A TWO-PHASE VARIATIONAL PROBLEM WITH CURVATURE

ROBERTO ARGIOLAS

In this paper we consider a two phases variational problem related to the following functional: $F(u, \Omega) = \int_D |\nabla u|^2 dx + Area\{u = 0\} + \int_D f(x)\chi_{\{u>0\}} dx$. In particular we obtain results about the smoothness of the free boundary $\{u = 0\}$.

1. Introduction.

In [4] the authors consider a free boundary problem arising from the minimization of a Dirichlet-area integral related to the Ginzburg-Landau functional. They show in particular the smoothness of the free boundary. A question that could be of some interest in fluiddynamics, and constitues a natural continuation of that paper, is to examine the effect of a volume (gravity) integral. Accordingly, in this paper we consider the following variational problem.

Given a smooth domain $D \subset \Re^n$ and smooth boundary data g on ∂D , we look for a function $v \in H^1(D)$ with $v_{|\partial D} = g$, that minimizes the functional

(1)
$$F(v, \Omega) = \int_{D} |\nabla v|^2 dx + Area \{v = 0\} + \int_{D} f(x) \chi_{\{v>0\}} dx$$

that is, the Dirichlet integral of v, plus the area of the level surface $\Gamma = \{v = 0\}$, plus a volume integral with density f on the positive phase.

Entrato in redazione il 28 Aprile 2004.

Heuristically, a minimizer u is harmonic in its positive and negative region while on its zero level set (the free boundary) it satisfies the equation

(2)
$$\left|\nabla u^{+}\right|^{2} - \left|\nabla u^{-}\right|^{2} - f = k\left(\Gamma\right)$$

where $k(\Gamma)$ denotes the mean curvature of Γ .

If we assume that f is bounded, the key point in proving the smoothness of the free boundary is to prove that u is Lipschitz and that $k(\Gamma)$ is bounded in a weak (viscosity) sense (see section 4). The proofs of this part parallel those of the corresponding theorems in [4], so that we sketch them pointing out the differences.

This allows one to use the theory of *almost minimal surfaces* (see [8]) to deduce that actually the reduced part Γ^* of Γ is locally a graph of a $C^{1,\alpha}$ function, for any $0 < \alpha < 1$, that satisfies (2) in viscosity sense. Further regularity of f implies more regularity of Γ^* and, in particular, f (real) analytic implies that Γ^* is an analytic surface (section 5).

2. Existence of minimizers and main result.

Let *D* be a bounded, smooth domain in \Re^n and $g \in H^1(D)$.

Definition 1. The pair (Ω, v) is admissible if Ω is a set of finite perimeter in $D, v \in H^1(D), v - g \in H^1_0(D)$ and

$$v \mid_{\Omega \cap D} \ge 0$$
 $v \mid_{\Omega^{c} \cap D} \le 0$ $a.e$

We recall that

$$Per(\Omega, D) = \sup\left\{\int_{\Omega} \operatorname{div} p \, dx : p \in C_0^1(\Omega, \mathfrak{R}^n), |p(x)| \le 1\right\} < \infty.$$

For convenience we denote $Per(\Omega) = Per(\Omega, D)$.

Our problem is to minimize the functional

$$F(v, \Omega) = \int_{D} |\nabla v|^2 dx + Per(\Omega) + \int_{D} f(x) \chi_{\{v>0\}} dx$$

among all admissible pairs (v, Ω) .

Proposition 1. If $f \in L^1(D)$, there exists a pair (u, Ω) that minimizes F.

Proof. Let $\{(u_m, \Omega_m)\}$ be a minimizing sequence, that is, (u_m, Ω_m) is an admissible pair and

$$F(u_m, \Omega_m) \longrightarrow \inf F(v, \Omega) \qquad m \to +\infty$$

Passing to a subsequence, there exists a pair (u, Ω) such that:

$\chi_{ _{\Omega_m}} \longrightarrow \chi_{ _{\Omega}}$	strongly in $L^1(D)$
$u_m \rightarrow u$	weakly in $H^1(D)$
$u_k \chi_{ _{\Omega m \cap D}} \longrightarrow u \chi_{ _{\Omega \cap D}}$	a.e. in D
$u_k \chi_{ _{\Omega^c_m \cap D}} \longrightarrow u \chi_{ _{\Omega^c \cap D}}$	a.e. in D

Then it follows that

 $u_{|_{\Omega \cap D}} \ge 0$ $u_{|_{\Omega^c \cap D}} \le 0$ a.e. in D,

hence (u, Ω) is admissible.

By the lower semicontinuity of F we have

$$\inf F(v, \Omega) \le F(u, \Omega) \le \liminf_{m \to \infty} F(u_m, \Omega_m) = \inf F(v, \Omega),$$

therefore $\inf F(v, \Omega) = F(u, \Omega)$, that is (u, Ω) is a minimizer. \Box

We call $\Gamma(u) = \partial \Omega \cap D$ the *free boundary*. Our purpose if to show optimal regularity for *u* and $\Gamma(u)$.

The main results are summarized in the following theorems.

Theorem 2. Let (u, Ω) be a minimizer in the unit ball $B_1 = B_1(0)$, with $0 \in \Gamma(u)$. If $f \in L^{\infty}(B_1)$ then, in $B_{1/2}$:

a) u is Lipschitz continuous;

b) the curvature $k(\Gamma(u))$ is bounded in the viscosity sense

Corollary 3. The reduced part $\Gamma^*(u)$ of the free boundary is (locally) a graph of a $C^{1,\alpha}$ function, for any $0 < \alpha < 1$.

Theorem 4. If $f \in C^{m,\beta}(B_1)$, $0 < \beta < 1$, then, in $B_{1/2}$ the reduced part $\Gamma^*(u)$ of the free boundary is (locally) a graph of a $C^{m+2,\beta}$ function; if f is (real) analytic, then the reduced part $\Gamma^*(u)$ of the free boundary is analytic.

In particular, the free boundary relation

$$|\nabla u^{+}|^{2} - |\nabla u^{-}|^{2} - f = k(\Gamma^{*})$$

holds in classical sense.

3. Hölder continuity.

The first step in the proof of theorem 2 is to show that u is $\frac{1}{2}$ -Hölder continuous and that Ω has positive uniform density at every point of the free boundary. An important role is played by the quantities

$$I_{r}^{\pm} = \int_{B_{r}} \frac{\left|\nabla u^{\pm}\right|^{2}}{|x|^{n-2}} \, dx$$

Notice that if we set $u_r(y) = \frac{1}{\sqrt{r}}u(ry)$, we have $I_r(u) = rI_1(u_r)$ and (see [4])

$$\left(u^{\pm}\right)^2 \leq I_r\left(u^{\pm}\right).$$

Therefore, in order to prove that $u \in C^{\frac{1}{2}}$, using the Monotonicity Formula (see [3]), it's enough to show that

(3)
$$I_r\left(u^{\pm}\right) \le cr ||u||_{L^{\infty}}^2.$$

Also notice that if (u, Ω) is a minimizer of F in B_1 and

$$\Omega_r = \{ y : ry = x, x \in \Omega \},\$$

then (u_r, Ω_r) is a minimizer of $r^{n-1}F$, and therefore of F, in B_1 . For an admissible pair (v, Ω) , we define $\Omega^- = B_1 - \overline{\Omega}^+$. We have:

Theorem 3. Let (u, Ω) be minimizer in B_1 and $f \in L^{\infty}(B_1)$. Then u is $C^{\frac{1}{2}}$ Hölder – continuous in $B_{\frac{1}{2}}$ and

$$||u||_{C^{\frac{1}{2}}\left(B_{\frac{1}{2}}\right)} \le c\left(n, \|f\|_{\infty}\right) ||u||_{L^{\infty}(B_{1})}$$

and, for every $x \in \Gamma(u)$, if $r \leq \frac{1}{8}$,

$$\left|B_r(x) \cap \Omega^{\pm}\right| \ge c_0 \left(n, \|f\|_{\infty}\right) r^n.$$

Moreover, u^{\pm} are harmonic in their positivity set.

We now recall the notion of harmonic replacement.

Let *K* a measurable subset of *D* and a function $g \in H^1(D)$. We say that *g* is supported in *K* if g = 0 a.e in D - K. Define

$$S = \left\{ g : g \in H^1(D), g \{ \text{supported in } K \right\}$$

a closed convex set in $H^{1}(D)$.

Definition 2. The function h_0 is the harmonic replacement of $f \in H^1(D)$ in D if:

(i) $h_0 \in S$, (ii) $h_0 - f \in H^1(D)$, (iii) h_0 minimizes the Dirichlet integral in $S \cap \{f + H_0^1(D)\}$.

The main properties of harmonic replacements are summarized in the following two lemmas (see [4]):

Lemma 6. The harmonic replacement h_0 is unique, and if f is nonnegative, then h_0 is nonnegative and subharmonic; in particular it can be defined everywhere in D as a u.s.c. function by limit of solid averanges. Also, in the sense of measures,

$$\Delta (h_0)^2 = 2 |\nabla h_0|^2$$

Lemma 7. Let h_0 be the harmonic replacement of $f \ge 0$ in D. Assume $B_1 \subset D$ and $h_0(0) = 0$. Then

(4)
$$\sup_{B_{(1-s)r}} (h_0)^2 \le \frac{c(n)}{s^n} \int_{B_r} \frac{|\nabla h_0|^2}{|x|^{n-2}} dx$$

for any 0 < s < 1 and $0 < r \le 1$, and

(5)
$$\int_{B_r} \frac{|\nabla h_0|^2}{|x|^{n-2}} \, dx \le c \, (n) \, r^{-n} \int_{B_{2r} - B_r} \left(h_0 \right)^2 \, dx$$

for $0 < r < \frac{1}{4}$.

Let now (u, Ω) be a minimizer. Then

- (a) $u^+ = \max\{0, u\}$ is supported in $\Omega \cap D$ and $u^- = \max\{-u, 0\}$ is supported in $\Omega^c \cap D$, moreover u^+ and u^- are harmonic replacement of u,
- (b) u^+ and u^- are subharmonic,
- (c) at any point x of Lebesgue differentiability of the free boundary, u^+ and u^- vanish; moreover, the monotonicity formula and the estimates (4) and (5) hold in a sufficiently small ball centered at x for u^+ and u^- ,
- (d) $\Delta (u^{\pm})^2 = 2 |\nabla u^{\pm}|^2$ hold in the sense of measures.

For an admissible pair (v, Ω) , we define $\Omega^- = B_1 - \overline{\Omega}^+$

Proof. of Theorem 2. Sketch. Consider I_r^+ . By rescaling, we may suppose r = 1. For 0 < h < 1 we perturb the free boundary defining

$$\Omega^-_* = \Omega^- \cup B_{1-h} \qquad \qquad \Omega_* = \Omega \backslash B_{1-h},$$

The new free boundary is:

$$\Gamma^* = \left[\Omega \cap \partial B_{1-h}\right] \cup \left[\Gamma \cap \left(B_1 \setminus \overline{B}_{1-h}\right)\right]$$

Let u_*^- be the harmonic extention of u^- in Ω_*^- , that is:

$$\Delta u_*^- = 0 \quad \text{in } \Omega_*^-$$
$$u_*^- = u^- \quad \text{su } \partial \Omega_*^-$$

Let

$$U_h = \sup u \text{ in } B_{1-\frac{h}{4}}$$

and let G be such that:

$$\begin{cases} \Delta G = 0 & \text{in } R_h = B_{1-\frac{h}{4}} - B_{1-h} \\ G = 1 & \text{su } \partial B_{1-\frac{h}{4}} \\ G = 0 & \text{su } \partial B_{1-h} \end{cases}$$

We now define a perturbation u_* of u as follows:

$$u_{*} = \begin{cases} -u_{*}^{-} & \text{in } \Omega_{*}^{-} \\ \min \{u^{+}, U_{h}G\} & \text{in } \Omega_{*}^{+} \cap R_{h} \\ u^{+} & \text{in } \Omega_{*}^{+} - R_{h} \end{cases}$$

The couple (u_*, Ω^+_*) is admissible and

$$F\left(u_{*}, \Omega_{*}^{+}\right) \geq F\left(u, \Omega^{+}\right).$$

We compute the variation of the various terms in the functional F.

Since $\Omega^- \subseteq \Omega^-_*$ we have:

(6)
$$\int_{B_1} |\nabla u_*^-|^2 \, dx \leq \int_{B_1} |\nabla u^-|^2 \, dx.$$

Moreover

(7)
$$\int_{B_1} |\nabla u_*^+|^2 \, dx \leq \int_{B_1} |\nabla u^+|^2 \, dx + c U_h^2 h^{-1}.$$

From the properties of the perimeter,

(8)
$$Per\left(\Omega_{*}^{+}\right) - Per\left(\Omega^{+}\right) \leq H_{n-1}\left(\partial B_{1-h} \cap \Omega^{+}\right) - Per\left(\Omega^{+}, B_{1-h}\right).$$

Moreover
$$(b = ||f||_{\infty})$$
,
(9)
 $\int_{B_1} f(x) \chi_{\{u_*>0\}} dx - \int_{B_1} f(x) \chi_{\{u>0\}} dx = -\int_{\Omega^+ \cap B_{1-h}} f(x) dx \le b \left| \Omega^* \cap B_{1-h} \right|$

From (6), (7), (8), (9) and minimality condition, we conclude that

(10)
$$-b \left| \Omega^{+} \cap B_{1-h} \right| + Per \left(\Omega^{+}, B_{1-h} \right) \leq H_{n-1} \left(\partial B_{1-h} \cap \Omega^{+} \right) + c U_{h}^{2} h^{-1}$$

Let now $\rho_0 = \frac{1}{2}$ and $c \le \frac{1}{4}$, we define

$$\rho_{m+1} = \rho_m - c2^{-m}.$$

Put:

$$I_m = I_{
ho_m}^+$$
 and $V_m = \left| \Omega^+ \cap \left(B_{
ho_m} - \overline{B}_{
ho_{m+1}} \right) \right|,$

we show the following inequality:

(11)
$$I_{m+1} \le C^m I_m V_m.$$

In fact, from Lemma 7, we have

$$I_{m+1} \le C2^{2nm} \sup_{B_{\rho'_m}} (u^+)^2 V_m \le C2^{4nm} I_m V_m \le C_1^m I_m V_m$$

where $\rho'_{m} = \rho_{m+1} + c2^{-(m+1)}$. Let $\overline{\rho} > 0$, be a positive number with $\rho_{m+1} < \overline{\rho} < \rho'_{m}$. From isoperimetric inequality we have:

$$-rb\left|\Omega^{+}\cap B_{1-h}\right|+c(n)\left|\Omega^{+}\cap B_{1-h}\right|^{\frac{n-1}{n}} \leq H_{n-1}\left(\partial B_{1-h}\cap\Omega^{+}\right)+cU_{h}^{2}h^{-1}$$

therefore

$$\left|\Omega^{+}\cap B_{1-h}\right|^{\frac{n-1}{n}} \leq c_{1}(n,b)\left(H_{n-1}\left(\partial B_{1-h}\cap\Omega^{+}\right)+cU_{h}^{2}h^{-1}\right).$$

In particular, from (11), we conclude that

$$(V_{m+1})^{\frac{n-1}{n}} \leq c_1(n) \left(H_{n-1} \left(\partial B_r \cap \Omega^+ \right) + C_1^m I_m \right).$$

Integrating with respect to $\overline{
ho}$ over the interval $\left(
ho_{m+1},
ho_{m}^{'}
ight)$, we get:

$$(V_{m+1}) \le c_2(n) C_1^m (V_m + I_m)^{\frac{n}{n-1}}.$$

From (11) we have

(12)
$$V_{m+1} + I_{m+1} \le c_2 C_1^m (I_m + V_m)^{\frac{n}{n-1}}$$

As consequence (12) there exists a constant δ such that if $V_0 + I_0 \leq \delta < 1$, then $V_m + I_m \rightarrow 0$, when $m \rightarrow \infty$. But that is no possible because $\rho_m \rightarrow \rho_\infty > 0$. Hence, we have:

$$V_0 + I_0 > \delta.$$

In particular, put $I_0 \leq \delta_0 = \frac{\delta}{2}$, we have

$$\frac{\delta}{2} < V_0 < \left| \Omega^+ \cap B_{\frac{1}{2}} \right|.$$

If $0 < \overline{\rho} < 1$ then the conclusion follows from the scaling properties of the minimizers.

We recall the following Lemma (see [4]):

Lemma 8. a) If $I_1^+ I_1^- \leq \Lambda$. Then

$$I_{\frac{1}{8}}^+ \le c(n, \Lambda), \qquad I_{\frac{1}{8}}^- \le c(n, \Lambda).$$

b) If $I_1^{\pm} \leq \Lambda^{\pm}$. Then

$$\left|\Omega^{\pm} \cap B_{\frac{1}{2}}\right| \geq C\left(n, \Lambda^{\pm}\right) > 0.$$

We are now ready to prove Theorem 5.

Proof. From the Monotonicity Formula, for $r \leq \frac{1}{8}$,

$$I_r^+ I_r^- \le cr^4 ||u||_{L^\infty(B_1)}$$

By rescaling, for the function $u_r(y) = r^{-\frac{1}{2}}u(ry)$, we have

$$I_1^+(u_r) I_1^-(u_r) \le cr^2 ||u||_{L^{\infty}(B_1)}^4$$

For Lemma 8 we deduce that:

$$I_{\frac{1}{2}}^+(u_r) \le C ||u||_{L^{\infty}(B_1)}^2, \qquad I_{\frac{1}{2}}^-(u_r) \le C ||u||_{L^{\infty}(B_1)}^2$$

Recalling (5) (with $h = \frac{1}{2}$) and Lemma 8, we conclude that $u \in C^{\frac{1}{2}}$.

138

4. Lipschitz Continuity of a minimizer.

We now show the following theorem:

Theorem 9. Let (u, Ω^+) be a minimizer in B_1 and $f \in L^{\infty}(B_1)$. Then u is lipschitz continuous on $B_{\frac{1}{2}}$.

Proof. Let φ be a cutoff function, $0 \le \varphi \le 1$, $\varphi = 1$ in $B_{\frac{1}{4}}$, $\varphi = 0$ outside $B_{\frac{1}{2}}$. For $\varepsilon > 0$, define $\vartheta = [u - \varepsilon]^+$ and let M be the smallest constant such that $Md(x) \ge \vartheta(x)\varphi(x)$ for each $x \in B_1$, where $d(x) = dist(x, \Gamma(u))$.

Suppose x_0 is a point such that $Md(x_0) = \vartheta(x_0)\varphi(x_0)$ and that $d(x_0) = dist(x_0, y_0)$ with $y_0 \in \Gamma$. By a rotation and translation we may suppose that $y_0 = 0$ and $x_0 = d(x_0) e_1$.

Since ϑ is smooth around x_0 , we have

$$d(x) \ge d(x_0) + \frac{\langle \nabla(\vartheta\varphi)(x_0), x - x_0 \rangle}{M} + \frac{P(x - x_0)}{M} + O\left(\frac{|x - x_0|^3}{M}\right)$$

where *P* is a quadratic polynomial satisfyting $\Delta P = \Delta(\vartheta \varphi)$ at $x = x_0$ and $D_{11}P \leq 0$. Estimating ΔP as in [4] we have, $\Delta P \geq -\frac{CM}{\varphi(x_0)}$ In particular on the hyperplane $x_1 = d(x_0)$

(13)
$$\Delta_{x'} \bar{P}(x') \geq -\frac{CM}{\varphi(x_0)}.$$

which implies

(14)
$$d(x) \ge d(x_0) + \frac{\bar{P}(x')}{M} + O\left(\frac{|x'|^3}{M}\right)$$

Therefore the free boundary, near the origin, is below the surface

$$S = \left\{ (x_1, x') : x_1 = \psi(x') = -\frac{\bar{P}(x')}{M} + O\left(\frac{|x'|^3}{M}\right) \right\}.$$

If now put k(S)(x) the mean curvature of S, from (13), we have:

$$k(S)(x) = -\frac{1}{n-1} \Delta \psi(x') \le \frac{C}{\varphi(x_0)} + O(|x'|).$$

Near the origin, for $x_1 > \psi(x')$,

$$u^{+}(x) \ge \frac{CM}{\varphi(x_{0})}x_{1} + o(|x|).$$

while from the Monotonicity Formula,

$$\sup_{B_r(y)} u^- \le c \frac{\varphi(x_0)}{M} r$$

for small r and y on the free boundary.

We perform a perturbation of the free boundary by means of the family of surfaces

$$S_{t}^{-} = \left\{ \left(x_{1}, x^{'} \right) : x_{1} = \psi_{t}^{-} \left(x^{'} \right) = \psi \left(x^{'} \right) + \frac{\alpha_{0}}{\varphi \left(x_{0} \right)} \left| x^{'} \right|^{2} - t \right\}$$

and

$$S_{t}^{+} = \left\{ \left(x_{1}, x^{'} \right) : x_{1} = \psi_{t}^{+} \left(x^{'} \right) = \psi \left(x^{'} \right) + t \right\}.$$

where $t \ge 0$, $\alpha_0 > 0$ and both small. Denote H_t the lens-shaped domain between S_t^+ and S_t^- , that is

$$H_{t} = \left\{ \psi_{t}^{-} \left(x^{'} \right) < x_{1} < \psi_{t}^{+} \left(x^{'} \right) \right\}.$$

Put

$$\Omega_t^+ = \Omega^+ \cup H_t, \quad \Omega_t^- = B_1 - \overline{\Omega}_t^+, \quad W_t = \Omega^- \cap \left\{ x_1 > \psi_t^- \left(x' \right) \right\}.$$

Let w_t be the harmonic extension of u^+ in H_t , that is

$$w_t = \begin{cases} \Delta w_t = 0 & \text{in } H_t \\ w_t = u^+ & \text{on } \partial H_t \end{cases}$$

We now define a perturbation u_t of u as follows:

$$u_{t} = \begin{cases} u^{+} & \text{in} & \Omega_{t}^{+} - H_{t} \\ w_{t} & \text{in} & H_{t} \\ -\min\{u^{-}, c\frac{\varphi(x_{0})}{M}d_{t}\} & \text{in} & W_{2t} - W_{t} \\ -u^{-} & \text{in the rest of} & B_{1} \end{cases}$$

The couple (u_t, Ω_t^+) is admissible and

$$F\left(u_t, \Omega_t^+\right) \geq F\left(u, \Omega^+\right).$$

We estimate the variation of the various terms in the functional F. From the property of the perimeter,

$$Per\left(\Omega_{t}^{+}\right) = Per\left(\Omega^{+}, B_{1} - \overline{H}_{t}\right) + H_{n-1}\left(S_{t}^{-} \cap \Omega^{-}\right)$$

while

$$Per\left(\Omega^{+}\right) \geq Per\left(\Omega^{+}, H_{t}\right) + Per\left(\Omega^{+}, B_{1} - \overline{H}_{t}\right).$$

As in [2]:

(15)
$$Per\left(\Omega_{t}^{+}\right) - Per\left(\Omega^{+}\right) \leq \frac{C}{\varphi\left(x_{0}\right)} \left|W_{t}\right|$$

(16)
$$\int_{B_1} \left| \nabla u_t^- \right|^2 \, dx - \int_{B_1} \left| \nabla u^- \right|^2 \, dx \le c \frac{\varphi \left(x_0 \right)^2}{M^2} \left(|W_{2t} - W_t| \right)$$

(17)
$$\int_{B_1} |\nabla u^+|^2 \, dx - \int_{B_1} |\nabla u_t^+|^2 \, dx \ge \frac{CM^2}{\varphi \, (x_0)^2} \left| W_{\frac{t}{2}} \right|$$

moreover

(18)
$$\int_{B_1} f(x) \chi_{\{u_i>0\}} dx - \int_{B_1} f(x) \chi_{\{u>0\}} dx = \int_{W_t} f(x) dx$$

From (15), (16), (17), (18) and from minimality condition, we have:

$$0 \le -\frac{CM^2}{\varphi(x_0)^2} |W_{\frac{t}{2}}| + c\frac{\varphi(x_0)^2}{M^2} (|W_{2t} - W_t|) + \frac{C}{\varphi(x_0)} |W_t| + \int_{W_t} f(x) dx$$

Since W_t has positive density, we conclude that:

$$\frac{CM^{2}}{\varphi(x_{0})^{2}} - c\frac{\varphi(x_{0})^{2}}{M^{2}} \le \frac{C}{\varphi(x_{0})} + f(0).$$

and therefore $M \leq C_0$.

5. Regularity of the Free Boundary.

From the lipschitz continuity of u is now easy to show that the reduced boundary is a $C^{1,\frac{1}{2}}$ surface but for a set of zero s – dimensional Hausdorff measure for any s > n - 8. Precisely:

Lemma 10. Let (u, Ω^+) be a minimizer in B_1 . If f is bounded, then:

1.
$$\partial^* \Omega^+ \cap B_{\frac{1}{2}}$$
 is a $C^{1,\frac{1}{2}}$ ipersurface and
2. $H_s \left[\left(\partial \Omega^+ - \partial^* \Omega^+ \right) \cap B_{\frac{1}{2}} \right] = 0$ for every $s > n - 8$

Proof. Let $A \subset B_{\frac{1}{2}}$ and select Ω_1 such that $\Omega_1 \Delta \Omega_2 \subset B_r(x)$, $x \in A, r$ small. Let u_r be any perturbation of u inside $B_r(x)$ with the same Lipschitz constant L and such that the pair (u_r, Ω_1^+) is admissible. Then $F(u, \Omega^+) \leq F(u_r, \Omega_1^+)$, which forces

$$Per\left(\Omega^+, B_r(x)\right) - Per\left(\Omega_1^+, B_r(x)\right) \le \left(b + cL^2\right)r^n$$

Therefore $\partial^* \Omega^+$ is an almost minimal surface and the conclusion follows from [2] or [8].

From Lemma 11 $\Gamma^* = \partial^* \Omega^+ \cap B_{\frac{1}{2}}$ is locally described by the graph of a $C^{1,1/2}$ function. To obtain further regularity, we show that on Γ^* the free boundary relation

(19)
$$|\nabla u^+|^2 - |\nabla u^-|^2 - f(x) = k(\Gamma^*)$$

is satisfied in the viscosity sense according to the following definition.

Definition 3. A surface S given be the graph of a continuous function $x_1 = h(x')$, defined in an open set $U \subset \Re^{n-1}$, is a weak subsolution (respectively, supersolution) of the equation:

$$k\left(S\right)=g,$$

g continuous on S, if, for every surface S_P , graph of a quadratic polynomial $x_1 = P(x')$, and

$$k(S_P) \leq g$$
 (respectively, \geq)

then P - h, cannot we have a local minimum (respectively maximum) in U. S is a weak solution of k = g if it is both a weak-sub- and a supersolution.

Lemma 11. Let (u, Ω^+) be a minimizer in B_1 , and f continuous. Then Γ^* is a weak solution of the free boundary equation (19).

Proof. We show that Γ^* is a weak subsolution (in a similar way one can prove that it is also a supersolution). Assuming the contrary. Let S_P be the graph of a quadratic polynomial touching Γ^* from the Ω^+ side, so that P - h has a minimum at $x_0 \in \Gamma^*$ and $k(S_P) \leq g$ where $g(x) = |\nabla u^+|^2 - |\nabla u^-|^2 - f(x)$. By a rotation, translation and rescaling we suppose that:

- a) In B_1 the free boundary is given by the graph of a function $x_1 = h(x')$, with h(0) = 0, $\nabla h(0) = 0$.
- b) By the Hopf maximum principle, at the free bondary, u has a linear behavior

We put

$$H_{t} = \{ P(x') - t < x_{1} < P(x') + t \} \qquad \Omega_{t}^{+} = \Omega^{+} \cup H_{t},$$
$$\Omega_{t}^{-} = B_{1} - \overline{\Omega}_{t}^{+}, \qquad W_{t} = \Omega^{-} \cap \{ x_{1} > P(x') - t \}$$

Let w_t^+ and w_t^- be, respectively, the harmonic extention of u^+ in $\Omega_t^+ = \Omega^+ \cup H_t$ and of u^- in $\Omega_t^- = B_1 - \overline{\Omega}_t^+$:

$$\begin{cases} \Delta w_t^+ = 0 & \text{in } \Omega_t^+ \\ w_t^+ = u^+ & \text{su } \partial B_1 \\ w_t^+ = 0 & \text{su } \partial \Omega_t^+ \cap B_1 \end{cases} \qquad \begin{cases} \Delta w_t^- = 0 & \text{in } \Omega_t^- \\ w_t^- = u^- & \text{su } \partial B_1 \\ w_t^- = 0 & \text{su } \partial \Omega_t^- \cap B_1 \end{cases}$$

Define:

$$u_t = \begin{cases} w_t^+ & \text{in } & \Omega_t^+ \\ -w_t^- & \text{in } & \Omega_t^- \end{cases}$$

The pair (u_t, Ω_t^+) is admissible and:

$$F\left(u_{t},\Omega_{t}^{+}\right)\geq F\left(u,\Omega^{+}\right)$$

We compute the variation of the various terms in the functional F. From [4],

(20)
$$\int_{B_1} |\nabla u_t^+|^2 \, dx - \int_{B_1} |\nabla u^+|^2 \, dx \le -\int_{W_t} |\nabla u_t^+|^2 \, dx$$

$$(21) \int_{B_1} \left| \nabla u^- \right|^2 dx - \int_{B_1} \left| \nabla u^-_t \right|^2 dx \le \int_{W_t} \left| \nabla u^- \right|^2 dx + (c(\varepsilon, t) + c(n)\varepsilon) |W_t|$$

with $c(\delta, t) \rightarrow 0$ while $t \rightarrow 0, \delta$ fixed.

Moreover, if d_t denotes the distance from $H_t^- = \{x_1 = P(x') - t\}$ we have

(22)
$$Per\left(\Omega_{t}^{+}\right) - Per\left(\Omega^{+}\right) \leq -\int_{W_{t}} \Delta d_{t}\left(x\right) \, dx$$

and finally

(23)
$$\int_{B_1} f(x) \chi_{\{u_*>0\}} dx - \int_{B_1} f(x) \chi_{\{u>0\}} dx = \int_{W_t} f(x) dx$$

Collecting (20), (21), (22), (23) from the minimality condition, we have:

$$\int_{W_t} \left| \nabla u_t^+ \right|^2 \, dx - \int_{W_t} \left| \nabla u^- \right|^2 \, dx \le$$
$$(c \, (\delta, t) + c \, (n) \, \delta) \, |W_t| + \int_{W_t} f \, (x) \, dx - \int_{W_t} \Delta d_t \, (x) \, dx$$

Dividing by $|W_t|$, and letting first $t \to 0$, and $\delta \to 0$, we have:

$$k(S_P)(0) - |\nabla u^+(0)|^2 + |\nabla u^-(0)|^2 + f(0) \ge 0.$$

This contradicts the assumption.

6. Analyticity of the free boundary.

We now prove that Γ^* is analytic surface, by using the theory of elliptic coercive systems (see [1]).

We recall briefly the partial hodograph and Legendre transformations. Let u(x) be a function defined in $\Omega \cup \Gamma$ and satisfying on Γ the conditions

$$\partial_n^p u = 0 \qquad \partial_n^{p+1} u \neq 0$$

We suppose that $\partial_n u > 0$ if p = 0 and $\partial_n^2 u < 0$ if p = 1 (see [7]). The transformation defined by

(24)
$$\begin{cases} y_{\alpha} = x_{\alpha} & \alpha = 1, \dots, n-1 \\ y_{n} = u(x) \end{cases}$$

is called a *zeroth order (partial) hodograph transformation*. The associated "partial Legendre transform" (which defines the inverse mapping) is:

(25)
$$\begin{cases} x_{\alpha} = y_{\alpha} & \alpha = 1, \dots, n-1 \\ x_{n} = \psi(y) & p = 0 \end{cases}$$

Let us compute the derivatives of u in terms of derivatives of ψ . We have:

(26)
$$\psi_{\alpha} = -\frac{u_{\alpha}}{u_n} \qquad \psi_n = \frac{1}{u_n}$$

Also, from (26),

(27)
$$\frac{\partial}{\partial x_{\alpha}} = \partial_{\alpha} - \frac{\psi_{\alpha}}{\psi_{n}} \partial_{n} \qquad \frac{\partial}{\partial x_{n}} = \frac{1}{\psi_{n}} \partial_{n}$$

Moreover, we introduce the *reflection* mapping (from $\Omega \cup \Gamma$ to a neighborhood $\Omega^- \cup \Gamma$ of 0 on the opposite site of Γ)

(28)
$$\begin{cases} x_{\alpha} = y_{\alpha} & \alpha = 1, \dots, n-1 \\ x_{n} = \psi(x) - Cy_{n} & p = 0 \end{cases}$$

where *C* is any constant larger than ψ_n .

For the reflection we have:

(29)
$$\frac{\partial}{\partial x_{\alpha}} = \partial_{\alpha} - \frac{\psi_{\alpha}}{\psi_n - C} \partial_n \qquad \frac{\partial}{\partial x_n} = \frac{1}{\psi_n - C} \partial_n$$

Note that given a function u(x) defined in Ω^- , we can pull it back to a function $\phi(y)$ defined in Ω by the rule $\phi(y) = u(x)$, where x and y are related by (28).

The proof of part *b*) in theorem 4, follows from the following lemma where Ω , Γ and Ω^- are as above.

Lemma 12. Let $\Gamma = \partial \Omega \cap B_1$ be an (n-1)-dimensional C^{∞} manifold, with $0 \in \Gamma$. Suppose f analytic on Γ and $u \in C^2(\Omega \cup \Gamma) \cap C^2(\Omega^- \cup \Gamma)$ satisfies:

(30)
$$\begin{cases} \Delta u = 0 & \text{in } \Omega \cup \Omega^{-} \\ u = 0 & \text{on } \Gamma \\ |\nabla u^{+}|^{2} - |\nabla u^{-}|^{2} - f(x) = k(\Gamma^{*}) & \text{on } \Gamma \end{cases}$$

Then Γ is analyitc.

Proof. Assume e_n is the normal unit vector to Γ at 0. We apply our zeroth order hodograph transform (24) - (25):

$$y = (x_1, x_2, \dots, x_{n-1}, u) = (x', u)$$
$$u_n (0) > 0$$
$$x_n = \psi$$

Since $x_n = \psi(y_1, \dots, y_{n-1}, 0)$ parametrizes Γ , we have:

$$v = \frac{(-\psi_1, ..., -\psi_{n-1}, 1)}{\sqrt{1 + \sum_{\alpha < n} \psi_{\alpha}^2}} \quad u_v^+ = \frac{1}{\psi_n} \sqrt{1 + \sum_{\alpha < n} \psi_{\alpha}^2}$$
$$u_v^- = \frac{\phi_n}{(\psi_n - C)} \sqrt{1 + \sum_{\alpha < n} \psi_{\alpha}^2}.$$

The mean curvature is

$$k = \frac{1}{n-1} \sum \frac{\left(\left(1 + \sum_{\alpha < n} \psi_{\alpha}^{2}\right)\delta_{\alpha\beta} - \psi_{\alpha}\psi_{\beta}\right)\psi_{\alpha\beta}}{\left(1 + \sum_{\alpha < n} \psi_{\alpha}^{2}\right)^{\frac{3}{2}}}$$

therefore:

$$(u_v^+)^2 - (u_v^-)^2 = \left(\frac{1}{\psi_n^2} - \frac{\phi_n^2}{(\psi_n - C)^2}\right) \left(1 + \sum_{\alpha < n} \psi_\alpha^2\right)$$

From (24), the sistem (30) becomes:

$$\begin{pmatrix} -\frac{1}{\psi_n^3} \left(1 + \sum_{\alpha < n} \psi_\alpha^2\right) \psi_{nn} - \frac{1}{\psi_n} \sum_{\alpha < n} \psi_{\alpha\alpha} + \frac{2}{\psi_n^2} \sum_{\alpha < n} \psi_\alpha \psi_{\alpha n} = 0 \text{ in } U^+ = y \left(\Omega^+\right) \\ \frac{1}{\psi_n - C} \left(\frac{\phi_n}{\psi_n - C}\right)_n + \sum_{\alpha < n} \left(\left(\phi_\alpha - \frac{\psi_\alpha \phi_n}{\psi_n - C}\right)_\alpha - \frac{\psi_\alpha}{\psi_n - C} \left(\phi_\alpha - \frac{\psi_\alpha \phi_n}{\psi_n - C}\right)_n\right) = 0 \\ \text{in } U^- = y \left(\Omega^-\right) \\ \left(\frac{1}{\psi_n^2} - \frac{\phi_n^2}{(\psi_n - C)^2}\right) \left(1 + \sum_{\alpha < n} \psi_\alpha^2\right) - \widetilde{f}\left(y', \psi\right) = \frac{1}{n-1} \sum \frac{\left(\left(1 + \sum_{\alpha < n} \psi_\alpha^2\right)\delta_{\alpha\beta} - \psi_\alpha \psi_\beta\right)\psi_{\alpha\beta}}{\left(1 + \sum_{\alpha < n} \psi_\alpha^2\right)^{\frac{3}{2}}} \\ \text{on } S = y \left(\Gamma\right) \end{cases}$$

146

We linearize the problem, with respect to the variable ψ . Note that by our choice of coordinates, we have

$$\psi_n(0) = \frac{1}{u_n(0)} > 0 \qquad \psi_\alpha(0) = 0 \qquad \alpha < n$$

and putting:

$$\beta = u_v^+(0) = \frac{1}{\psi_n(0)} \qquad \gamma = u_v^-(0) = \frac{\phi_n(0)}{\psi_n(0) - C}$$

we obtain

$$\begin{cases} \beta^2 \overline{\psi}_{nn} + \sum \overline{\psi}_{\alpha\alpha} = 0 & \text{in } U^+ \\ \frac{1}{A^2} \overline{\phi}_{nn} + \sum \overline{\phi}_{\alpha\alpha} - \gamma \left(\frac{1}{A^2} \overline{\psi}_{nn} + \sum \overline{\psi}_{\alpha\alpha}\right) = 0 & \text{in } U^- \\ \sum_{\alpha < n} \overline{\psi}_{\alpha\alpha} = 0 & \overline{\phi} = 0 & \text{on } S \end{cases}$$

where $\overline{\psi}$ and $\overline{\phi}$ are, respectively, the increments of ψ and ϕ .

The sistem is elliptic and coercive (see [7]) and the boundary conditions are equivalent to $\overline{\psi} = 0$ and $\overline{\phi} = 0$. Hence Γ is analytic.

REFERENCES

- [1] S. Agmon A. Douglis L. Nirenberg, *Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II*,, Comm. Pure Appl. Math., 12 (1959), pp. 623–727; 17 (1964), pp. 35–92.
- [2] F.J. Jr. Almgren, *Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints*, Mem. Amer. Math. Soc., 4 (1976), n. 165.
- [3] H.W. Alt L.A. Caffarelli A. Friedman, *Variational problems with two phases* and their free boundaries, Trans. Amer. Math. Soc., 282 2 (1984), pp. 431–461.
- [4] I. Athanasopoulos L.A. Caffarelli C. Kenig S. Salsa, An Area-Dirichlet Integral Minimization Problem, Comm. on Pure and Applied Mathematics, 54 (2001), pp. 479–499.
- [5] L.A. Caffarelli X. Cabrè, *Fully nonlinear elliptic equations*, American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, R. I., 1995.
- [6] E. Giusti, *Minimal Surfaces and Functions of Bounded Variation*, Birckhauser, 1984.

ROBERTO ARGIOLAS

- [7] D. Kinderlehrer L. Nirenberg J. Spruck, *Regularity in elliptic free boundary problems*, *I*, Journal d'Analyse Mathematique, 34 (1978).
- [8] I. Tamanini, Regularity results for almost minimal oriented hypersurface in \Re^n , Quaderni del Dipartimento di Matematica, Università di Lecce 1 (1994).

Università di Cagliari Dipartimento di Matematica Viale Merello 92–94 09123 Cagliari (ITALY) e-mail: roberarg@unica.it

148