A TWO-PHASE VARIATIONAL PROBLEM WITH CURVATURE

ROBERTO ARGIOLAS

Abstract

In this paper we consider a two phases variational problem related to the following functional: $F(u, \Omega)=\int_{D}|\nabla u|^{2} d x+\operatorname{Area}\{u=0\}+$ $\int_{D} f(x) \chi_{\{u>0\}} d x$. In particular we obtain results about the smoothness of the free boundary $\{u=0\}$.

1. Introduction.

In [4] the authors consider a free boundary problem arising from the minimization of a Dirichlet-area integral related to the Ginzburg-Landau functional. They show in particular the smoothness of the free boundary. A question that could be of some interest in fluiddynamics, and constitues a natural continuation of that paper, is to examine the effect of a volume (gravity) integral. Accordingly, in this paper we consider the following variational problem.

Given a smooth domain $D \subset \Re^{n}$ and smooth boundary data g on ∂D, we look for a function $v \in H^{1}(D)$ with $v_{\mid \partial D}=g$, that minimizes the functional

$$
\begin{equation*}
F(v, \Omega)=\int_{D}|\nabla v|^{2} d x+\text { Area }\{v=0\}+\int_{D} f(x) \chi_{\{v>0\}} d x \tag{1}
\end{equation*}
$$

that is, the Dirichlet integral of v, plus the area of the level surface $\Gamma=\{v=0\}$, plus a volume integral with density f on the positive phase .

Heuristically, a minimizer u is harmonic in its positive and negative region while on its zero level set (the free boundary) it satisfies the equation

$$
\begin{equation*}
\left|\nabla u^{+}\right|^{2}-\left|\nabla u^{-}\right|^{2}-f=k(\Gamma) \tag{2}
\end{equation*}
$$

where $k(\Gamma)$ denotes the mean curvature of Γ.
If we assume that f is bounded, the key point in proving the smoothness of the free boundary is to prove that u is Lipschitz and that $k(\Gamma)$ is bounded in a weak (viscosity) sense (see section 4). The proofs of this part parallel those of the corresponding theorems in [4], so that we sketch them pointing out the differences.

This allows one to use the theory of almost minimal surfaces (see [8]) to deduce that actually the reduced part Γ^{*} of Γ is locally a graph of a $C^{1, \alpha}$ function, for any $0<\alpha<1$, that satisfies (2) in viscosity sense. Further regularity of f implies more regularity of Γ^{*} and, in particular, f (real) analytic implies that Γ^{*} is an analytic surface (section 5).

2. Existence of minimizers and main result.

Let D be a bounded, smooth domain in \Re^{n} and $g \in H^{1}(D)$.
Definition 1. The pair (Ω, v) is admissible if Ω is a set of finite perimeter in $D, v \in H^{1}(D), v-g \in H_{0}^{1}(D)$ and

$$
\left.v\right|_{\Omega \cap D} \geq\left. 0 \quad v\right|_{\Omega^{\mathrm{c}} \cap D} \leq 0 \quad \text { a.e. }
$$

We recall that
$\operatorname{Per}(\Omega, D)=\sup \left\{\int_{\Omega} \operatorname{div} p d x: p \in C_{0}^{1}\left(\Omega, \mathfrak{R}^{n}\right),|p(x)| \leq 1\right\}<\infty$.
For convenience we denote $\operatorname{Per}(\Omega)=\operatorname{Per}(\Omega, D)$.
Our problem is to minimize the functional

$$
F(v, \Omega)=\int_{D}|\nabla v|^{2} d x+\operatorname{Per}(\Omega)+\int_{D} f(x) \chi_{\{v>0\}} d x
$$

among all admissible pairs (v, Ω).
Proposition 1. If $f \in L^{1}(D)$, there exists a pair (u, Ω) that minimizes F.

Proof. Let $\left\{\left(u_{m}, \Omega_{m}\right)\right\}$ be a minimizing sequence, that is, $\left(u_{m}, \Omega_{m}\right)$ is an admissible pair and

$$
F\left(u_{m}, \Omega_{m}\right) \longrightarrow \inf F(v, \Omega) \quad m \rightarrow+\infty
$$

Passing to a subsequence, there exists a pair (u, Ω) such that:

$$
\begin{array}{ll}
\chi_{\left.\right|_{\Omega_{m}}} \longrightarrow \chi_{\left.\right|_{\Omega}} & \begin{array}{l}
\text { strongly in } L^{1}(D) \\
u_{m} \rightharpoonup u
\end{array} \\
\text { weakly in } H^{1}(D) \\
u_{k} \chi_{\Omega_{\Omega m D}} \longrightarrow u \chi_{\left.\right|_{\Omega \cap D}} & \text { a.e. in } D \\
u_{k} \chi_{\left.\right|_{\Omega_{m}^{c} \cap D}} \longrightarrow u \chi_{\left.\right|_{\Omega \cap D}} & \text { a.e. in } D
\end{array}
$$

Then it follows that

$$
u_{\mid \Omega \cap D} \geq 0 \quad u_{\mid \Omega c^{\prime} \cap D} \leq 0 \quad \text { a.e. in } D,
$$

hence (u, Ω) is admissible.
By the lower semicontinuity of F we have

$$
\inf F(v, \Omega) \leq F(u, \Omega) \leq \liminf _{m \rightarrow \infty} F\left(u_{m}, \Omega_{m}\right)=\inf F(v, \Omega)
$$

therefore $\inf F(v, \Omega)=F(u, \Omega)$, that is (u, Ω) is a minimizer.
We call $\Gamma(u)=\partial \Omega \cap D$ the free boundary. Our purpose if to show optimal regularity for u and $\Gamma(u)$.

The main results are summarized in the following theorems.
Theorem 2. Let (u, Ω) be a minimizer in the unit ball $B_{1}=B_{1}(0)$, with $0 \in \Gamma(u)$. If $f \in L^{\infty}\left(B_{1}\right)$ then, in $B_{1 / 2}$:
a) u is Lipschitz continuous;
b) the curvature $k(\Gamma(u))$ is bounded in the viscosity sense

Corollary 3. The reduced part $\Gamma^{*}(u)$ of the free boundary is (locally) a graph of a $C^{1, \alpha}$ function, for any $0<\alpha<1$.

Theorem 4. If $f \in C^{m, \beta}\left(B_{1}\right), 0<\beta<1$, then, in $B_{1 / 2}$ the reduced part $\Gamma^{*}(u)$ of the free boundary is (locally) a graph of a $C^{m+2, \beta}$ function; if f is (real) analytic, then the reduced part $\Gamma^{*}(u)$ of the free boundary is analytic.

In particular, the free boundary relation

$$
\left|\nabla u^{+}\right|^{2}-\left|\nabla u^{-}\right|^{2}-f=k\left(\Gamma^{*}\right)
$$

holds in classical sense.

3. Hölder continuity.

The first step in the proof of theorem 2 is to show that u is $\frac{1}{2}$-Hölder continuous and that Ω has positive uniform density at every point of the free boundary. An important role is played by the quantities

$$
I_{r}^{ \pm}=\int_{B_{r}} \frac{\left|\nabla u^{ \pm}\right|^{2}}{|x|^{n-2}} d x
$$

Notice that if we set $u_{r}(y)=\frac{1}{\sqrt{r}} u(r y)$, we have $I_{r}(u)=r I_{1}\left(u_{r}\right)$ and (see [4])

$$
\left(u^{ \pm}\right)^{2} \leq I_{r}\left(u^{ \pm}\right) .
$$

Therefore, in order to prove that $u \in C^{\frac{1}{2}}$, using the Monotonicity Formula (see [3]), it's enough to show that

$$
\begin{equation*}
I_{r}\left(u^{ \pm}\right) \leq c r\|u\|_{L^{\infty}}^{2} . \tag{3}
\end{equation*}
$$

Also notice that if (u, Ω) is a minimizer of F in B_{1} and

$$
\Omega_{r}=\{y: r y=x, x \in \Omega\}
$$

then (u_{r}, Ω_{r}) is a minimizer of $r^{n-1} F$, and therefore of F, in B_{1}.
For an admissible pair (v, Ω), we define $\Omega^{-}=B_{1}-\bar{\Omega}^{+}$. We have:
Theorem 3. Let (u, Ω) be minimizer in B_{1} and $f \in L^{\infty}\left(B_{1}\right)$. Then u is $C^{\frac{1}{2}}$ Hölder - continuous in $B_{\frac{1}{2}}$ and

$$
\|u\|_{C^{\frac{1}{2}}\left(B_{\frac{1}{2}}\right)} \leq c\left(n,\|f\|_{\infty}\right)\|u\|_{L^{\infty}\left(B_{1}\right)}
$$

and, for every $x \in \Gamma(u)$, if $r \leq \frac{1}{8}$,

$$
\left|B_{r}(x) \cap \Omega^{ \pm}\right| \geq c_{0}\left(n,\|f\|_{\infty}\right) r^{n} .
$$

Moreover, $u^{ \pm}$are harmonic in their positivity set.
We now recall the notion of harmonic replacement.
Let K a measurable subset of D and a function $g \in H^{1}(D)$. We say that g is supported in K if $g=0$ a.e in $D-K$. Define

$$
S=\left\{g: g \in H^{1}(D), g\{\text { supported in } K\}\right.
$$

a closed convex set in $H^{1}(D)$.

Definition 2. The function h_{0} is the harmonic replacement of $f \in H^{1}(D)$ in D if:
(i) $h_{0} \in S$,
(ii) $h_{0}-f \in H^{1}(D)$,
(iii) h_{0} minimizes the Dirichlet integral in $S \cap\left\{f+H_{0}^{1}(D)\right\}$.

The main properties of harmonic replacements are summarized in the following two lemmas (see [4]):

Lemma 6. The harmonic replacement h_{0} is unique, and if f is nonnegative, then h_{0} is nonnegative and subharmonic; in particular it can be defined everywhere in D as a u.s.c. function by limit of solid averanges. Also, in the sense of measures,

$$
\Delta\left(h_{0}\right)^{2}=2\left|\nabla h_{0}\right|^{2}
$$

Lemma 7. Let h_{0} be the harmonic replacement of $f \geq 0$ in D. Assume $B_{1} \subset D$ and $h_{0}(0)=0$. Then

$$
\begin{equation*}
\sup _{B_{(1-s) r}}\left(h_{0}\right)^{2} \leq \frac{c(n)}{s^{n}} \int_{B_{r}} \frac{\left|\nabla h_{0}\right|^{2}}{|x|^{n-2}} d x \tag{4}
\end{equation*}
$$

for any $0<s<1$ and $0<r \leq 1$, and

$$
\begin{equation*}
\int_{B_{r}} \frac{\left|\nabla h_{0}\right|^{2}}{|x|^{n-2}} d x \leq c(n) r^{-n} \int_{B_{2 r}-B_{r}}\left(h_{0}\right)^{2} d x \tag{5}
\end{equation*}
$$

for $0<r<\frac{1}{4}$.
Let now (u, Ω) be a minimizer. Then
(a) $u^{+}=\max \{0, u\}$ is supported in $\Omega \cap D$ and $u^{-}=\max \{-u, 0\}$ is supported in $\Omega^{c} \cap D$, moreover u^{+}and u^{-}are harmonic replacement of u,
(b) u^{+}and u^{-}are subharmonic,
(c) at any point x of Lebesgue differentiability of the free boundary, u^{+}and u^{-}vanish; moreover, the monotonicity formula and the estimates (4) and (5) hold in a sufficiently small ball centered at x for u^{+}and u^{-},
(d) $\Delta\left(u^{ \pm}\right)^{2}=2\left|\nabla u^{ \pm}\right|^{2}$ hold in the sense of measures.

For an admissible pair (v, Ω), we define $\Omega^{-}=B_{1}-\bar{\Omega}^{+}$
Proof. of Theorem 2. Sketch. Consider I_{r}^{+}. By rescaling, we may suppose $r=1$. For $0<h<1$ we perturb the free boundary defining

$$
\Omega_{*}^{-}=\Omega^{-} \cup B_{1-h} \quad \Omega_{*}=\Omega \backslash \bar{B}_{1-h}
$$

The new free boundary is:

$$
\Gamma^{*}=\left[\Omega \cap \partial B_{1-h}\right] \cup\left[\Gamma \cap\left(B_{1} \backslash \bar{B}_{1-h}\right)\right]
$$

Let u_{*}^{-}be the harmonic extention of u^{-}in Ω_{*}^{-}, that is:

$$
\begin{cases}\Delta u_{*}^{-}=0 & \text { in } \Omega_{*}^{-} \\ u_{*}^{-}=u^{-} & \text {su } \partial \Omega_{*}^{-}\end{cases}
$$

Let

$$
U_{h}=\sup u \text { in } B_{1-\frac{h}{4}}
$$

and let G be such that:

$$
\begin{cases}\Delta G=0 & \text { in } R_{h}=B_{1-\frac{h}{4}}-B_{1-h} \\ G=1 & \text { su } \partial B_{1-\frac{h}{4}} \\ G=0 & \text { su } \partial B_{1-h}\end{cases}
$$

We now define a perturbation u_{*} of u as follows:

$$
u_{*}=\left\{\begin{array}{lll}
-u_{*}^{-} & \text {in } & \Omega_{*}^{-} \\
\min \left\{u^{+}, U_{h} G\right\} & \text { in } & \Omega_{*}^{+} \cap R_{h} \\
u^{+} & \text {in } & \Omega_{*}^{+}-R_{h}
\end{array}\right.
$$

The couple $\left(u_{*}, \Omega_{*}^{+}\right)$is admissible and

$$
F\left(u_{*}, \Omega_{*}^{+}\right) \geq F\left(u, \Omega^{+}\right)
$$

We compute the variation of the various terms in the functional F.
Since $\Omega^{-} \subseteq \Omega_{*}^{-}$we have:

$$
\begin{equation*}
\int_{B_{1}}\left|\nabla u_{*}^{-}\right|^{2} d x \leq \int_{B_{1}}\left|\nabla u^{-}\right|^{2} d x \tag{6}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\int_{B_{1}}\left|\nabla u_{*}^{+}\right|^{2} d x \leq \int_{B_{1}}\left|\nabla u^{+}\right|^{2} d x+c U_{h}^{2} h^{-1} \tag{7}
\end{equation*}
$$

From the properties of the perimeter,

$$
\begin{equation*}
\operatorname{Per}\left(\Omega_{*}^{+}\right)-\operatorname{Per}\left(\Omega^{+}\right) \leq H_{n-1}\left(\partial B_{1-h} \cap \Omega^{+}\right)-\operatorname{Per}\left(\Omega^{+}, B_{1-h}\right) \tag{8}
\end{equation*}
$$

Moreover $\left(b=\|f\|_{\infty}\right)$,
(9)

$$
\int_{B_{1}} f(x) \chi_{\left\{u_{*}>0\right\}} d x-\int_{B_{1}} f(x) \chi_{\{u>0\}} d x=-\int_{\Omega^{+} \cap B_{1-h}} f(x) d x \leq b\left|\Omega^{*} \cap B_{1-h}\right|
$$

From (6), (7), (8), (9) and minimality condition, we conclude that
(10) $-b\left|\Omega^{+} \cap B_{1-h}\right|+\operatorname{Per}\left(\Omega^{+}, B_{1-h}\right) \leq H_{n-1}\left(\partial B_{1-h} \cap \Omega^{+}\right)+c U_{h}^{2} h^{-1}$

Let now $\rho_{0}=\frac{1}{2}$ and $c \leq \frac{1}{4}$, we define

$$
\rho_{m+1}=\rho_{m}-c 2^{-m}
$$

Put:

$$
I_{m}=I_{\rho_{m}}^{+} \quad \text { and } \quad V_{m}=\left|\Omega^{+} \cap\left(B_{\rho_{m}}-\bar{B}_{\rho_{m+1}}\right)\right|
$$

we show the following inequality:

$$
\begin{equation*}
I_{m+1} \leq C^{m} I_{m} V_{m} \tag{11}
\end{equation*}
$$

In fact, from Lemma 7, we have

$$
I_{m+1} \leq C 2^{2 n m} \sup _{B_{\rho_{m}^{\prime}}^{\prime}}\left(u^{+}\right)^{2} V_{m} \leq C 2^{4 n m} I_{m} V_{m} \leq C_{1}^{m} I_{m} V_{m}
$$

where $\rho_{m}^{\prime}=\rho_{m+1}+c 2^{-(m+1)}$.
Let $\bar{\rho}>0$, be a positive number with $\rho_{m+1}<\bar{\rho}<\rho_{m}^{\prime}$. From isoperimetric inequality we have:

$$
-r b\left|\Omega^{+} \cap B_{1-h}\right|+c(n)\left|\Omega^{+} \cap B_{1-h}\right|^{\frac{n-1}{n}} \leq H_{n-1}\left(\partial B_{1-h} \cap \Omega^{+}\right)+c U_{h}^{2} h^{-1}
$$

therefore

$$
\left|\Omega^{+} \cap B_{1-h}\right|^{\frac{n-1}{n}} \leq c_{1}(n, b)\left(H_{n-1}\left(\partial B_{1-h} \cap \Omega^{+}\right)+c U_{h}^{2} h^{-1}\right)
$$

In particular, from (11), we conclude that

$$
\left(V_{m+1}\right)^{\frac{n-1}{n}} \leq c_{1}(n)\left(H_{n-1}\left(\partial B_{r} \cap \Omega^{+}\right)+C_{1}^{m} I_{m}\right)
$$

Integrating with respect to $\bar{\rho}$ over the interval $\left(\rho_{m+1}, \rho_{m}^{\prime}\right)$, we get:

$$
\left(V_{m+1}\right) \leq c_{2}(n) C_{1}^{m}\left(V_{m}+I_{m}\right)^{\frac{n}{n-1}}
$$

From (11) we have

$$
\begin{equation*}
V_{m+1}+I_{m+1} \leq c_{2} C_{1}^{m}\left(I_{m}+V_{m}\right)^{\frac{n}{n-1}} \tag{12}
\end{equation*}
$$

As consequence (12) there exists a constant δ such that if $V_{0}+I_{0} \leq \delta<1$, then $V_{m}+I_{m} \rightarrow 0$, when $m \rightarrow \infty$. But that is no possible because $\rho_{m} \rightarrow \rho_{\infty}>0$. Hence, we have:

$$
V_{0}+I_{0}>\delta
$$

In particular, put $I_{0} \leq \delta_{0}=\frac{\delta}{2}$, we have

$$
\frac{\delta}{2}<V_{0}<\left|\Omega^{+} \cap B_{\frac{1}{2}}\right|
$$

If $0<\bar{\rho}<1$ then the conclusion follows from the scaling properties of the minimizers.

We recall the following Lemma (see [4]):
Lemma 8. a) If $I_{1}^{+} I_{1}^{-} \leq \Lambda$. Then

$$
I_{\frac{1}{8}}^{+} \leq c(n, \Lambda), \quad I_{\frac{1}{8}}^{-} \leq c(n, \Lambda) .
$$

b) If $I_{1}^{ \pm} \leq \Lambda^{ \pm}$. Then

$$
\left|\Omega^{ \pm} \cap B_{\frac{1}{2}}\right| \geq C\left(n, \Lambda^{ \pm}\right)>0
$$

We are now ready to prove Theorem 5.
Proof. From the Monotonicity Formula, for $r \leq \frac{1}{8}$,

$$
I_{r}^{+} I_{r}^{-} \leq c r^{4}\|u\|_{L^{\infty}\left(B_{1}\right)}
$$

By rescaling, for the function $u_{r}(y)=r^{-\frac{1}{2}} u(r y)$, we have

$$
I_{1}^{+}\left(u_{r}\right) I_{1}^{-}\left(u_{r}\right) \leq c r^{2}\|u\|_{L^{\infty}\left(B_{1}\right)}^{4}
$$

For Lemma 8 we deduce that:

$$
I_{\frac{1}{2}}^{+}\left(u_{r}\right) \leq C\|u\|_{L^{\infty}\left(B_{1}\right)}^{2}, \quad I_{\frac{1}{2}}^{-}\left(u_{r}\right) \leq C\|u\|_{L^{\infty}\left(B_{1}\right)}^{2}
$$

Recalling (5) (with $h=\frac{1}{2}$) and Lemma 8, we conclude that $u \in C^{\frac{1}{2}}$.

4. Lipschitz Continuity of a minimizer.

We now show the following theorem:
Theorem 9. Let $\left(u, \Omega^{+}\right)$be a minimizer in B_{1} and $f \in L^{\infty}\left(B_{1}\right)$. Then u is lipschitz continuous on $B_{\frac{1}{2}}$.
Proof. Let φ be a cutoff function, $0 \leq \varphi \leq 1, \varphi=1$ in $B_{\frac{1}{4}}, \varphi=0$ outside $B_{\frac{1}{2}}$. For $\varepsilon>0$, define $\vartheta=[u-\varepsilon]^{+}$and let M be the smallest constant such that $M d(x) \geq \vartheta(x) \varphi(x)$ for each $x \in B_{1}$, where $d(x)=\operatorname{dist}(x, \Gamma(u))$.

Suppose x_{0} is a point such that $M d\left(x_{0}\right)=\vartheta\left(x_{0}\right) \varphi\left(x_{0}\right)$ and that $d\left(x_{0}\right)=$ $\operatorname{dist}\left(x_{0}, y_{0}\right)$ with $y_{0} \in \Gamma$. By a rotation and translation we may suppose that $y_{0}=0$ and $x_{0}=d\left(x_{0}\right) e_{1}$.

Since ϑ is smooth around x_{0}, we have

$$
d(x) \geq d\left(x_{0}\right)+\frac{\left\langle\nabla(\vartheta \varphi)\left(x_{0}\right), x-x_{0}\right\rangle}{M}+\frac{P\left(x-x_{0}\right)}{M}+O\left(\frac{\left|x-x_{0}\right|^{3}}{M}\right)
$$

where P is a quadratic polynomial satisfyting $\Delta P=\Delta(\vartheta \varphi)$ at $x=x_{0}$ and $D_{11} P \leq 0$. Estimating ΔP as in [4] we have, $\Delta P \geq-\frac{C M}{\varphi\left(x_{0}\right)}$ In particular on the hyperplane $x_{1}=d\left(x_{0}\right)$

$$
\begin{equation*}
\Delta_{x^{\prime}} \bar{P}\left(x^{\prime}\right) \geq-\frac{C M}{\varphi\left(x_{0}\right)} \tag{13}
\end{equation*}
$$

which implies

$$
\begin{equation*}
d(x) \geq d\left(x_{0}\right)+\frac{\bar{P}\left(x^{\prime}\right)}{M}+O\left(\frac{\left|x^{\prime}\right|^{3}}{M}\right) \tag{14}
\end{equation*}
$$

Therefore the free boundary, near the origin, is below the surface

$$
S=\left\{\left(x_{1}, x^{\prime}\right): x_{1}=\psi\left(x^{\prime}\right)=-\frac{\bar{P}\left(x^{\prime}\right)}{M}+O\left(\frac{\left|x^{\prime}\right|^{3}}{M}\right)\right\}
$$

If now put $k(S)(x)$ the mean curvature of S, from (13), we have:

$$
k(S)(x)=-\frac{1}{n-1} \Delta \psi\left(x^{\prime}\right) \leq \frac{C}{\varphi\left(x_{0}\right)}+O\left(\left|x^{\prime}\right|\right)
$$

Near the origin, for $x_{1}>\psi\left(x^{\prime}\right)$,

$$
u^{+}(x) \geq \frac{C M}{\varphi\left(x_{0}\right)} x_{1}+o(|x|)
$$

while from the Monotonicity Formula,

$$
\sup _{B_{r}(y)} u^{-} \leq c \frac{\varphi\left(x_{0}\right)}{M} r
$$

for small r and y on the free boundary.
We perform a perturbation of the free boundary by means of the family of surfaces

$$
S_{t}^{-}=\left\{\left(x_{1}, x^{\prime}\right): x_{1}=\psi_{t}^{-}\left(x^{\prime}\right)=\psi\left(x^{\prime}\right)+\frac{\alpha_{0}}{\varphi\left(x_{0}\right)}\left|x^{\prime}\right|^{2}-t\right\}
$$

and

$$
S_{t}^{+}=\left\{\left(x_{1}, x^{\prime}\right): x_{1}=\psi_{t}^{+}\left(x^{\prime}\right)=\psi\left(x^{\prime}\right)+t\right\}
$$

where $t \geq 0, \alpha_{0}>0$ and both small. Denote H_{t} the lens-shaped domain between S_{t}^{+}and S_{t}^{-}, that is

$$
H_{t}=\left\{\psi_{t}^{-}\left(x^{\prime}\right)<x_{1}<\psi_{t}^{+}\left(x^{\prime}\right)\right\}
$$

Put

$$
\Omega_{t}^{+}=\Omega^{+} \cup H_{t}, \quad \Omega_{t}^{-}=B_{1}-\bar{\Omega}_{t}^{+}, \quad W_{t}=\Omega^{-} \cap\left\{x_{1}>\psi_{t}^{-}\left(x^{\prime}\right)\right\}
$$

Let w_{t} be the harmonic extension of u^{+}in H_{t}, that is

$$
w_{t}= \begin{cases}\Delta w_{t}=0 & \text { in } H_{t} \\ w_{t}=u^{+} & \text {on } \partial H_{t}\end{cases}
$$

We now define a perturbation u_{t} of u as follows:

$$
u_{t}=\left\{\begin{array}{lll}
u^{+} & \text {in } & \Omega_{t}^{+}-H_{t} \\
w_{t} & \text { in } & H_{t} \\
-\min \left\{u^{-}, c \frac{\varphi\left(x_{0}\right)}{M} d_{t}\right\} & \text { in } & W_{2 t}-W_{t} \\
-u^{-} & \text {in the rest of } & B_{1}
\end{array}\right.
$$

The couple $\left(u_{t}, \Omega_{t}^{+}\right)$is admissible and

$$
F\left(u_{t}, \Omega_{t}^{+}\right) \geq F\left(u, \Omega^{+}\right)
$$

We estimate the variation of the various terms in the functional F. From the property of the perimeter,

$$
\operatorname{Per}\left(\Omega_{t}^{+}\right)=\operatorname{Per}\left(\Omega^{+}, B_{1}-\bar{H}_{t}\right)+H_{n-1}\left(S_{t}^{-} \cap \Omega^{-}\right)
$$

while

$$
\operatorname{Per}\left(\Omega^{+}\right) \geq \operatorname{Per}\left(\Omega^{+}, H_{t}\right)+\operatorname{Per}\left(\Omega^{+}, B_{1}-\bar{H}_{t}\right) .
$$

As in [2]:

$$
\begin{equation*}
\operatorname{Per}\left(\Omega_{t}^{+}\right)-\operatorname{Per}\left(\Omega^{+}\right) \leq \frac{C}{\varphi\left(x_{0}\right)}\left|W_{t}\right| \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\int_{B_{1}}\left|\nabla u_{t}^{-}\right|^{2} d x-\int_{B_{1}}\left|\nabla u^{-}\right|^{2} d x \leq c \frac{\varphi\left(x_{0}\right)^{2}}{M^{2}}\left(\left|W_{2 t}-W_{t}\right|\right) \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\int_{B_{1}}\left|\nabla u^{+}\right|^{2} d x-\int_{B_{1}}\left|\nabla u_{t}^{+}\right|^{2} d x \geq \frac{C M^{2}}{\varphi\left(x_{0}\right)^{2}}\left|W_{\frac{t}{2}}\right| \tag{17}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\int_{B_{1}} f(x) \chi_{\left\{u_{t}>0\right\}} d x-\int_{B_{1}} f(x) \chi_{\{u>0\}} d x=\int_{W_{t}} f(x) d x \tag{18}
\end{equation*}
$$

From (15), (16), (17), (18) and from minimality condition, we have:

$$
0 \leq-\frac{C M^{2}}{\varphi\left(x_{0}\right)^{2}}\left|W_{\frac{t}{2}}\right|+c \frac{\varphi\left(x_{0}\right)^{2}}{M^{2}}\left(\left|W_{2 t}-W_{t}\right|\right)+\frac{C}{\varphi\left(x_{0}\right)}\left|W_{t}\right|+\int_{W_{t}} f(x) d x
$$

Since W_{t} has positive density, we conclude that:

$$
\frac{C M^{2}}{\varphi\left(x_{0}\right)^{2}}-c \frac{\varphi\left(x_{0}\right)^{2}}{M^{2}} \leq \frac{C}{\varphi\left(x_{0}\right)}+f(0)
$$

and therefore $M \leq C_{0}$.

5. Regularity of the Free Boundary.

From the lipschitz continuity of u is now easy to show that the reduced boundary is a $C^{1, \frac{1}{2}}$ surface but for a set of zero s - dimensional Hausdorff measure for any $s>n-8$. Precisely:
Lemma 10. Let $\left(u, \Omega^{+}\right)$be a minimizer in B_{1}. If f is bounded, then:

1. $\partial^{*} \Omega^{+} \cap B_{\frac{1}{2}}$ is a $C^{1, \frac{1}{2}}$ ipersurface and
2. $H_{s}\left[\left(\partial \Omega^{+}-\partial^{*} \Omega^{+}\right) \cap B_{\frac{1}{2}}\right]=0$ for every $s>n-8$

Proof. Let $A \subset B_{\frac{1}{2}}$ and select Ω_{1} such that $\Omega_{1} \Delta \Omega_{2} \subset B_{r}(x), x \in A, r$ small. Let u_{r} be any perturbation of u inside $B_{r}(x)$ with the same Lipschitz constant L and such that the pair $\left(u_{r}, \Omega_{1}^{+}\right)$is admissible. Then $F\left(u, \Omega^{+}\right) \leq F\left(u_{r}, \Omega_{1}^{+}\right)$, which forces

$$
\operatorname{Per}\left(\Omega^{+}, B_{r}(x)\right)-\operatorname{Per}\left(\Omega_{1}^{+}, B_{r}(x)\right) \leq\left(b+c L^{2}\right) r^{n} .
$$

Therefore $\partial^{*} \Omega^{+}$is an almost minimal surface and the conclusion follows from [2] or [8].

From Lemma $11 \Gamma^{*}=\partial^{*} \Omega^{+} \cap B_{\frac{1}{2}}$ is locally described by the graph of a $C^{1,1 / 2}$ function. To obtain further regularity, we show that on Γ^{*} the free boundary relation

$$
\begin{equation*}
\left|\nabla u^{+}\right|^{2}-\left|\nabla u^{-}\right|^{2}-f(x)=k\left(\Gamma^{*}\right) \tag{19}
\end{equation*}
$$

is satisfied in the viscosity sense according to the following definition.
Definition 3. A surface S given be the graph of a continuous function $x_{1}=$ $h\left(x^{\prime}\right)$, defined in an open set $U \subset \Re^{n-1}$, is a weak subsolution (respectively, supersolution) of the equation:

$$
k(S)=g
$$

g continuous on S, if, for every surface S_{P}, graph of a quadratic polynomial $x_{1}=P\left(x^{\prime}\right)$, and

$$
k\left(S_{P}\right) \leq g \quad(\text { respectively }, \geq)
$$

then $P-h$, cannot we have a local minimum (respectively maximum) in $U . S$ is a weak solution of $k=g$ if it is both a weak-sub- and a supersolution.

Lemma 11. Let $\left(u, \Omega^{+}\right)$be a minimizer in B_{1}, and f continuous. Then Γ^{*} is a weak solution of the free boundary equation (19).

Proof. We show that Γ^{*} is a weak subsolution (in a similar way one can prove that it is also a supersolution). Assuming the contrary. Let S_{P} be the graph of a quadratic polinomial touching Γ^{*} from the Ω^{+}side, so that $P-h$ has a minimum at $x_{0} \in \Gamma^{*}$ and $k\left(S_{P}\right) \leq g$ where $g(x)=\left|\nabla u^{+}\right|^{2}-\left|\nabla u^{-}\right|^{2}-f(x)$. By a rotation, translation and rescaling we suppose that:
a) In B_{1} the free boundary is given by the graph of a function $x_{1}=h\left(x^{\prime}\right)$, with $h(0)=0, \nabla h(0)=0$.
b) By the Hopf maximum principle, at the free bondary, u has a linear behavior

We put

$$
\begin{gathered}
H_{t}=\left\{P\left(x^{\prime}\right)-t<x_{1}<P\left(x^{\prime}\right)+t\right\} \quad \Omega_{t}^{+}=\Omega^{+} \cup H_{t}, \\
\Omega_{t}^{-}=B_{1}-\bar{\Omega}_{t}^{+}, \quad W_{t}=\Omega^{-} \cap\left\{x_{1}>P\left(x^{\prime}\right)-t\right\}
\end{gathered}
$$

Let w_{t}^{+}and w_{t}^{-}be, respectively, the harmonic extention of u^{+}in $\Omega_{t}^{+}=\Omega^{+} \cup H_{t}$ and of u^{-}in $\Omega_{t}^{-}=B_{1}-\bar{\Omega}_{t}^{+}$:

$$
\left\{\begin{array} { l c l }
{ \Delta w _ { t } ^ { + } = 0 } & { \text { in } } & { \Omega _ { t } ^ { + } } \\
{ w _ { t } ^ { + } = u ^ { + } } & { \text { su } } & { \partial B _ { 1 } } \\
{ w _ { t } ^ { + } = 0 } & { \text { su } } & { \partial \Omega _ { t } ^ { + } \cap B _ { 1 } }
\end{array} \quad \left\{\begin{array}{lll}
\Delta w_{t}^{-}=0 & \text { in } & \Omega_{t}^{-} \\
w_{t}^{-}=u^{-} & \text {su } & \partial B_{1} \\
w_{t}^{-}=0 & \text { su } & \partial \Omega_{t}^{-} \cap B_{1}
\end{array}\right.\right.
$$

Define:

$$
u_{t}=\left\{\begin{array}{lll}
w_{t}^{+} & \text {in } & \Omega_{t}^{+} \\
-w_{t}^{-} & \text {in } & \Omega_{t}^{-}
\end{array}\right.
$$

The pair $\left(u_{t}, \Omega_{t}^{+}\right)$is admissible and:

$$
F\left(u_{t}, \Omega_{t}^{+}\right) \geq F\left(u, \Omega^{+}\right)
$$

We compute the variation of the various terms in the functional F. From [4],

$$
\begin{equation*}
\int_{B_{1}}\left|\nabla u_{t}^{+}\right|^{2} d x-\int_{B_{1}}\left|\nabla u^{+}\right|^{2} d x \leq-\int_{W_{t}}\left|\nabla u_{t}^{+}\right|^{2} d x \tag{20}
\end{equation*}
$$

(21) $\int_{B_{1}}\left|\nabla u^{-}\right|^{2} d x-\int_{B_{1}}\left|\nabla u_{t}^{-}\right|^{2} d x \leq \int_{W_{t}}\left|\nabla u^{-}\right|^{2} d x+(c(\varepsilon, t)+c(n) \varepsilon)\left|W_{t}\right|$
with $c(\delta, t) \rightarrow 0$ while $t \rightarrow 0, \delta$ fixed.
Moreover, if d_{t} denotes the distance from $H_{t}^{-}=\left\{x_{1}=P\left(x^{\prime}\right)-t\right\}$
we have

$$
\begin{equation*}
\operatorname{Per}\left(\Omega_{t}^{+}\right)-\operatorname{Per}\left(\Omega^{+}\right) \leq-\int_{W_{t}} \Delta d_{t}(x) d x \tag{22}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\int_{B_{1}} f(x) \chi_{\left\{u_{*}>0\right\}} d x-\int_{B_{1}} f(x) \chi_{\{u>0\}} d x=\int_{W_{t}} f(x) d x \tag{23}
\end{equation*}
$$

Collecting (20), (21), (22), (23) from the minimality condition, we have:

$$
\begin{gathered}
\int_{W_{t}}\left|\nabla u_{t}^{+}\right|^{2} d x-\int_{W_{t}}\left|\nabla u^{-}\right|^{2} d x \leq \\
(c(\delta, t)+c(n) \delta)\left|W_{t}\right|+\int_{W_{t}} f(x) d x-\int_{W_{t}} \Delta d_{t}(x) d x .
\end{gathered}
$$

Dividing by $\left|W_{t}\right|$, and letting first $t \rightarrow 0$, and $\delta \rightarrow 0$, we have:

$$
k\left(S_{P}\right)(0)-\left|\nabla u^{+}(0)\right|^{2}+\left|\nabla u^{-}(0)\right|^{2}+f(0) \geq 0
$$

This contradicts the assumption.

6. Analyticity of the free boundary.

We now prove that Γ^{*} is analytic surface, by using the theory of elliptic coercive systems (see [1]).

We recall briefly the partial hodograph and Legendre transformations. Let $u(x)$ be a function defined in $\Omega \cup \Gamma$ and satisfying on Γ the conditions

$$
\partial_{n}^{p} u=0 \quad \partial_{n}^{p+1} u \neq 0
$$

We suppose that $\partial_{n} u>0$ if $p=0$ and $\partial_{n}^{2} u<0$ if $p=1$ (see [7]). The transformation defined by

$$
\left\{\begin{array}{l}
y_{\alpha}=x_{\alpha} \quad \alpha=1, \ldots, n-1 \tag{24}\\
y_{n}=u(x)
\end{array}\right.
$$

is called a zeroth order (partial) hodograph transformation. The associated "partial Legendre transform" (which defines the inverse mapping) is:

$$
\begin{cases}x_{\alpha}=y_{\alpha} & \alpha=1, \ldots, n-1 \tag{25}\\ x_{n}=\psi(y) & p=0\end{cases}
$$

Let us compute the derivatives of u in terms of derivatives of ψ. We have:

$$
\begin{equation*}
\psi_{\alpha}=-\frac{u_{\alpha}}{u_{n}} \quad \psi_{n}=\frac{1}{u_{n}} \tag{26}
\end{equation*}
$$

Also, from (26),

$$
\begin{equation*}
\frac{\partial}{\partial x_{\alpha}}=\partial_{\alpha}-\frac{\psi_{\alpha}}{\psi_{n}} \partial_{n} \quad \frac{\partial}{\partial x_{n}}=\frac{1}{\psi_{n}} \partial_{n} \tag{27}
\end{equation*}
$$

Moreover, we introduce the reflection mapping (from $\Omega \cup \Gamma$ to a neighborhood $\Omega^{-} \cup \Gamma$ of 0 on the opposite site of Γ)

$$
\begin{cases}x_{\alpha}=y_{\alpha} & \alpha=1, \ldots, n-1 \tag{28}\\ x_{n}=\psi(x)-C y_{n} & p=0\end{cases}
$$

where C is any constant larger than ψ_{n}.
For the reflection we have:

$$
\begin{equation*}
\frac{\partial}{\partial x_{\alpha}}=\partial_{\alpha}-\frac{\psi_{\alpha}}{\psi_{n}-C} \partial_{n} \quad \frac{\partial}{\partial x_{n}}=\frac{1}{\psi_{n}-C} \partial_{n} \tag{29}
\end{equation*}
$$

Note that given a function $u(x)$ defined in Ω^{-}, we can pull it back to a function $\phi(y)$ defined in Ω by the rule $\phi(y)=u(x)$, where x and y are related by (28).

The proof of part b) in theorem 4 , follows from the following lemma where Ω, Γ and Ω^{-}are as above.
Lemma 12. Let $\Gamma=\partial \Omega \cap B_{1}$ be an ($n-1$)-dimensional C^{∞} manifold, with $0 \in \Gamma$. Suppose f analytic on Γ and $u \in C^{2}(\Omega \cup \Gamma) \cap C^{2}\left(\Omega^{-} \cup \Gamma\right)$ satisfies:

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \cup \Omega^{-} \tag{30}\\ u=0 & \text { on } \Gamma \\ \left|\nabla u^{+}\right|^{2}-\left|\nabla u^{-}\right|^{2}-f(x)=k\left(\Gamma^{*}\right) & \text { on } \Gamma\end{cases}
$$

Then Γ is analyitc.

Proof. Assume e_{n} is the normal unit vector to Γ at 0 . We apply our zeroth order hodograph transform (24) - (25):

$$
\begin{gathered}
y=\left(x_{1}, x_{2}, \ldots, x_{n-1}, u\right)=\left(x^{\prime}, u\right) \\
u_{n}(0)>0 \\
x_{n}=\psi
\end{gathered}
$$

Since $x_{n}=\psi\left(y_{1}, \ldots y_{n-1}, 0\right)$ parametrizes Γ, we have:

$$
\begin{gathered}
v=\frac{\left(-\psi_{1}, \ldots,-\psi_{n-1}, 1\right)}{\sqrt{1+\sum_{\alpha<n} \psi_{\alpha}^{2}}} u_{v}^{+}=\frac{1}{\psi_{n}} \sqrt{1+\sum_{\alpha<n} \psi_{\alpha}^{2}} \\
u_{v}^{-}=\frac{\phi_{n}}{\left(\psi_{n}-C\right)} \sqrt{1+\sum_{\alpha<n} \psi_{\alpha}^{2}}
\end{gathered}
$$

The mean curvature is

$$
k=\frac{1}{n-1} \sum \frac{\left(\left(1+\sum_{\alpha<n} \psi_{\alpha}^{2}\right) \delta_{\alpha \beta}-\psi_{\alpha} \psi_{\beta}\right) \psi_{\alpha \beta}}{\left(1+\sum_{\alpha<n} \psi_{\alpha}^{2}\right)^{\frac{3}{2}}}
$$

therefore:

$$
\left(u_{v}^{+}\right)^{2}-\left(u_{v}^{-}\right)^{2}=\left(\frac{1}{\psi_{n}^{2}}-\frac{\phi_{n}^{2}}{\left(\psi_{n}-C\right)^{2}}\right)\left(1+\sum_{\alpha<n} \psi_{\alpha}^{2}\right)
$$

From (24), the sistem (30) becomes:

$$
\left\{\begin{array}{l}
-\frac{1}{\psi_{n}^{3}}\left(1+\sum_{\alpha<n} \psi_{\alpha}^{2}\right) \psi_{n n}-\frac{1}{\psi_{n}} \sum_{\alpha<n} \psi_{\alpha \alpha}+\frac{2}{\psi_{n}^{2}} \sum_{\alpha<n} \psi_{\alpha} \psi_{\alpha n}=0 \text { in } U^{+}=y\left(\Omega^{+}\right) \\
\frac{1}{\psi_{n}-C}\left(\frac{\phi_{n}}{\psi_{n}-C}\right)_{n}+\sum_{\alpha<n}\left(\left(\phi_{\alpha}-\frac{\psi_{\alpha} \phi_{n}}{\psi_{n}-C}\right)_{\alpha}-\frac{\psi_{\alpha}}{\psi_{n}-C}\left(\phi_{\alpha}-\frac{\psi_{\alpha} \phi_{n}}{\psi_{n}-C}\right)_{n}\right)=0 \\
\text { in } U^{-}=y\left(\Omega^{-}\right) \\
\left(\frac{1}{\psi_{n}^{2}}-\frac{\phi_{n}^{2}}{\left(\psi_{n}-C\right)^{2}}\right)\left(1+\sum_{\alpha<n} \psi_{\alpha}^{2}\right)-\tilde{f}\left(y^{\prime}, \psi\right)=\frac{1}{n-1} \sum \frac{\left(\left(1+\sum_{\alpha<n} \psi_{\alpha}^{2}\right) \delta_{\alpha \beta}-\psi_{\alpha} \psi_{\beta}\right) \psi_{\alpha \beta}}{\left(1+\sum_{\alpha<n} \psi_{\alpha}^{2}\right)^{\frac{3}{2}}} \\
\text { on } S=y(\Gamma)
\end{array}\right.
$$

We linearize the problem, with respect to the variable ψ. Note that by our choice of coordinates, we have

$$
\psi_{n}(0)=\frac{1}{u_{n}(0)}>0 \quad \psi_{\alpha}(0)=0 \quad \alpha<n
$$

and putting:

$$
\beta=u_{v}^{+}(0)=\frac{1}{\psi_{n}(0)} \quad \gamma=u_{v}^{-}(0)=\frac{\phi_{n}(0)}{\psi_{n}(0)-C}
$$

we obtain

$$
\left\{\begin{array}{lr}
\beta^{2} \bar{\psi}_{n n}+\sum \bar{\psi}_{\alpha \alpha}=0 & \text { in } \\
\frac{1}{A^{2}} \bar{U}_{n n}+\sum \bar{\phi}_{\alpha \alpha}-\gamma\left(\frac{1}{A^{2}} \bar{\psi}_{n n}+\sum \bar{\psi}_{\alpha \alpha}\right)=0 & \text { in } \\
\sum_{\alpha<n} \bar{\psi}_{\alpha \alpha}=0 \quad \bar{\phi}=0 & \text { on }
\end{array}\right.
$$

where $\bar{\psi}$ and $\bar{\phi}$ are, respectively, the increments of ψ and ϕ.
The sistem is elliptic and coercive (see [7]) and the boundary conditions are equivalent to $\bar{\psi}=0$ and $\bar{\phi}=0$. Hence Γ is analytic.

REFERENCES

[1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II,, Comm. Pure Appl. Math., 12 (1959), pp. 623-727; 17 (1964), pp. 35-92.
[2] F.J. Jr. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc., 4 (1976), n. 165.
[3] H.W. Alt - L.A. Caffarelli - A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282-2 (1984), pp. 431-461.
[4] I. Athanasopoulos - L.A. Caffarelli - C. Kenig - S. Salsa, An Area-Dirichlet Integral Minimization Problem, Comm. on Pure and Applied Mathematics, 54 (2001), pp. 479-499.
[5] L.A. Caffarelli - X. Cabrè, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, R. I., 1995.
[6] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birckhauser, 1984.
[7] D. Kinderlehrer - L. Nirenberg - J. Spruck, Regularity in elliptic free boundary problems, I, Journal d'Analyse Mathematique, 34 (1978).
[8] I. Tamanini, Regularity results for almost minimal oriented hypersurface in \Re^{n}, Quaderni del Dipartimento di Matematica, Università di Lecce 1 (1994).

Università di Cagliari
Dipartimento di Matematica
Viale Merello 92-94
09123 Cagliari (ITALY)
e-mail: roberarg@unica.it

