\sup_{Q} I \in \mathbb{R}, \ b := \inf_{S} I \in \mathbb{R}, \ a := \sup_{\partial Q} I < b.$$

Then the number

$$c := \inf_{f \in \Gamma} \sup_{x \in Q} I(f(x)),$$

for Γ in Definition 3, is a critical value of I with $c \ge b$. In particular, there exists a critical point u of I in the sense of Definition 1 and I(u) = c.

Remark 1. The so-called limiting case c = a is treated in [7].

In the paper [5], Theorem 1 is presented (under the label Theorem 2 therein) with a different proof. It seems that the reason of its presence in [5] is to produce a simplification of the initial proof given in [8]. As shown in the sequel, the proof written in [5] is not correct.

The central argument of the proof given in [5] for Theorem 1 consists of the following claim:

"First of all we prove that
$$I \circ f$$
 is continuous on Q
for every $f \in \Gamma$ such that $\Lambda(f) < +\infty$ " (*)

(see [5], page 195). Here, $\Lambda(f) = \sup_{u \in Q} I(f(u))$.

The claim (*) is wrong as shown in the simple example below.

Example 3. Let $X = \mathbb{R}^2$, $Q = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 - 2y \le 0\}$ and $f = id_Q \in \Gamma$. Choose $\Phi = 0$ and $\Psi : \mathbb{R}^2 \to (-\infty, +\infty]$ defined for any $(x, y) \in \mathbb{R}^2$ by

$$\Psi(x, y) = \begin{cases} \frac{x^2 + y^2}{2y} + 1 & \text{if } x^2 + y^2 - 2y \le 0, \ y \ne 0\\ 1 & \text{if } (x, y) = (0, 0)\\ +\infty & \text{otherwise.} \end{cases}$$

The function Ψ is proper, convex and lower semicontinuous, so assumption (H) is satisfied. Moreover, it is seen that $\sup_{Q} \Psi = 2$, which ensures $\Lambda(f) < +\infty$ as required in (*). However, the function $I \circ f = \Psi \circ f = \Psi$ is not continuous at $(0, 0) \in Q$. This establishes that the claim (*) does not hold.

Remark 2. Theorem 1 is stated in [6] as Theorem 8 therein. The proof given in [6] contains the error indicated in (*) too (see [6], page 390).

REFERENCES

- [1] K.C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), pp. 102–129.
- [2] F.H. Clarke, *Optimization and nonsmooth analysis*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.
- [3] Y. Du, A deformation lemma and some critical point theorems, Bull. Austral. Math. Soc., 43 (1991), pp. 161–168.

- [4] D. Goeleven D. Motreanu, Minimax methods of Szulkin's type in unilateral problems, in: Functional Analysis, Selected Topics (Ed. P. K. Jain), Narosa Publishing House, New Delhi, India, 1998, p. 169–183.
- [5] C. Lefter, Critical point theorems for lower semicontinuous functionals, An. Științ. Univ. Al. I. Cuza Iași. Mat. (N.S.), 47 (2001), pp. 189–198.
- [6] N. Kourogenis J. Papadrianos N.S. Papageorgiou, *Extensions of nonsmooth critical point theory and applications*, Atti Sem. Mat. Fis. Univ. Modena, 50 (2002), pp. 381–414.
- S. Marano D. Motreanu, A deformation theorem and some critical point results for non-differentiable functions, Topol. Methods Nonlinear Anal., 22 (2003), pp. 139–158.
- [8] D. Motreanu P.D. Panagiotopoulos, *Minimax theorems and qualitative properties of the solutions of hemivariational inequalities*, Kluwer Academic Publishers, Dordrecht, 1999.
- [9] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré. Anal. Non Linéaire, 3 (1986), pp. 77–109.

Université de Perpignan, Département de Mathématiques, 66860 Perpignan (FRANCE)