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A TWO-PHASE VARIATIONAL PROBLEM
WITH CURVATURE

ROBERTO ARGIOLAS

In this paper we consider a two phases variational problem related to
the following functional: F(u,2) = fDl v ul?dx + Area{u = 0} +
f p S () X@w>0y dx. In particular we obtain results about the smoothness of
the free boundary {u = 0}.

1. Introduction.

In [4] the authors consider a free boundary problem arising from the mini-
mization of a Dirichlet-area integral related to the Ginzburg-Landau functional.
They show in particular the smoothness of the free boundary. A question that
could be of some interest in fluiddynamics, and constitues a natural continuation
of that paper, is to examine the effect of a volume (gravity) integral. Accord-
ingly, in this paper we consider the following variational problem.

Given a smooth domain D C 9" and smooth boundary data g on 0D, we
look for a function v € H'(D) with vjyp = &, that minimizes the functional

(D F (v, Q) =/ |vvl* dx + Area {v = 0} —I—/ S () xso0y dx
D D

that is, the Dirichlet integral of v, plus the area of the level surface I' = {v = 0},
plus a volume integral with density f on the positive phase .
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Heuristically, a minimizer u is harmonic in its positive and negative region
while on its zero level set (the free boundary) it satisfies the equation

2) Vut | = |Vu P = f = k(D)

where k (I') denotes the mean curvature of I".

If we assume that f is bounded, the key point in proving the smoothness
of the free boundary is to prove that u is Lipschitz and that k (I") is bounded in
a weak (viscosity) sense (see section 4). The proofs of this part parallel those
of the corresponding theorems in [4], so that we sketch them pointing out the
differences.

This allows one to use the theory of almost minimal surfaces (see [8])
to deduce that actually the reduced part I'* of T is locally a graph of a C'*
function, for any 0 < o < 1, that satisfies (2) in viscosity sense. Further
regularity of f implies more regularity of I'* and, in particular, f (real) analytic
implies that I'* is an analytic surface (section 5).

2. Existence of minimizers and main result.
Let D be a bounded, smooth domain in %" and g € H' (D).

Definition 1. The pair (2, v) is admissible if Q2 is a set of finite perimeter in
D,ve H' (D), v—ge€H] (D) and

v loenp>0 V|oenp<0 a.e.
We recall that
Per (2, D) = sup{f divpdx : peCé (Q‘R") Jp ()] < 1} < 0.
Q

For convenience we denote Per (2) = Per (2, D) .
Our problem is to minimize the functional

F(U,Q):/ |vvl? dx + Per (Q)+/ f (%) Xs0y dx
D D

among all admissible pairs (v, €2) .

Proposition 1. If f € L' (D), there exists a pair (u, Q) that minimizes F.
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Proof. Let {(un, 2,,)} be a minimizing sequence, that is, (u,,, 2,) is an
admissible pair and

F (uy, Q,) — inf F (v, Q) m — 400

Passing to a subsequence, there exists a pair (u, £2) such that:

X, — Xla strongly in L'(D)
Up = U weakly in H'(D)
Uk Xlgpmep — UXlanp ae.inD
ukX\Qf"mD > UX|qenp a.e.in D
Then it follows that
Ulgrp = 0 Ulgenp = 0 a.e.in D,

hence (u, 2) is admissible.
By the lower semicontinuity of ¥ we have

inf F(v, Q) < F(u, Q) < liminf F(u,,, Q) = inf F(v, Q),
m—0oQ

therefore inf F (v, Q) = F(u, 2) , thatis (u#, 2) is a minimizer. [l

We call I'(1) = 02N D the free boundary. Our purpose if to show optimal
regularity for u and I'(u).
The main results are summarized in the following theorems.

Theorem 2. Let (u, Q) be a minimizer in the unit ball By = B;(0), with
0el(m). If f € L*°(By) then, in Bl/z N
a) u is Lipschitz continuous ;

b) the curvature k(I'(u)) is bounded in the viscosity sense

Corollary 3. The reduced part T'*(u) of the free boundary is (locally) a graph
of a C"* function, for any 0 < a < 1.

Theorem 4. If f € C™P(B,),0 < B < 1, then, in B\ ; the reduced part ' (u)
of the free boundary is (locally) a graph of a C"™*>P function; if f is (real)
analytic, then the reduced part I'*(u) of the free boundary is analytic.

In particular, the free boundary relation
IVu P —|Vu™ | = f = k(")

holds in classical sense.
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3. Holder continuity.

The first step in the proof of theorem 2 is to show that u is %—Hélder
continuous and that © has positive uniform density at every point of the free

boundary. An important role is played by the quantities

vut|
I* :/B, NG dx.

Notice that if we set u, (y) = %u (ry) ,wehave I, (u) =rl (u,) and (see [4])

(uj[)2 <1 (ui) .

Therefore, in order to prove that u € C 1, using the Monotonicity Formula (see
[3]), it’s enough to show that

3) I (uF) < crllullz~ .
Also notice that if (u, 2) is a minimizer of F' in B; and
Q ={y:ry=x,xeQ},

then (u,, Q,) is a minimizer of »"~! F, and therefore of F, in B;.
For an admissible pair (v, 2), we define Q™ = By — Q. We have:

Theorem 3. Let (u, 2) be minimizer in By and f € L*°(By). Then u is lok:
Holder — continuous in 31E and

2

u <c(n, ul|pe
Il ”c%<31) < c(n 1 flloo) Null s,

and, for every x €U (u) , if r < é,

B, (1) N Q*| = o (n, 1 flloo) 7"

+

Moreover, u™ are harmonic in their positivity set.

We now recall the notion of harmonic replacement.
Let K a measurable subset of D and a function g € H' (D). We say that g
is supported in K if g =0 a.ein D — K. Define

S = {g 1 g€ H' (D), g{supported in K}

a closed convex set in H! (D) .
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Definition 2. The function hg is the harmonic replacement of f € H' (D) in D
(i) ho €S,
(ii) ho — f e H' (D),
(iii) ho minimizes the Dirichlet integral in S N {f + HO1 (D)}.

The main properties of harmonic replacements are summarized in the
following two lemmas (see [4]):

Lemma 6. The harmonic replacement hg is unique, and if f is nonnegative,
then hy is nonnegative and subharmonic; in particular it can be defined every-
where in D as a u.s.c. function by limit of solid averanges. Also, in the sense of
measures,

A (ho)* = 2 |Vhol*

Lemma 7. Let hy be the harmonic replacement of f > 0 in D. Assume By C D
and ho (0) = 0. Then

c(n) [ |Vhol?
|n—2

“) sup (ho)® < — dx

Bi—g)r S B, |x
forany0 <s <1land0 <r <1, and

2
(5) / Viol” < c(n)r_"/ (ho)? dx
B,

-2
lx]" By, —B,

for0 <r < 41_1'

Let now (u, 2) be a minimizer. Then

(a) ut = max{0, u} is supported in QN D and u~ = max{—u, 0} is supported
in Q¢ N D, moreover u™ and u~ are harmonic replacement of u,

(b) ut and u~ are subharmonic,

(c) at any point x of Lebesgue differentiability of the free boundary, u* and
u~ vanish; moreover, the monotonicity formula and the estimates (4) and
(5) hold in a sufficiently small ball centered at x for u™ and u~,

d A (ui)2 =2 \Vuiiz hold in the sense of measures.

For an admissible pair (v, 2), we define Q™ = B; — [N

Proof. of Theorem 2. Sketch. Consider 1. By rescaling, we may suppose
r = 1. For 0 < h < 1 we perturb the free boundary defining

Q, =Q UB, Q. = Q\Bi,
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The new free boundary is:
M =[QNoB;_,]U[T N(B\Bi_s)]

Let u, be the harmonic extention of #~ in €2, that is:

u, =u-  sud

{Au;:O in Q_

Let
Uy =sup u in By s

and let G be such that:

G=1  sudB .

{AGZO in Ry, :Bl—% — Bi_,
G=0 su 8Bl_h

We now define a perturbation u, of u as follows:

—u, in  Q
uy, = { min{u™, U,G} in QFNR,
ut in Qf — R,

The couple (u,, Q) is admissible and

F(uy, QF) = F (u, Q).

*

We compute the variation of the various terms in the functional F'.
Since 2~ C Q_ we have:

(6) \Vu;\z dx < \Vu_iz dx.
B, B,
Moreover
7 / \Vu [} dx < / |Vut|? dx + U™
B, B

From the properties of the perimeter,

(8) Per () — Per (%) < H,—y (0B1_, N Q") — Per (QF, Bi_y).
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Moreover (b = || fll.)
)

/f(x) Xiu,>0) dx _/f(x)X{u>0}dx =- / fx)dx <b|Q*N B,
B, By

QtNB_,
From (6), (7), (8), (9) and minimality condition, we conclude that
(10) —b|QT N Bi_y|+ Per (QF, Bi_y) < Hyy (3B1-n NQT) + cUR™!
Let now pg = % and ¢ < }—P we define

Pmt1 = Pm — 27"

Put:

k)

Ly =1} and V.= Q"N (B,, — B,,.)
we show the following inequality:
11 Lns1 < C" 1, V.
In fact, from Lemma 7, we have

Lyt < C22sup (u*)* V,y < C24" 1,V < C1' 1y Vi

B/
Pm

where p, = ppi1 + 27D,
Letp > 0, be a positive number with p,,+; < p < p,, . From isoperimetric
inequality we have:

b | N By + )| N BT < Hooy (0B1_, 0 QY) + UL

therefore

12 N BT < (1. b) (Huot (0B1_y N Q%) + cURRT) .

In particular, from (11), we conclude that
Vi) T <1 () (Hor (0B, N QT) +C')
Integrating with respect to p over the interval (pm+1, pm) , we get:

(Vini1) < €2 (n) CF (Vi + L) 77
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From (11) we have
(12) Vit + Lnyt < 2CF (I + Vi) o1

As consequence (12) there exists a constant 6 such that if Vo4 Iy < § < 1, then
Vi + 1, = 0, when m — oo. But that is no possible because p,, = po > 0.
Hence, we have:

V() + I() > 4.

In particular, put Iy < 8y = %, we have

NS IS ]

<VO<’Q+DB%’.

If 0 < p < 1 then the conclusion follows from the scaling properties of the
minimizers.

We recall the following Lemma (see [4]):

Lemma 8. a)IfIf“Il_ < A . Then

IT <c(n, A, Iy
8

IA

c(n,A).

ool—

b) If I < A*. Then
Q"N B[ = C(n, AF) >0.

We are now ready to prove Theorem 5.

Proof. From the Monotonicity Formula, for r < %,
- <ert Null oo By
By rescaling, for the function u, (y) = ru (ry) , we have
I ) 1] () < cr? IIMIIiOO(B])
For Lemma 8 we deduce that:

If_ () <C ”u”%oo(gl) ) Il_ (w,) <C ”u”%w(B])
2 2

Recalling (5) (with h = % ) and Lemma 8, we conclude that u € C 3,
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4. Lipschitz Continuity of a minimizer.
We now show the following theorem:

Theorem 9. Let (u, Q+) be a minimizer in By and f € L*° (By). Then u is
lipschitz continuous on BIE.
Proof. Let ¢ be a cutoff function,0 < ¢ <1, ¢ =1 in B%, ¢ = 0 outside B%.
For ¢ > 0, define ¥ = [u — ¢]" and let M be the smallest constant such that
Md (x) = 9 (x) ¢ (x) for each x € B, where d (x) = dist (x, " (un)) .

Suppose xg is a point such that Md (xy) = ¥ (x9) ¢ (x¢) and that d (xo) =
dist (xg, yo) with yg € I'. By a rotation and translation we may suppose that
Yo =0 andxo = d(X())el.

Since ¥ is smooth around x,, we have

(V@) (x0),x —x0) P (x —xp)

d (x) = d (xo) + 7 +— +O(

lx — xof
)
where P is a quadratic polynomial satisfyting AP = A (J¢) at x = xo and

D1 P <0. Estimating AP as in [4] we have, AP > —% In particular on the
hyperplane x; = d (xo)

(13) Ay P(x) > M
'P(x - .
! ¢ (x0)
which implies
(14) d(x)>d(x)+13(—X/)—|—0 M
> 0 i v

Therefore the free boundary, near the origin, is below the surface

S=1{(x1.x)ix = y(x) = —’3(7” + o(%)}

If now put & (§) (x) the mean curvature of S, from (13), we have:

1 ! !
k(S)(x) = —mmp(x) <ot o(|x ).
Near the origin, for x; > w(x/) ,
N M
ut(x) = xy+o(|x]).

@ (x0)
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while from the Monotonicity Formula,

sup u~ < c@r

B, (y)

for small r and y on the free boundary.

We perform a perturbation of the free boundary by means of the family of

surfaces
) t}
St = {(xl,x/) DX = 1//,+<x/) = l//(x/) —i—t}.

where ¢t > 0, o9 > 0 and both small. Denote H, the lens-shaped domain
between S;" and S, that is

Ho= v (v) <x < ut(x)].

’

X

_ N (N ’ Qo
S, :{(xl,x).xl_l//t (x)_l//(x)—i—(p(xo)

and

Put
Qf ="' UH, @ =B-8, W=a nla>y (¥)]

Let w, be the harmonic extension of u™ in H,, thatis

w, — Aw, =0 in H,
"7 1w, =ut ondH,

We now define a perturbation u, of u as follows:

ut in Q- H,
P in H,
"7 ] —min{u, c22q,} in Wa — W,
—u- in the rest of B,

The couple (ut, Q;r) is admissible and

Fu, Q)= F (u, Q).
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We estimate the variation of the various terms in the functional F. From the
property of the perimeter,

Per (Q;“) = Per (Q+, B, — Ft) + H, (St_ N Q_)

while

Per (Q+) > Per (Q+, Ht) + Per (Q+, B, — ﬁ,) .
Asin [2]:
(15) Per () — Per (Q") < 4

— ¢ (%)

2
(16) / Vu, |* dx —/ |Vu |* dx < c‘pj(;‘;) (W2 — Wil)
B] B]

cCM?
(17 / ‘VMJ“‘Z dx —f ‘Vuﬂz dx > 5 )WL
B, B, % (x0) :
moreover
(18) S ) Xwsopdx — | f (%) Xusopdx = | f(x) dx
B] B] WI

From (15), (16), (17), (18) and from minimality condition, we have:

CM2 2
0<— 2’WL|+C(P()C0)
@ (x0)” °

Wt_Wt
72 (I1W> |)+(p(xo)

Wil + | f(x)dx
W,

Since W, has positive density, we conclude that:

cMm? @ (x0)? C
— 0).
o e S 1O

and therefore M < C,.
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5. Regularity of the Free Boundary.

From the lipschitz continuity of u is now easy to show that the reduced
. 1 . .
boundary is a C!2 surface but for a set of zero s— dimensional Hausdorff
measure for any s > n — 8. Precisely:

Lemma 10. Let (u, Q+) be a minimizer in By. If [ is bounded, then:

1. 9*Q* N B, isa C'"2 ipersurface and
2. Hs[ (0QT —9*Q") N B%} =0 forevery s >n —8

Proof. Let A C B% and select €2; such that Q{AQ, C B, (x) ,x € A, r small.
Let u, be any perturbation of u inside B, (x) with the same Lipschitz constant
L and such that the pair (u,, ) is admissible. Then F (u, Q%) < F (u,, Q)
, which forces

Per (@, B, (x)) — Per (F, B, (x)) < (b +cL?)r".

Therefore 9*Q™ is an almost minimal surface and the conclusion follows from
[2] or [8].

From Lemma 11 I'* = 3*Q*" N By is locally described by the graph of

a C'!/2 function. To obtain further regularity, we show that on I'* the free
boundary relation

(19) IVt P — | Vu | = f (x) =k (T%)

is satisfied in the viscosity sense according to the following definition.

Definition 3. A surface S given be the graph of a continuous function x| =
h(x/) , defined in an open set U C R"!, is a weak subsolution (respectively,
supersolution) of the equation:

k(S) =g,

g continuous on S, if, for every surface Sp, graph of a quadratic
polynomial x| = P(x/) , and

k(Sp) < g (respectively, >)

then P — h, cannot we have a local minimum (respectively maximum) in U. S
is a weak solution of k = g if it is both a weak-sub- and a supersolution.
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Lemma 11. Let (u, Q+) be a minimizer in By, and f continuous. Then I'* is
a weak solution of the free boundary equation (19).

Proof. We show that ['* is a weak subsolution (in a similar way one can prove
that it is also a supersolution). Assuming the contrary. Let Sp be the graph
of a quadratic polinomial touching I'* from the Q" side, so that P — h has a
minimum at xo € ['* and k (Sp) < g where g (x) = \Vuﬂz — |Vu_|2 — f (x).
By a rotation, translation and rescaling we suppose that:

a) In B; the free boundary is given by the graph of a function x; = & (x) ,
with £ (0) =0, Vi (0) = 0.
b) By the Hopf maximum principle, at the free bondary, u# has a linear

behavior
We put
Ht:{P(x/)—t<x1 <P(x/)—|—t} Q:r:QJrUH,,
Q =B -9, W= n{xn>P@K)-1
Let w;" and w, be, respectively, the harmonic extention of u™ in Q;F = QTUH,
and of u™in Q = By — 5::
Awr =0 in Qf Aw; =0 in €
wh=ut su 9B w, =u- su 9dB
wh =0 su QN B w, =0 su 9 N B
Define
wit in QF
u; = _ . _
—wy; in

The pair (u,, Q;r) is admissible and:

F(u, Q) > F (u,Q")

We compute the variation of the various terms in the functional F. From [4],

(20)

/ \Vuﬂz dx —/ \Vuﬂz dx < —/ \Vuﬂz dx
B, B, W

1) /;w—;z dx—/|Vu;|2 dx 5/|Vu—|2 dx+(c (&, 1) + ¢ (n) &) W]
B, By W,
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with ¢ (§,¢) — 0 while r — 0, § fixed.

Moreover, if d; denotes the distance from H,” = {x1 = P(x') — t}

we have

(22) Pw@ﬁ)—Pa@f)f—/1A¢@%h
Wi

and finally

23) F () Aty dx — / F () tuey dx = f £ () dx
By B, 4

Collecting (20), (21), (22), (23) from the minimality condition, we have:

/W, Vit dx _fm V| dx <

(c(6,t)+c(n)d)|W,| + fx) dx—f Ad; (x) dx.
W,

t

Dividing by |W;|, and letting first t — 0, and § — 0, we have:
k(Sp) (0) — |[Vut O + |[Vu~ )] + £ (0) = 0.

This contradicts the assumption.

6. Analyticity of the free boundary.

We now prove that I'* is analytic surface, by using the theory of elliptic
coercive systems (see [1]).

We recall briefly the partial hodograph and Legendre transformations. Let
u (x) be a function defined in 2 U I and satisfying on I" the conditions

u=0  FTu£0

We suppose that d,u > 0 if p = 0 and afu < 0if p = 1 (see [7]). The
transformation defined by

Yo = Xqu Olzl,...,n—l
24
9 {MZM@)



A TWO-PHASE VARIATIONAL PROBLEM ... 145

is called a zeroth order (partial) hodograph transformation. The associated
“partial Legendre transform” (which defines the inverse mapping) is:

Xog = Yo a=1,...,n—1
2 {xnzw(w p=0

Let us compute the derivatives of u in terms of derivatives of yr. We have:

u 1
(26) Yy =My =L
Uy Uy
Also, from (26),
0 0 1
(27) n. 8a - &an = _8n
3xa 1//;1 8xn l//i’l

Moreover, we introduce the reflection mapping (from QU T to a neighborhood
Q™ UT of 0 on the opposite site of ')

Xog = Yo a=1,...,n—1
28 ¢
(28) {xnzw(w—Cyn p=0

where C is any constant larger than ,,.

For the reflection we have:

Yo d 1

ad
(29) =0y — 3 =
wn - C axn wn - C

Xy

On

Note that given a function u (x) defined in 27, we can pull it back to a function
¢ (y) defined in 2 by the rule ¢ (y) = u (x), where x and y are related by (28).

The proof of part b) in theorem 4, follows from the following lemma where
Q, ' and 2~ are as above.

Lemma 12. Let I' = Q2 N By be an (n — 1)— dimensional C*™ manifold, with
0 eT. Suppose f analyticon T and u e C* (Q UT) N C*HQ~ UT) satisfies:

Au=20 in QUK
(30) u=20 on T
Vut|P = |Vu=|" = f(x) =k(T*) on T

Then T is analyitc.
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Proof. Assume e, is the normal unit vector to I" at 0. We apply our zeroth
order hodograph transform (24) - (25):

y = (xl’x2,~~-,xn—],u): (x’,u)
u, (0) >0

Xyp =Y

Since x, = ¥ (y1, ...Yn—1, 0) parametrizes I', we have:

— (_1//1""’ _1//71—171) Mj 1 1+ZI//2
/1+Zv/§ l//n a<n
e
u, -0 1+;w2

(14 X ¥2)80p — VaVp) Vap

1
k = Z a<n -
1+ 2 va)

a<n

The mean curvature is

therefore:

@ - 6 = (- ) (1 )

a<n

From (24), the sistem (30) becomes:

(1+2w)wnn—ﬁzwaﬁ%zwmnzo inUt =y (@)

a<n Vi a<n

¢<n)+z« b = 2, — e (ba = 325),) = O
inU- =y(Q)
(147 ¥2) up—va s ) s

L2 p) I+ 2 L — 3

on S =y ()




A TWO-PHASE VARIATIONAL PROBLEM ... 147

We linearize the problem, with respect to the variable 1. Note that by our choice
of coordinates, we have

1/fn(0)=un(0)>0 Yo (0) =0 a<n
and putting:
1 - & (0)
== + 0 = - = 0 =
P=wO=0"0% r=%O=3"0_c
we obtain
ﬂzgnn + Z_Waa =0 _ . in Ut
%¢nni_ Z¢(x(x - )’_(%1//,,,, + Z l//aa) == 0 in U—
Z(x<nv/(x(x =0 ¢ =0 on S

where ¥ and ¢ are, respectively, the increments of ¥ and ¢ .
The sistem 11 elliptic arEl coercive (see [7]) and the boundary conditions
are equivalent to ¥ = 0 and ¢ = 0. Hence I is analytic. O
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