
LE MATEMATICHE
Vol. LVIII (2003) � Fasc. I, pp. 101�115

PERRON CONDITIONS FOR EXPONENTIAL

EXPANSIVENESS OF ONE-PARAMETER SEMIGROUPS

BOGDAN SASU

We present a new approach for the theorems of Perron type for ex-
ponential expansiveness of one-parameter semigroups in terms of l p (N, X)
spaces. We prove that an exponentially bounded semigroup is exponen-
tially expansive if and only if the pair (l p (N, X), lq (N, X)) is completely
admissible relative to a discrete equation associated to the semigroup, where
p, q ∈ [1,∞), p ≥ q . We apply our results in order to obtain very general
characterizations for exponential expansiveness of C0-semigroups in terms
of the complete admissibility of the pair (L p(R+, X), Lq (R+, X)) and for
exponential dichotomy, respectively, in terms of the admissibility of the pair
(L p(R+, X), Lq (R+, X)).

1. Introduction.

In the last decades, the asymptotic theory of one-parameter semigroups
became one of the domains with a spectacular development (see [2], [5], [16],
[17]). Important results in the theory of evolution equations were based on the
relatively recent studies on the properties of the so-called evolution semigroups
associated to evolution operators or to linear skew-product �ows on diverse
function spaces (see [2], [7], [8], [15]).

Among of the most important techniques in the study of the asymptotic
behavior of evolution equations, we refer the input-output conditions relative to
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functional equations associated to them. These methods have the origin in the
classical work of Perron and they were intensively used in papers concerning
exponential stability, exponential expansiveness and exponential dichotomy (see
[2]-[4], [6]-[9], [11]-[15], [20], [21]).

The purpose of the present paper is to give very general conditions for
the exponential expansiveness of one-parameter semigroups using discrete-
time methods. Our main tools are based on the input-output conditions or
on the so-called �theorems of Perron type�. We associate to an exponentially
bounded semigroup on a Banach space X a discrete-time equation and we dis-
cuss its expansiveness relative to the unique solvability of this equation between
two l p(N, X ) spaces. We prove that the complete admissibility of the pair
(l p(N, X ), lq(N, X )) implies the exponential expansiveness of the semigroup,
and the converse implication is valid if and only if p ≥ q . Next, we apply our
results for the study of the exponential expansiveness and of the exponential
dichotomy of C0 -semigroups. Thus, we obtain necessary and suf�cient con-
ditions for exponential expansiveness of a C0-semigroup in terms of the com-
plete admissibility of the pair (L p(R+, X ), Lq(R+, X )) relative to an integral
equation associated to it. As an application, we deduce a characterization for
exponential dichotomy of C0-semigroups, using the admissibility of the pair
(L p(R+, X ), Lq(R+, X )).

2. Discrete admissibility and exponential expansiveness.

In what follows we establish the connection between the exponential ex-
pansiveness of exponentially bounded semigroups and the complete admissibil-
ity of the pair (l p(N, X ), lq (N, X )).

Let X be a real or a complex Banach space. Throughout this paper, the
norm on X and on B(X )-the Banach algebra of all bounded linear operators on
X , will be denoted by || · ||.

De�nition 2.1. A family T = {T (t)}t≥0 ⊂ B(X ) is said to be a semigroup on
X , if T (0) = I and T (t + s) = T (t)T (s), for all t, s ≥ 0.

De�nition 2.2. A semigroup T = {T (t)}t≥0 is said to be:

(i) exponentially bounded if there are M ≥ 1 and ω > 0 such that
||T (t)|| ≤ Meωt , for all t ≥ 0;

(ii) C0 -semigroup if lim
t�0

T (t)x = x , for all x ∈ X .
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Remark 2.1. If T is a C0 -semigroup, then it is exponentially bounded (see
[17], Theorem 2.2, p. 4).

De�nition 2.3. A semigroup T = {T (t)}t≥0 is said to be
(i) exponentially unstable if there are two constants N, ν > 0 such that

||T (t)x || ≥ N eνt ||x ||, ∀ (t, x )∈R+ × X ;

(ii) exponentially expansive if it is unstable and for every t ≥ 0, T (t) is
invertible.

Remark 2.2. If T = {T (t)}t≥0 is a semigroup such that there is τ > 0 such
that T (τ ) is invertible, then T (t) is invertible for all t ≥ 0.

Proposition 2.1. An exponentially bounded semigroup T = {T (t)}t≥0 is expo-
nentially unstable if and only if there are t0 > 0 and δ > 1 such that

||T (t0)x || ≥ δ||x ||, ∀x ∈ X .

Proof. Necessity is obvious. To prove suf�ciency, let ν > 0 be such that
δ = eνt0 . Let M, ω be given by De�nition 2.2 (i). If t ≥ 0, there are n ∈ N and
s ∈ [0, t0) such that t = nt0 + s . It follows that

eν(n+1)t0 ||x || ≤ ||T ((n + 1)t0)x || ≤ Meωt0||T (t)x ||, ∀x ∈ X .

If N = 1/Meωt0 , then ||T (t)x || ≥ Neνt ||x ||, for all t ≥ 0 and all x ∈ X . �

If p ∈ [1, ∞), we denote by

l p(N, X ) = {s : N → X |

∞�

k=0

||s(k)||p < ∞}

which is Banach space with respect to the norm

||s||p :=

� ∞�

k=0

||s(k)||p
�1/p

.

De�nition 2.4. Let p, q ∈ [1, ∞). The pair (l p(N, X ), lq(N, X )) is said to be
completely admissible for the semigroup T = {T (t)}t≥0 if for every s ∈ lq (N, X )
there exists a unique γs ∈ l p(N, X ) such that

(Ed
T) γs (n + 1) = T (1)γs(n) + T (1)s(n), ∀n ∈N.
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Remark 2.3. If the pair (l p(N, X ), lq (N, X )) is completely admissible for T,
then it makes sense to consider the operator

Q : lq (N, X ) → l p(N, X ), Q(s) = γs .

We immediately observe that Q is a closed linear operator, so it is bounded.

If A ⊂ R we denote by χA the characteristic function of the set A.

Theorem 2.1. If the pair (l p(N, X ), lq(N, X )) is completely admissible for the
semigroup T = {T (t)}t≥0, then T (t) is invertible, for all t ≥ 0.

Proof. It is suf�cient to prove that T (1) is invertible.

Injectivity. Let x ∈ X with T (1)x = 0 and γ (n) = 0, γ �(n) = T (n)x , for
all n ∈N. Then the pairs (γ, 0), (γ �, 0) verify the equation (Ed

T
). Since the pair

(l p(N, X ), lq(N, X )) is completely admissible for T, we deduce that γ = γ � ,
and hence x = γ (0) = 0. So T (1) is injective.

Surjectivity. Let x ∈ X and let

s : N → X, s(n) = −χ{1}(n)x .

From hypothesis there is γ ∈ l p(N, X ) such that the pair (γ, s) veri�es the
equation (Ed

T). Then we have that

γ (m + 1) = T (1)γ (m), ∀m ≥ 2

and
γ (2) = T (1)γ (1)− T (1)x .

Let

ϕ : N → X, ϕ(n) =

�
γ (1)− x , n = 0
γ (n + 1) , n ≥ 1.

Then ϕ ∈ l p(N, X ) and

ϕ(n + 1) = T (1)ϕ(n), ∀n ∈N.

Taking into account that the pair (l p(N, X ), lq(N, X )) is completely admissible
for T we deduce that ϕ = 0. In particular, it follows that γ (1) − x = 0, so
x = γ (1). But γ (1) = T (1)γ (0), so we obtain that x = T (1)γ (0). This shows
that T (1) is surjective and the proof is complete. �

The �rst main result of this section is:
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Theorem 2.2. Let p, q ∈ [1, ∞) and let T = {T (t)}t≥0 be an exponentially
bounded semigroup on X . If the pair (l p(N, X ), lq (N, X )) is completely admis-
sible for T, then T is exponentially expansive.

Proof. From Theorem 2.1 we have that T (t) is invertible, for all t ≥ 0.

Let x ∈ X \ {0}. Then T (n)x �= 0, for all n ∈ N. If Q is the operator from
Remark 2.3, let L = ||Q||+1 and k = [L2p]+1. For every n ∈N, we consider
the sequences:

s : N → X, s(i) = −χ{(n+1)k,...,(n+2)k−1}(i)
T (i)x

||T (i)x ||

γ : N → X, γ (i) =

∞�

j=i

χ{(n+1)k,...,(n+2)k−1}( j )

||T ( j )x ||
T (i)x .

We have that γ ∈ l p(N, X ), s ∈ lq(N, X ) and the pair (γ, s) veri�es the equation
(Ed

T
). It follows that Qs = γ , so ||γ ||p ≤ ||Q|| ||s||q ≤ Lk1/q . In particular,

we deduce that �
(n+1)k−1�

j=nk

||γ ( j )||p

�1/p

≤ Lk1/q .

Let α : N → R+, α( j ) = ||T ( j )x ||. Denoting by

λ =

(n+2)k−1�

j=(n+1)k

1

α( j )

from above, it follows that

(2.1)

�
(n+1)k−1�

j=nk

α( j )p

�1/p

≤
Lk1/q

λ
.

Let

h =

�
1 , p = 1
k1/p

�

, p ∈ (1, ∞) and p� =
p

p−1
.

Since
(n+1)k−1�

j=nk

α( j ) ≤ h

�
(n+1)k−1�

j=nk

α( j )p

�1/p
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by relation (2.1) we deduce that

(2.2)

(n+1)k−1�

j=nk

α( j ) ≤
Lhk1/q

λ
.

Moreover

k2 ≤

(n+2)k−1�

j=(n+1)k

1

α( j )

(n+2)k−1�

j=(n+1)k

α( j ) = λ

(n+2)k−1�

j=(n+1)k

α( j )

and by relation (2.2) we obtain that

(n+1)k−1�

j=nk

α( j ) ≤
Lhk1/q

k2

(n+2)k−1�

j=(n+1)k

α( j ) ≤
L

k1/p

(n+2)k−1�

j=(n+1)k

α( j ).

Using the de�nition of k it follows that

(n+2)k−1�

j=(n+1)k

α( j ) ≥ L

(n+1)k−1�

j=nk

α( j ), ∀n ∈N

which implies that

(2.3)

(n+1)k−1�

j=nk

α( j ) ≥ Ln
k−1�

j=0

α( j ), ∀n ∈ N.

Let M ≥ 1 and ω > 0 be such that ||T (t)|| ≤ Meωt , for all t ≥ 0. Since for
every n ∈N∗

(n+1)k−1�

j=nk

α( j ) ≤ kMeωkα(nk) and kα(k) ≤ Meωk
k−1�

j=0

α( j )

by relation (2.3) we deduce that

(2.4) ||T (nk)x || ≥
Ln

θ
||T (k)x ||, ∀n ∈N∗,

where θ = M2e2ωk . Since T (k) is invertible, there exists c > 0 such that
||T (k)x || ≥ c||x ||, for all x ∈ X . Then, using the relation (2.4) we deduce that

||T (nk)x || ≥
cLn

θ
||x ||, ∀n ∈ N∗, ∀x ∈ X .

Let n0 ∈ N∗ , with Ln0c/θ > 1. Denoting by t0 = n0k and by δ = Ln0c/θ ,
it follows that ||T (t0)x || ≥ δ||x ||, for all x ∈ X . Applying Proposition 2.1 we
obtain that T is exponentially expansive. �

For the next proof, we use the following technical lemma.
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Lemma 2.1. Let q ≥ 1 and ν > 0. If s ∈ lq(N, R+) and γs : N → R+, γs(n) =
∞�

j=n

e−ν( j−n)s( j ), then γs ∈ lq (N, R+).

Proof. It follows using Hölder�s inequality. �

The second main result of this section is given by:

Theorem 2.3. Let p, q ∈ [1, ∞), p ≥ q and let T = {T (t)}t≥0 be an
exponentially bounded semigroup on X . Then T is exponentially expansive
if and only if the pair (l p(N, X ), lq (N, X )) is completely admissible for it.

Proof. Necessity. Let s ∈ lq (N, X ). We consider the sequence

γ : N → X, γ (n) = −

∞�

j=n

T ( j − n)−1s( j ).

By Lemma 2.1 it follows that γ ∈ lq (N, X ). Because p ≥ q , lq (N, X ) ⊂

l p(N, X ), so γ ∈ l p(N, X ).

To prove the uniqueness, it is suf�cient to show that if γ ∈ l p(N, X ) and

(2.5) γ (n + 1) = T (1)γ (n), ∀n ∈N

then γ = 0. Indeed, by relation (2.5) we have that γ (n) = T (n)γ (0), for all
n ∈N. If N, ν > 0 are given by De�nition 2.3, it follows that

||γ (n)|| ≥ Neνn ||γ (0)||, ∀n ∈N.

Since γ ∈ l p(N, X ), we obtain that γ (0) = 0, so γ ≡ 0.

In conclusion, we deduce that the pair (l p(N, X ), lq (N, X )) is completely
admissible for T.

Suf�ciency follows from Theorem 2.2. �

Remark 2.4. Generally, if p < q and the exponentially bounded semigroup
T = {T (t)}t≥0 is exponentially expansive, it does not result that the pair
(l p(N, X ), lq(N, X )) is completely admissible for T.

Example 2.1. Let X = R and T (t)x = et x , for all (t, x ) ∈ R × R. Then
T = {T (t)}t≥0 is exponentially expansive. Let p, q ∈ [1, ∞), p < q, δ ∈ (p, q)
and s : N → R, s(n) = 1/(n + 1)1/δ . Then s ∈ lq(N, R) \ l p(N, R).
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Suppose by contrary that the pair (l p(N, R), lq (N, R)) is completely
admissible for T. Then there is a unique γ ∈ l p(N, R) such that γ (n + 1) =

T (1)γ (n)+ T (1)s(n), for all n ∈N. It follows that

γ (n) = en

�

γ (0)+

n−1�

j=0

e− j s( j )

�

, ∀n ∈N∗.

Taking into account that lim
n→∞

γ (n) = 0, we deduce that γ (0) = −
∞�

j=0

e− j s( j ),

so

γ (n) = −en
∞�

j=n

e− j s( j ), ∀n ∈N.

A simple calculus shows that lim
n→∞

|γ (n)|
s(n)

= e
e−1

. Then, since s /∈ l p(N, R) we

obtain that γ /∈ l p(N, R), which is a contradiction.

In conclusion, the pair (l p(N, R), lq (N, R)) is not completely admissible
for T.

3. Application 1: exponential expansiveness of C0 -semigroups.

In this section, as a consequence of the above results, we establish char-
acterizations in terms of L p(R, X ) spaces for exponential expansiveness of C0 -
semigroups.

Let X be a real or a complex Banach space and let T = {T (t)}t≥0 be a
C0 -semigroup on X . Let p ∈ [1, ∞). We denote by L p(R+, X ) the linear space

of all Bochner measurable functions v : R+ → X with
∞�

0

||v(τ )||p dτ < ∞.

This is a Banach space with respect to the norm

||v||p := (

� ∞

0

||v(τ )||p dτ )1/p.

De�nition 3.1. Let p, q ∈ [1, ∞). The pair (L p(R+, X ), Lq(R+, X )) is said
to be completely admissible for the C0 -semigroup T = {T (t)}t≥0 if for every
v ∈ Lq(R+, X ) there exists a unique continuous function f ∈ L p(R+, X ) such
that the pair ( f, v) veri�es the equation

(ET) f (t) = T (t − s) f (s)+

� t

s

T (t − τ )v(τ ) dτ, ∀ t ≥ s ≥ 0.
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Theorem 3.1. Let p, q ∈ [1, ∞) and let T = {T (t)}t≥0 be a C0 -semigroup on
X . If the pair (L p(R+, X ), Lq(R+, X )) is completely admissible for T, then T
is exponentially expansive.

Proof. Let α : [0, 1] → [0, 2] be a continuous function with the support

contained in (0, 1) and
� 1

0
α(τ ) dτ = 1. Let s ∈ l1(N, X ). Then s ∈ lq (N, X )

and the function

v : R+ → X, v(t) = T (t − [t])s([t])α(t − [t])

is continuous with v ∈ Lq(R+, X ). By hypothesis, there exists a unique
continuous function f ∈ L p(R+, X ) such that

(3.1) f (t) = T (t − s) f (s)+

� t

s

T (t − τ )v(τ ) dτ, ∀ t ≥ s ≥ 0.

We consider the sequence γ : N → X, γ (n) = f (n). By relation (3.1) we
deduce that

γ (n + 1) = T (1)γ (n)+ T (1)s(n), ∀n ∈N

so the pair (γ, s) veri�es the equation (Ed
T). Let M, ω ∈ (0, ∞) be such that

||T (t)|| ≤ Meωt , for all t ≥ 0. By (3.1) we have that

||γ (n + 1)|| ≤ Meω|| f (t)|| + Meω||s(n)||, ∀ t ∈ [n, n+ 1)

so

(3.2) ||γ (n + 1)|| ≤ Meω

�� n+1

n

|| f (t)||p dt

�1/p

+ Meω||s(n)||, ∀n ∈ N.

Since s ∈ l p(N, X ) and f ∈ L p(R+, X ), by relation (3.2) it follows that
γ ∈ l p(N, X ).

To prove the uniqueness it is suf�cient to show that if γ ∈ l p(N, X ) such
that

(3.3) γ (n + 1) = T (1)γ (n), ∀n ∈N

then γ ≡ 0. Indeed, let γ ∈ l p(N, X ) which veri�es the equation (3.3). We
consider the function

δ : R+ → X, δ(t) = T (t − [t])γ ([t]).

By relation (3.3) we have that δ is continuous and δ(t) = T (t − s)δ(s), for
all t ≥ s ≥ 0. Moreover, since γ ∈ l p(N, X ) it follows that δ ∈ L p(R+, X ).
By hypothesis, we obtain that δ(t) = 0, for all t ≥ 0, so γ = 0. Thus, we
deduce that the pair (l p(N, X ), l1(N, X )) is completely admissible for T. From
Theorem 2.2 it follows that T is exponentially expansive. �
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Lemma 3.1. Let p, q ∈ [1, ∞) with p ≥ q and let ν > 0. If v ∈ Lq (R+, R+),
then the function

f : R+ → R+, f (t) =

� ∞

t

e−ν(s−t )v(s) ds

belongs to L p(R+, R+).

Proof. It follows using Hölder�s inequality. �

Theorem 3.2. Let p, q ∈ [1, ∞), p ≥ q and let T = {T (t)}t≥0 be a C0 -
semigroup on X . Then T is exponentially expansive if and only if the pair
(L p(R+, X ), Lq(R+, X )) is completely admissible for T.

Proof. Necessity. Let v ∈ Lq(R+, X ). We consider the function

f : R+ → X, f (t) = −

� ∞

t

T (τ − t)−1v(τ ) dτ.

Then f is continuous and the pair ( f, v) veri�es the equation (ET). By Lemma
3.1 one obtain that f ∈ L p(R+, X ). The uniqueness of f follows using a similar
argument as in the proof of Theorem 2.3. So, the pair (L p(R+, X ), Lq(R+, X ))
is completely admissible for T.

Suf�ciency follows from Theorem 3.1. �

Remark 3.1. Generally, if p < q and the C0 -semigroup T = {T (t)}t≥0 is
exponentially expansive, it does not result that the pair (L p(R+, X ), Lq(R+, X ))
is completely admissible for T.

Example 3.1. Let X = R and T (t)x = et x , for all (t, x ) ∈ R+ × R. Then
T = {T (t)}t≥0 is C0 -semigroup, which is exponentially expansive.

Let p, q ∈ [1, ∞) with p < q and let δ ∈ (p, q). If v : R+ → R, v(t) =

1/(t + 1)1/δ , then there is no f ∈ L p(R+, R) such that the pair ( f, v) veri�es
the equation (ET). In conclusion, the pair (L p(R+, R), Lq (R+, R)) is not
completely admissible for T.

4. Application 2: exponential dichotomy of C0 -semigroups.

In this section we present a new example of applicability of the results of
this paper. In fact, we will use the results obtained in the previous section in
order to obtain characterizations for exponential dichotomy of C0 -semigroups.

Let X be a real or a complex Banach space, let T = {T (t)}t≥0 be a C0 -
semigroup on X and let p, q ∈ [1, ∞).
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De�nition 4.1. T is said to be exponentially dichotomic if there exist a projec-
tion P ∈ B(X ) and two constants K ≥ 1 and ν > 0 such that:

(i) T (t)P = PT (t), for all t ≥ 0;

(ii) T (t)| : Ker P → Ker P is an isomorphism, for all t ≥ 0;

(iii) ||T (t)x || ≤ Ke−νt ||x ||, for all x ∈ Im P and all t ≥ 0;

(iv) ||T (t)x || ≥ 1
K
eνt ||x ||, for all x ∈ Ker P and all t ≥ 0.

De�nition 4.2. A linear subspace U ⊂ X is said to be T-invariant if T (t)U ⊂

U , for all t ≥ 0.

De�nition 4.3. The pair (L p(R+, X ), Lq(R+, X )) is said to be admissible for
T if for every v ∈ Lq (R+, X ) there is a continuous function f ∈ L p(R+, X )
such that

f (t) = T (t − s) f (s)+

� t

s

T (t − τ )v(τ ) dτ, ∀ t ≥ s ≥ 0.

We consider the linear subspace

X1 = {x ∈ X :

� ∞

0

||T (t)x ||p dt < ∞}

and we suppose that X1 is closed and there is a closed T-invariant subspace X2

such that X = X1 ⊕ X2.

Theorem 4.1. If the pair (L p(R+, X ), Lq(R+, X )) is admissible for T, then
the following properties hold:

(i) for every t ≥ 0 the restriction T (t)| : X2 → X2 is an isomorphism;

(ii) there are K , ν > 0 such that

||T (t)x || ≥
1

K
eνt ||x ||, ∀ t ≥ 0, ∀x ∈ X2.

Proof. Let T2(t) = T (t)|X2
, for all t ≥ 0. Then T2 = {T2(t)}t≥0 is a

C0 -semigroup on X2. We prove that the pair (L p(R+, X2), L
q(R+, X2)) is

completely admissible for T2.

Let v ∈ Lq (R+, X2). Then v ∈ Lq (R+, X ), so there is a continuous
function g ∈ L p(R+, X ) such that

g(t) = T (t − s)g(s)+

� t

s

T (t − τ )v(τ ) dτ, ∀ t ≥ s ≥ 0.
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If g(0) = x1 + x2 with xk ∈ Xk, k ∈ {1, 2} we consider the function

f : R+ → X, f (t) = g(t)− T (t)x1.

Then f is continuous and f ∈ L p(R+, X ). Moreover, from

f (t) = T (t)x2 +

� t

0

T (t − τ )v(τ ) dτ, ∀ t ≥ 0

we deduce that f (t)∈ X2, for all t ≥ 0, so f ∈ L p(R+, X2).

To prove the uniqueness of f , let f̃ ∈ L p(R+, X2) be a continuous function
such that the pair ( f̃ , v) veri�es the integral equation associated with T. Setting
ϕ = f − f̃ we have that ϕ ∈ L p(R+, X2) and

(4.1) ϕ(t) = T (t)ϕ(0), ∀ t ≥ 0.

From relation (4.1) it follows that ϕ(0) ∈ X1. Since ϕ(0) ∈ X2 we deduce that
ϕ(0) = 0. This shows that ϕ = 0, which proves the uniqueness of f .

Thus, we have that the pair (L p(R+, X2), L
q(R+, X2)) is completely

admissible for T. By applying Theorem 3.1 for the C0 -semigroup T2 we obtain
the conclusion. �

Theorem 4.2. If the pair (L p(R+, X ), Lq(R+, X )) is admissible for T and the
subspace

X1 := {x ∈ X : T (·)x ∈ L p(R+, X )}

is closed and it has a T-invariant complement X2, then T is exponentially
dichotomic.

Proof. Let P be the projection with Im P = X1 and Ker P = X2. Then we
have that T (t)P = PT (t), for all t ≥ 0. Let T1(t) = T (t)|Im P , for all t ≥ 0.
Since � ∞

0

||T1(t)x ||
p dt < ∞, ∀x ∈ Im P

from [17] (see Theorem 4.1, pp. 116) it follows that there are K , ν > 0 such
that

||T (t)|| ≤ Ke−νt ||x ||, ∀ t ≥ 0, ∀x ∈ Im P.

From Theorem 4.1 we obtain the conclusion. �
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Lemma 4.1. Let p, q ∈ [1, ∞) with p ≥ q and let ν > 0. If v ∈ Lq (R+, R+),
then the function

g : R+ → R+, g(t) =

� t

0

e−ν(t−s)v(s) ds

belongs to L p(R+, R+).

Proof. It follows using Hölder�s inequality. �

Theorem 4.3. Let p, q ∈ [1, ∞) with p ≥ q and let T = {T (t)}t≥0 be a C0 -
semigroup on X . Then T is exponentially dichotomic if and only if the pair
(L p(R+, X ), Lq(R+, X )) is admissible for T and the subspace

X1 := {x ∈ X : T (·)x ∈ L p(R+, X )}

is closed and is has a T-invariant complement.

Proof. Necessity. Let P be the projection and let K , ν > 0 be given by
De�nition 4.1. For v ∈ Lq(R+, X ) we de�ne f : R+ → X given by

f (t) =

� t

0

T (t − s)Pv(s) ds −

� ∞

t

T (s − t)−1
| (I − P)v(s) ds

where T (s)−1
| denotes the inverse of the operator T (s)| : Ker P → Ker P .

From Lemma 3.1 and Lemma 4.1 we obtain that f ∈ L p(R+, X ) and an easy
computation shows that the pair ( f, v) satis�es the integral equation associated
with T. So the pair (L p(R+, X ), Lq(R+, X )) is admissible for T.

Let x ∈ X1. Then sup
t≥0

||T (t)x || < ∞. Taking into account that

||x − Px || ≤ Ke−νt ||T (t)(I − P)x || ≤

≤ Ke−νt(sup
s≥0

||T (s)x || + Ke−νt ||Px ||), ∀ t ≥ 0

we deduce that x − Px = 0, so x ∈ Im P . Since Im P ⊂ X1, it follows that
X1 = Im P , so it is closed and it has a T-invariant complement - Ker P .

Suf�ciency. It follows from Theorem 4.2. �

Remark 4.1. Generally, if p < q and the C0 -semigroup T = {T (t)}t≥0 is ex-
ponentially dichotomic, it does not result that the pair (L p(R+, X ), Lq(R+, X ))
is admissible for T. This fact immediately results via Example 3.1.
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