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ON THE PROOF OF A MINIMAX PRINCIPLE

DUMITRU MOTREANU

The aim of this note is to point out that the basic argument in the proof
of Theorem 2 in [5] does not work. Comments on this topic are given.

This short paper deals with a minimax principle in the nonsmooth critical
point theory for functionals I : X — (—00, +0o¢c] on a real Banach space X
which have the following structure

H) I = ®+ VY, with ® : X — Rlocally Lipschitzand W : X — (—o0, +00]
proper (i.e., % 4-00), convex and lower semicontinuous.

In Chapter 3 of the book [8] a critical point theory has been developed for
the class of nonsmooth functionals verifying (H). A preliminary version of it
has been given in [4]. In the setting of this nonsmooth critical point theory the
main concepts are the following.

Definition 1. ([8], page 64). An element u € X is called a critical point of the
functional 7 in (H) if

;v —u)+ VW) —Yu) >0, VveX.
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Definition 2. ([8], page 64). The functional / in (H) is said to satisfy the
Palais-Smale condition at the level ¢ € R if every sequence {u,} C X verifying
I(u,) — c and

DO(uy; v —uy) + W) — W(u,) > —&,llv —u,ll, YveXx,

for a sequence {¢,} C R* with &, — 0, contains a convergent subsequence.
If the Palais-Smale condition is fulfilled for all ¢ € R, [ is said to satisfy the
Palais-Smale condition (for short, (PS)).

Here the notation ®° stands for the generalized directional derivative of ®
in the sense of Clarke [2], i.e.,

1
®°(u; v) = lim sup ?(d>(w +1v) — d(w)), Yu,veX.

w—u
1—0F

In order to see the area of applicability of the approach related to Definitions 1
and 2, we briefly discuss some significant situations.

Example 1. If in (H) one has ® € C!(X), then Definitions 1 and 2 reduce to
the corresponding definitions in the nonsmooth critical point theory of Szulkin
[9]. If in (H) one has ¥ = 0, then Definitions 1 and 2 coincide with the
corresponding ones in the nonsmooth critical point theory of Chang [1]. For
® e C'(X) and ¥ = 0 in (H), one obtains the basic concepts in the smooth
critical point theory.

Example 2. Every local extremum (minimum or maximum) u € X with I(u) <
400 of a nonsmooth functional 7 : X — (—o0, +0o0] satisfying (H) is a critical
point in the sense of Definition 1. Indeed, if u € X with I(u) < 400 is a local
minimum of /, then for any v € X and a small # > O we have

0=<1((A—u+tv)—Iu) < Pu+1(v—u) — Pu)+ (V) — W(u)),

where the convexity of W has been used. Dividing by ¢ and letting t — 0" we
deduce that u is a critical point of / as required in Definition 1. Suppose now
that u € X is a local maximum of [ satisfying (H) with /() < 4o00. Then u
is in the interior of the effective domain of W, and thus W is Lipschitz near u.
Then the calculus with generalized gradients (see [2]) yields

0€dl(u) CaPum)+av(u),
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where 0 ®(u) is the generalized gradient of ® and 0 W (1) is the subdifferential of
W in the sense of convex analysis, so 0 = z+w, with z € d®(u) and w € IV (u).
By the definition of the generalized gradient and using the convexity of ¥ we
infer that

(s v —u) + W) — W) > (z,v—u) + (w,v—u) =0, YveX.

Thus u is a critical point like in Definition 1.

The minimax principle for nonsmooth functionals with the structure (H)
formulated in Theorem 3.2 of [8] provides critical points in the sense of
Definition 1 which generally are not local extrema, thus being of saddle point
type. This minimax principle makes use of the following notion of linking (see,

e.g., [3]).

Definition 3. Let S be a closed nonempty subset of the Banach space X and let
QO be a compact topological submanifold of X with nonempty boundary 9 Q (in
the sense of manifolds with boundary). We say that S and Q linkif SN0 Q = ¢
and f(Q)N S # ¥ whenever f eI, for

[:={feC(Q,X): flag =1dyp}.

We now recall from [8] the minimax principle for nonsmooth functionals of type
(H).

Theorem 1. ([8], Theorem 3.2, page 74). Let the functional I : X —
(=00, +00] on the Banach space X satisfy assumptions (H) and (PS) (see
Definition 2). Let S and Q link in the sense of Definition 3. Assume further
that

sup/ eR, b:=infl €R, a :=supl < b.
0 S 90

Then the number

¢ := inf sup I( f(x)),
fer xeQ

for T in Definition 3, is a critical value of 1 with ¢ > b. In particular, there
exists a critical point u of I in the sense of Definition I and I(u) = c.

Remark 1. The so-called limiting case ¢ = a is treated in [7].
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In the paper [5], Theorem 1 is presented (under the label Theorem 2
therein) with a different proof. It seems that the reason of its presence in [5]
is to produce a simplification of the initial proof given in [8]. As shown in the
sequel, the proof written in [5] is not correct.

The central argument of the proof given in [5] for Theorem 1 consists of
the following claim:

” First of all we prove that / o f is continuous on Q
for every f €T suchthat A(f) < 400 ” (%)

(see [S], page 195). Here, A(f) = sup,col(f(u)).
The claim (x) is wrong as shown in the simple example below.

Example 3. Let X = R?, Q0 = {(x,y)e R? : x?> 4+ y> -2y < 0} and
f =idg €. Choose ® = 0 and ¥ : R> — (—o00, +00] defined for any
(x,y) e R*by

24,2 .
%H ifx24+y2 -2y <0,y#0
Y, y)=11 if (x, y) = (0,0)
+00 otherwise.

The function W is proper, convex and lower semicontinuous, so assumption (H)
is satisfied. Moreover, it is seen that sup, W = 2, which ensures A(f) < +00
as required in (x). However, the function [/ o f = W o f = W is not continuous
at (0, 0) € Q. This establishes that the claim (x) does not hold.

Remark 2. Theorem 1 is stated in [6] as Theorem 8 therein. The proof given
in [6] contains the error indicated in (x) too (see [6], page 390).
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