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INFINITELY MANY SOLUTIONS TO THE

NEUMAN PROBLEM FOR QUASILINEAR

ELLIPTIC SYSTEMS

ANTONIO GIUSEPPE DI FALCO

In this paper we deal with the existence of weak solutions for the
following Neumann problem






−�pu + λ(x)|u|p−2u = α(x) f (u, v) in �

−�qv + µ(x)|v|q−2v = α(x)g(u, v) in �
∂u
∂ν

= 0 on ∂�
∂v
∂ν

= 0 on ∂� .

where ν is the outward unit normal to the boundary ∂� of the bounded open
set � ⊂ R

N .The existence of solutions is proved by applying a critical point
theorem obtained by B. Ricceri as consequence of a more general variational
principle.

1. Introduction.

Here and in the sequel:
� ⊂ R

N is a bounded open set with boundary of class C1;
N ≥ 1; p > N ; q > N ;
λ, µ ∈ L∞(�), such that essinf� λ > 0, essinf� µ > 0;
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α ∈C0(�) nonnegative;
f, g ∈C0(R2) such that the differential form f (u, v)du + g(u, v)dv be exact.

In this paper we are interested in the following problem:

(P)






−�pu + λ(x )|u|p−2u = α(x ) f (u, v) in �

−�qv + µ(x )|v|q−2v = α(x )g(u, v) in �
∂u

∂ν
= 0 on ∂�

∂v

∂ν
= 0 on ∂� .

where ν is the outward unit normal to ∂�. More precisely we are interested in
the existence of in�nitely many weak solutions to such a problem.

Whereas many results are available in the case of Dirichlet boundary
conditions when p = q (see e.g. [5] and [4]), it seems that nothing is known in
the case of Neumann boundary conditions.

The existence of solutions to Problem (P) is proved by applying the
following critical point theorem ([2] and [3]) obtained by B. Ricceri as a
consequence of a more general variational principle.

Theorem 1. Let X be a re�exive real Banach space, and let �, � : X →
R be two sequentially weakly lower semicontinuous and Gateaux differen-
tiable functionals. Assume also that � is strongly continuous and satis�es
lim�x�→∞ �(x ) = +∞. For each ρ > in fX� , put

ϕ(ρ) = inf
x∈�−1 (]−∞,ρ[)

�(x )− inf
(�−1(]−∞,ρ[))w

�

ρ − �(x )
,

where (�−1(] − ∞, ρ[))w is the closure of�
−1(]−∞, ρ[) in the weak topology.

Furthermore, set
γ = lim inf

ρ→∞
ϕ(ρ)

and
δ = lim inf

ρ→(infX �)+
ϕ(ρ).

Then, the following conclusions hold:

(a) For each ρ > in fX� and each β > ϕ(ρ), the functional � + β� has a
critical point which lies in �−1(] − ∞, ρ[).

(b) If γ < +∞, then, for each β > γ the following alternative holds: either
� + β� has a global minimum, or there exists a sequence {xn} of critical
points of � + β� such that limn→∞ �(xn) = +∞.
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(c) If δ < +∞, then, for each β > δ the following alternative holds:
either there exists a global minimum of � which is a local minimum of
�+β� , or there exists a sequence {xn} of pairwise distinct critical points
of � + β� , with limn→∞ �(xn) = infX � , which weakly converges to a
global minimum of � .

Let G : R
2 → R be the differentiable function such that Gu(u, v) =

f (u, v), Gv(u, v) = g(u, v), G(0, 0) = 0 and let F(x , u, v) = α(x )G(u, v),
then F : � × R × R → R is a differentiable function with respect to u and
v and Fu(x , u, v) = α(x ) f (u, v), Fv(x , u, v) = α(x )g(u, v). Then (P) can be
written in the form






−�pu + λ(x )|u|p−2u = Fu(x , u, v) in �

−�qv + µ(x )|v|q−2v = Fv(x , u, v) in �
∂u

∂ν
= 0 on ∂�

∂v

∂ν
= 0 on ∂� .

and also in the form





−�pu = ∂
∂u

�
α(x )G(u, v)− 1

p
λ(x )|u|p − 1

q
µ(x )|v|q

�

−�qv = ∂
∂v

�
α(x )G(u, v)− 1

p
λ(x )|u|p − 1

q
µ(x )|v|q

�

∂u

∂ν
= 0 on ∂�

∂v

∂ν
= 0 on ∂� .

and therefore it is a gradient system [1]. Following [3] we �rst consider the
space W 1,p(�) with the norm

�u�λ =

��

�

λ(x )|u(x )|pdx +

�

�

|∇u(x )|pdx

� 1
p

and the space W 1,q(�) with the norm

�v�µ =

��

�

µ(x )|v(x )|qdx +

�

�

|∇v(x )|qdx

� 1
q

.

Since by hypotheses p > N and q > N , W 1,p(�) and W 1,q(�) are both
compactly embedded in C0(�). So, if we put

c1 = c(λ) = sup
u∈W 1, p(�)\{0}

supx∈� |u(x )|

�u�λ
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and

c2 = c(µ) = sup
u∈W 1,q(�)\{0}

supx∈� |u(x )|

�u�µ

then both c1 and c2 are �nite.
Then we take X = W 1,p(�) × W 1,q(�) with the norm �(u, v)�X =�

�u�2λ + �v�2µ and Y = C0(�) × C0(�) with the norm �(u, v)�Y =
�

�u�2
C0(�)

+ �v�2
C0(�)

. Of course the space X is compactly embedded in Y

and if we put

c = sup
(u,v)∈X\{(0,0)}

�(u, v)�Y

�(u, v)�X

we have c = max{c1, c2}. In order to apply theorem 1 we set

�(u, v) =
1

p
�u�

p
λ +

1

q
�v�qµ

and

�(u, v) = −

�

�

F(x , u(x ), v(x ))dx

for all (u, v) ∈ X . Since X is compactly embedded in Y , not only the constant
c is �nite, but also the functionals � and � are (well de�ned and) sequentially
weakly lower semicontinuous and Gateaux differentiable in X , the critical
points of � + � being precisely the weak solutions to Problem (P). Moreover
� is coercive (and strongly continuous as well).

The sets A(r), B(r), r > 0, below speci�ed, play an important role in our
exposition:

A(r) =

�

(ξ, η)∈ R
2 such that

1

pc
p
1

|ξ |p +
1

qc
q
2

|η|q ≤ r

�

B(r) =

�

(ξ, η)∈ R
2 such that

�
�

λ(x )dx

p
|ξ |p +

�
�

µ(x )dx

q
|η|q ≤ r

�

.

The following inclusion holds:

B(r) ⊆ A(r).

To see this, we observe that by the de�nition of c1 we have

�u�C0(�) ≤ c1�u�λ
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for every u ∈W 1,p(�), hence (taking u ≡ 1)

1 ≤ c
p
1

�

�

λ(x )dx .

Analogously we have

1 ≤ c
q
2

�

�

µ(x )dx .

Thus, the inequality

1

pc
p
1

|ξ |p +
1

qc
q
2

|η|q ≤

�
�

λ(x )dx

p
|ξ |p +

�
�

µ(x )dx

q
|η|q

holds for every (ξ, η)∈ R
2 and therefore the inclusion B(r) ⊆ A(r) holds.

2. Results.

Theorem 2. Assume that there are r > 0 and ξ0 ∈ R, η0 ∈ R such that

1

p
|ξ0|

p

�

�

λ(x )dx +
1

q
|η0|

q

�

�

µ(x )dx < r

and
max
A(r)

G(ξ, η) = G(ξ0, η0).

Then Problem (P) admits a weak solution (u, v) satisfying�(u, v) < r

Proof. We apply Theorem 1 (part(a)) showing that ϕ(r) = 0.

Since �−1(] − ∞, r[)
w

= �−1(] − ∞, r]) it follows that for all (u, v) ∈
�−1(]− ∞, r[)

0 ≤ ϕ(r) = inf
(u,v)∈�−1(]−∞,r[)

�(u, v)− inf
(�−1(]−∞,r[))w

�

r − �(u, v)
≤

≤
�(u, v)− inf

(�−1(]−∞,r[))w
�

r − �(u, v)

Let u0(x ) = ξ0, v0(x ) = η0 for all x ∈ �. Then ∇u0 = 0, ∇v0 = 0,

�(u0, v0) =
1

p

��

�

λ(x )|ξ0|
pdx

�

+
1

q

��

�

µ(x )|η0|
qdx

�

=
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=
1

p
|ξ0|

p

�

�

λ(x )dx +
1

q
|η0|

q

�

�

µ(x )dx < r

whence (u0, v0) ∈ �−1(] − ∞, r[) ⊆ �−1(] − ∞, r[)
w
. Moreover, for each

x ∈ � and for each (u, v)∈ �−1(] − ∞, r[)
w
, since

1

pc
p
1

|u(x )|p +
1

qc
q
2

|v(x )|q ≤
1

pc
p
1

�u�
p

C0 +
1

qc
q
2

�v�
q

C0 ≤

≤
1

pc
p
1

c
p
1 �u�

p
λ +

1

qc
q
2

c
q
2�v�qµ =

1

p
�u�

p
λ +

1

q
�v�qµ ≤ r

one has (u(x ), v(x )) ∈ A(r); therefore G(u(x ), v(x )) ≤ G(ξ0, η0) whence
α(x )G(u(x ), v(x )) ≤ α(x )G(ξ0, η0) whence

�

�

α(x )G(u(x ), v(x ))dx ≤

�

�

α(x )G(ξ0, η0)dx

i.e. −�(u, v) ≤ −�(u0, v0) for all (u, v)∈ �−1(] − ∞, r[)
w

−�(u0, v0) = sup
�−1(]−∞,r[)

w

(−�(u, v)) = − inf
�−1(]−∞,r[)

w
(�(u, v)).

From �(u0, v0) < r it follows that

�(u0, v0)− inf
�−1(]−∞,r[)

w
(�(u, v)) = �(u0, v0)− �(u0, v0) = 0

whence ϕ(r) = 0. �

Theorem 3. Assume that there are sequences {rn} in R
+ with limn→∞ rn =

+∞, and {ξn}, {ηn} in R such that for all n ∈ N, one has

1

p
|ξn |

p

�

�

λ(x )dx +
1

q
|ηn|

q

�

�

µ(x )dx < rn

and
max

(ξ,η)∈A(rn)
G(ξ, η) = G(ξn, ηn).

Finally assume that

lim sup
(ξ,η)→∞

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> max

�
1

p
,
1

q

�

.

Then, Problem (P) admits an unbounded sequence of weak solutions in X .
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Proof. We apply Theorem 1 (part(b)). From the proof of Theorem 2, we know
that ϕ(rn) = 0 for all n ∈ N. Then, since limn→∞ rn = +∞, we have

γ = lim inf
r→+∞

ϕ(r) = 0 < 1 = β.

Now, observe that, by

lim sup
(ξ,η)→∞

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> max

�
1

p
,
1

q

�

we can choose τ ∈ R such that

lim sup
(ξ,η)→∞

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> τ > max

�
1

p
,
1

q

�

and a sequence {(ρn, σn)}n∈N in R
2, with limn→∞

�
|ρn |2 + |σn|2 = +∞ in

such a way that

G(ρn, σn)

�

�

α(x )dx > τ

�

|ρn|
p

�

�

λ(x )dx + |σn |
q

�

�

µ(x )dx

�

for all n ∈ N. Denote by un the constant function on � taking the value ρn and
by vn the constant function on � taking the value σn . One has

�(un, vn)+ �(un, vn) = �(ρn, σn)+ �(ρn, σn) =

=
1

p
|ρn|

p

�

�

λ(x )dx +
1

q
|σn |

q

�

�

µ(x )dx −

�

�

F(x , ρn, σn)dx =

=
1

p
|ρn|

p

�

�

λ(x )dx +
1

q
|σn|

q

�

�

µ(x )dx −

�

�

α(x )G(ρn, σn)dx =

=
1

p
|ρn|

p

�

�

λ(x )dx +
1

q
|σn |

q

�

�

µ(x )dx − G(ρn, σn)

�

�

α(x )dx <

<

�

�

λ(x )dx

�
1

p
− τ

�

|ρn|
p +

�

�

µ(x )dx

�
1

q
− τ

�

|σn |
q < 0.

Consequently, the functional � + � is unbounded below. At this point ,
Theorem 1 (part(b)) ensures that there exists a sequence {(un, vn)} of critical
points of � + � such that limn→∞ �(un, vn) = +∞. But, of course, �

is bounded on each bounded subset of X , and so the sequence {(un, vn)} is
unbounded in X . This concludes the proof. �
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Theorem 4. Assume that there are sequences {rn} in R
+ with limn→∞ rn = 0,

and {ξn}, {ηn} in R such that for all n ∈ N, one has

1

p
|ξn |

p

�

�

λ(x )dx +
1

q
|ηn|

q

�

�

µ(x )dx < rn

and
max

(ξ,η)∈A(rn)
G(ξ, η) = G(ξn, ηn).

Finally assume that

lim sup
(ξ,η)→(0,0)

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> max

�
1

p
,
1

q

�

.

Then, Problem (P) admits a sequence of non-zero weak solutions which strongly
converges to θX in X .

Proof. After observing that infX � = �(θX ) = 0, from the proof of Theorem
2, we know that ϕ(rn) = 0 for all n ∈ N. Then, since limn→∞ rn = 0, we have

δ = lim inf
r→0+

ϕ(r) = 0 < 1 = β.

By

lim sup
(ξ,η)→(0,0)

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> max

�
1

p
,
1

q

�

there exist τ ∈ R such that

lim sup
(ξ,η)→(0,0)

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> τ > max

�
1

p
,
1

q

�

and a sequence {(ρn, σn)}n∈N in R
2 \ {(0, 0)}, converging to zero such that

G(ρn, σn)

�

�

α(x )dx > τ

�

|ρn|
p

�

�

λ(x )dx + |σn |
q

�

�

µ(x )dx

�

for all n ∈ N. If we denote by un the constant function on � taking the value ρn
and by vn the constant function on � taking the value σn , of course the sequence
{(un, vn)} strongly converges to θX in X , and one has

�(un, vn)+ �(un, vn) = �(ρn, σn)+ �(ρn, σn) =
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=
1

p
|ρn|

p

�

�

λ(x )dx +
1

q
|σn |

q

�

�

µ(x )dx −

�

�

F(x , ρn, σn)dx =

=
1

p
|ρn|

p

�

�

λ(x )dx +
1

q
|σn|

q

�

�

µ(x )dx −

�

�

α(x )G(ρn, σn)dx =

=
1

p
|ρn|

p

�

�

λ(x )dx +
1

q
|σn |

q

�

�

µ(x )dx − G(ρn, σn)

�

�

α(x )dx <

<

�

�

λ(x )dx

�
1

p
− τ

�

|ρn|
p +

�

�

µ(x )dx

�
1

q
− τ

�

|σn |
q < 0

for all n ∈ N. Since �(θX ) + �(θX ) = 0, this means that θX is not a local
minimum of �+� . Then , since θX is the only global minimum of� , Theorem
1 (part(c)) ensures that there exists a sequence {(un, vn)} of pairwise distinct
critical points of � + � such that limn→∞ �(un, vn) = 0. So, a fortiori, one
has limn→∞ �(un, vn)�X = 0, and the proof is complete. �

A more general consequence of theorem 3 is as follows.

Theorem 5. Let {εn} and {δn} be two sequences in R
+ satisfying

δn < εn ∀ n ∈ N, lim
n→∞

δn = +∞, lim
n→∞

εn

δn
= +∞

An = {|ξ |p + |η|q ≤ εn} Bn = {|ξ |p + |η|q ≤ δn} sup
An \Bn

G ≤ 0

Finally assume that

lim sup
(ξ,η)→∞

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> max

�
1

p
,
1

q

�

.

Then, Problem (P) admits an unbounded sequence of weak solutions in X .

Proof. From δn < εn it follows that Bn ⊆ An . Let

γ � = min

�
1

pc
p
1

,
1

qc
q
2

�

> 0

δ� = max

��
�

λ(x )dx

p
,

�
�

µ(x )dx

q

�

> 0
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Since δ�

γ � > 0 and limn→∞
εn
δn

= +∞ we can suppose

δ�

γ �
<

εn

δn
∀ n ∈ N.

Let rn = γ �εn . We have {rn} in R
+ and limn→∞ rn = +∞ and Bn ⊆ B(rn ) ⊆

A(rn ) ⊆ An . Since G ≤ 0 in An \ Bn we have maxBn G = maxAn G , then
maxBn G = maxA(rn ) G and so there is (ξn, ηn)∈ Bn such that

max
(ξ,η)∈A(rn)

= G(ξn, ηn).

Moreover

�
�

λ(x )dx

p
|ξn |

p +

�
�

µ(x )dx

q
|ηn|

q ≤ δ�(|ξn |
p + |ηn|

q ) ≤ δ�δn < rn

and so the sequences {ξn}, {ηn} and {rn } have the properties required in theorem
3 from which the conclusion follows directly. �

Likewise, applying Theorem 4, we get the following theorem:

Theorem 6. Let {εn} and {δn} be two sequences in R
+ satisfying

δn < εn ∀ n ∈ N, lim
n→∞

εn = 0, lim
n→∞

εn

δn
= +∞

An = {|ξ |p + |η|q ≤ εn} Bn = {|ξ |p + |η|q ≤ δn} sup
An \Bn

G ≤ 0

Finally assume that

lim sup
(ξ,η)→(0,0)

G(ξ, η)
�
�

α(x )dx

|ξ |p
�
�

λ(x )dx + |η|q
�
�

µ(x )dx
> max

�
1

p
,
1

q

�

.

Then, Problem (P) admits a sequence of non-zero weak solutions which strongly
converges to θX in X .
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3. Examples.

Here is an example of application of theorem 3

Example 1. Let N = 1, p = q = 2, λ ≡ 1, µ ≡ 1, � =]0, 1[,
f (u, v) = Gu(u, v) and g(u, v) = Gv(u, v) where G : R

2 → R is the function
de�ned by setting

G(u, v) =
1

2

�
(u2 + v2)sin log(u2 + v2 + 1)

�

Then for each α ∈ C0(�) with α(t) ≥ 0 in � and
� 1

0 α(t)dt > 1 = m(�), the
following problem 





−u�� + u = α(t) f (u, v)
−v�� + v = α(t)g(u, v)
u�(0) = u�(1) = 0
v�(0) = v�(1) = 0.

admits an unbounded sequence of weak solutions in X = H 1(�) × H 1(�).

Proof. To prove this we apply Theorem 3. For each n ∈ N put

an =
�
e(2n−1)π − 1

bn =
�
e2nπ − 1

rn =
1

2

�
bn

c

�2

.

Hence
bn = c

�
2rn .

Moreover, since p = q = 2 and c1 = c2 = c, we have

1

pc
p
1

|ξ |p +
1

qc
q
2

|η|q =
1

2c2
|ξ |2 +

1

2c2
|η|2

and
A(rn ) =

=

�

(ξ, η)∈ R
2such that

1

2c2
|ξ |2 +

1

2c2
|η|2 ≤ rn

�

=

=
�
(ξ, η)∈ R

2such that
�

ξ2 + η2 ≤ c
�
2rn

�
.
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Observe that if an ≤
�

|ξ |2 + |η|2 ≤ bn , then

(2n − 1)π ≤ log(|ξ |2 + |η|2 + 1) ≤ 2nπ,

and so

G(ξ, η) =
1

2

�
(ξ2 + η2)sin log(ξ2 + η2 + 1)

�
≤ 0.

Consequently, since G(0, 0) = 0, we have

max√
ξ 2+η2≤bn

G(ξ, η) = max√
ξ 2+η2≤an

G(ξ, η).

Therefore we can �x (ξn, ηn), with
�

ξ2n + η2n ≤ an , such that

G(ξn, ηn) = max√
ξ 2+η2≤bn

G(ξ, η).

From [3] it follows that c ≤
√
2. Then, since e(2n−1)π − 1 < 2rn , we have

0 ≤ ξ2n + η2n ≤ a2n = e(2n−1)π − 1 < 2rn , whence 0 ≤ ξ2n + η2n < 2rn , therefore

ξ2n + η2n

2
< rn .

Moreover limn→∞ rn = +∞ and �nally

lim sup
(ξ,η)→∞

� 1

0
α(t)dt G(ξ, η)

|ξ |2 + |η|2
=

= lim sup
(ξ,η)→∞

� 1

0 α(t)dt 1
2

�
(ξ2 + η2)sin log(ξ2 + η2 + 1)

�

|ξ |2 + |η|2
=

= lim sup
(ξ,η)→∞

1

2

� 1

0

α(t)dt
�
sin log(ξ2 + η2 + 1)

�
=

=
1

2

� 1

0

α(t)dt lim sup
(ξ,η)→∞

sin log(ξ2 + η2 + 1) =
1

2

� 1

0

α(t)dt >
1

2
.

�

Here is an example of application of theorem 4 :
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Example 2. Let N = 1, p = q = 2, λ ≡ 1, µ ≡ 1, � =]0, 1[,
f (u, v) = Gu(u, v) and g(u, v) = Gv(u, v) where G : R

2 → R is the function
de�ned by setting

G(ξ, η) =

�
1
2
(ξ2 + η2)cos log 1

ξ 2+η2
if (ξ, η) �= (0, 0)

0 if (ξ, η) = (0, 0).

Then for each α ∈ C0(�) with α(t) ≥ 0 in � and
� 1

0 α(t)dt > 1 = m(�), the
following problem 





−u�� + u = α(t) f (u, v)
−v�� + v = α(t)g(u, v)
u�(0) = u�(1) = 0
v�(0) = v�(1) = 0

admits a sequence of nonzero weak solutions which strongly converges to θX in
X = H 1(�) × H 1(�).

Proof. To prove this, we apply Theorem 4. Put

an =

�
1

e
3π
2 +2nπ

� 1
2

bn =

�
1

e
π
2 +2nπ

� 1
2

rn =
1

2

�
bn

c

�2

=
1

2

b2n
c2

=
1

2c2
b2n

for each n ∈ N. Hence bn = c
√
2rn . Again we have

A(rn ) =
�
(ξ, η)∈ R

2 such that
�

ξ2 + η2 ≤ c
�
2rn

�
.

Observe that if an ≤
�

ξ2 + η2 ≤ bn , then G(ξ, η) ≤ 0. Consequently, since
G(0, 0) = 0, we have

max√
ξ 2+η2≤an

G(ξ, η) = max√
ξ 2+η2≤bn

G(ξ, η)

Therefore we can �x (ξn, ηn), with
�

ξ2n + η2n ≤ an , such that

G(ξn, ηn) = max√
ξ 2+η2≤bn

G(ξ, η).
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Observe that c ≤
√
2. Then, since

�
ξ2n + η2n ≤ an , from eπ > 2 and

2rn =
b2n
c2

=
1

c2
1

e
π
2 +2nπ

≥
1

2

1

e
π
2 +2nπ

>
1

eπ
1

e
π
2 +2nπ

=
1

e
3π
2

+2nπ
= a2n

it follows that

�(ξn, ηn) =
ξ2n + η2n

2
< rn .

Moreover limn→∞ rn = 0 and �nally

lim sup
(ξ,η)→(0,0)

G(ξ, η)
� 1

0 α(t)dt

ξ2 + η2
= lim sup

(ξ,η)→(0,0)

1
2
(ξ2 + η2)coslog 1

ξ 2+η2

� 1
0 α(t)dt

ξ2 + η2
=

=
1

2

� 1

0

α(t)dt >
1

2
. �
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