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FIXED POINT THEOREMS FOR ASYMPTOTICALLY

CONTRACTIVE MAPPINGS

TOMONARI SUZUKI

In this short paper, we prove �xed point theorems for nonexpansive
mappings whose domains are unbounded subsets of Banach spaces. These
theorems are generalizations of Penot�s result in [4].

1. Introduction.

Let C be a closed convex subset of a Banach space E , and let T be a
nonexpansive mapping on C , i.e., �Tx − T y� ≤ �x − y� for all x , y ∈C . We
know that T has a �xed point in the case that E is uniformly convex and C
is bounded; see Browder [1] and Göhde [2]. Kirk [3] extended these result to
the case that C is weakly compact and has normal structure. We note that such
domain C of T is a bounded subset. Recently, Penot proved the following in
[4]: T has a �xed point in the case that E is uniformly convex, C is unbounded,
and T is asymptotically contractive, i.e.,

lim sup
y∈C

�y�→∞

�T x0 − T y�

�x0 − y�
< 1
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for some x0 ∈C .
In this paper, we prove �xed point theorems for nonexpansive mappings

whose domains are unbounded subsets of Banach spaces. These theorems are
generalizations of Penot�s result in [4].

2. Conditions for Mappings.

In this section, let T be a nonexpansive mapping on a nonempty closed
convex subset C of a Banach space E . We discuss the following conditions for
T :

(C1) There exists r ∈ (0, 1) such that for every x1 ∈ C , there exists η > 0
satisfying

�T x1 − T y� ≤ r �x1 − y�

for all y ∈C with �y� > η;
(C2) there exist r ∈ (0, 1), x0 ∈C and η > 0 such that

�T x0 − T y� ≤ r �x0 − y�

for all y ∈C with �y� > η;
(C3) for each λ > 0 and for each x1 ∈C , there exists η > 0 satisfying

�T x1 − T y� ≤ �x1 − y� − λ

for all y ∈C with �y� > η;
(C4) there exists x0 ∈C for each λ > 0, there exists η > 0 satisfying

�T x0 − T y� ≤ �x0 − y� − λ

for all y ∈C with �y� > η;
(C5) there exists λ > 0 such that for each x1 ∈C , there exists η > 0 satisfying

�T x1 − T y� ≤ �x1 − y� − λ

for all y ∈C with �y� > η;
(C6) there exist x0 ∈C and η > 0 such that

�Tx0 − T y� ≤ �x0 − y� − �T x0 − x0�

for all y ∈C with �y� > η.

We obtain the following.
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Proposition 1. (C1) ⇔ (C2) ⇒ (C3) ⇔ (C4) ⇒ (C5) ⇒ (C6) holds.

Proof. It is obvious that (C1) ⇒ (C2), (C3) ⇒ (C4), and (C3) ⇒ (C5). We
�rst prove (C2) ⇒ (C1). We assume (C2), i.e., there exist r � ∈ (0, 1), x0 ∈ C
and η� > 0 such that �T x0 − T y� ≤ r � �x0 − y� for all y ∈C with �y� > η�.
Put r = (1+ r �)/2. We let x1 ∈C be �xed and put

η = max

�

η�, �x1� +
�x1 − x0� + �T x1 − T x0�

r − r �

�

.

Then for y ∈C with �y� > η, we have

�x1 − x0� + �T x1 − T x0� ≤ (r − r �) (η − �x1�)
≤ (r − r �) (�y� − �x1�)
≤ (r − r �) �x1 − y�

and hence

�T x1 − T y� ≤ �T x1 − T x0� + �T x0 − T y�
≤ �T x1 − T x0� + r ��x0 − y�
≤ �T x1 − T x0� + r ��x1 − x0� + r ��x1 − y�
≤ �T x1 − T x0� + �x1 − x0� + r ��x1 − y�
≤ r�x1 − y�.

This implies (C1). We can similarly prove (C2) ⇒ (C4) and (C4) ⇒ (C3). We
�nally show (C5) ⇒ (C6). We assume (C5), i.e., there exists λ > 0 such that
for each x1 ∈C , there exists η > 0 satisfying �T x1 − T y� ≤ �x1 − y� − λ for
all y ∈C with �y� > η. We put

d = inf
x∈C

�T x − x�

and assume d > 0. Then there exists x1 ∈C such that �T x1 − x1� < d + λ/2.
For such x1, we choose η > 0 satisfying �T x1 − T y� ≤ �x1 − y� − λ for all
y ∈C with �y� > η. For each t ∈ (0, 1), since a mapping x �→ (1− t)T x + t x1
on C is contractive, there exists yt ∈C such that

yt = (1− t)T yt + t x1.

Since
d ≤ �T yt − yt� = t�T yt − x1�

≤ t
�
�T yt − T x1� + �T x1 − x1�

�

≤ t
�
�yt − x1� + �T x1 − x1�

�

≤ t
�
�yt� + �x1� + �Tx1 − x1�

�
,
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we have �yt� > η for some small t > 0. So, we have

�x1 − yt� + �yt − T yt� = �x1 − T yt�
≤ �x1 − T x1� + �T x1 − T yt�
≤ �x1 − T x1� + �x1 − yt� − λ

≤ d + λ/2+ �x1 − yt� − λ

and hence
�yt − T yt� ≤ d − λ/2.

This contradicts to the de�nition of d . Therefore we obtain d = 0. We can
choose x0 ∈C with �T x0 − x0� < λ. Then there exists η > 0 such that

�T x0 − T y� ≤ �x0 − y� − η

< �x0 − y� − �T x0 − x0�

for all y ∈C with �y� > η. This completes the proof. �

We can easily prove the following.

Proposition 2. Suppose that C is unbounded. Then the followingare equivalent
to (C1) and (C2):

(i) T is asymptotically contractive;
(ii) for every x1 ∈C,

lim sup
y∈C

�y�→∞

�T x1 − T y�

�x1 − y�
< 1

holds.

And the following are equivalent to (C3) and (C4):

(i) there exists x0 ∈C such that

lim
y∈C

�y�→∞

�
�T x0 − T y�− �x0 − y�

�
= −∞;

(ii) for every x1 ∈C,

lim
y∈C

�y�→∞

�
�T x1 − T y�− �x1 − y�

�
= −∞

holds.
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3. Suf�cient and Necessary Condition.

In this section, we discuss about the suf�cient and necessary condition for
nonexpansive mappings having a �xed point.

Lemma 1. Let C be a closed convex subset of a Banach space E and let T be
a nonexpansive mapping on C. Suppose that (C6), i.e., there exist x0 ∈ C and
η > 0 such that

�T x0 − T y� ≤ �x0 − y� − �Tx0 − x0�

for all y ∈ C with �y� > η. Then there exists ρ > 0 such that T (D) ⊂ D,
where

D = {y ∈C : �y − x0� ≤ ρ}.

Proof. We put
ρ = η + �x0� + �Tx0 − x0� > 0.

Then in the case of y ∈ D and �y� ≤ η, we have

�T y − x0� ≤ �T y − T x0� + �T x0 − x0�
≤ �y − x0� + �T x0 − x0�
≤ �y� + �x0� + �T x0 − x0�
≤ η + �x0� + �T x0 − x0�

= ρ.

In the case of y ∈ D and �y� > η, we have

�T y − x0� ≤ �T y − T x0� + �T x0 − x0�
≤ �y − x0�
≤ ρ.

Therefore we obtain the desired result. �

A closed convex subset C of a Banach space E is said to have the
�xed point property for nonexpansive mappings (FPP, for short) if for every
bounded closed convex subset D of C , every nonexpansive mapping on D has
a �xed point. Similarly, C is said to have the weak �xed point property for
nonexpansive mappings (WFPP, for short) if for every weakly compact convex
subset D of C , every nonexpansive mapping on D has a �xed point. Let
E∗ be the dual of E . Then a closed convex subset C of E∗ is said to have
the weak∗ �xed point property (with respect to E ) for nonexpansive mappings
(W∗FPP, for short) if for every weakly∗ compact convex subset D of C , every
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nonexpansivemapping on D has a �xed point. So, by the results of Browder [1]
and Göhde [2], every uniformly convex Banach space has FPP. Also, by Kirk�s
result [3], every Banach space with normal structure has WFPP. We recall that
a closed convex subset C of a Banach space E is locally weakly compact if and
only if every bounded closed convex subset of C is weakly compact. So, every
closed convex subset of a re�exive Banach space is locally weakly compact.

Using Lemma 1, we obtain the following propositions.

Proposition 3. Let C be a closed convex subset of a Banach space E . Assume
that C has FPP. Let T be a nonexpansive mapping on C. Then the following
are equivalent:

(i) T has a �xed point in C;

(ii) T satis�es (C6).

Proof. We �rst show (ii) implies (i). We suppose that (ii), i.e., there exist x0 ∈C
and η > 0 such that

�T x0 − T y� ≤ �x0 − y� − �Tx0 − x0�

for all y ∈ C with �y� > η. By Lemma 1, there exists ρ > 0 such that
T (D) ⊂ D, where

D = {x ∈C : �x − x0� ≤ ρ}.

So, by the assumption, there exists z0 ∈ D such that T z0 = z0 . Conversely,
let us prove that (i) implies (ii). Let x0 be a �xed point of T . Since T is
nonexpansive, we have

�T x0 − T y� ≤ �x0 − y� = �x0 − y� − �Tx0 − x0�

for all y ∈C . This implies (C6). This completes the proof. �

Proposition 4. Let C be a closed convex subset of a Banach space E . Assume
that C is locally weakly compact and has WFPP. Let T be a nonexpansive
mapping on C. Then T has a �xed point in C if and only if T satis�es (C6).

Proposition 5. Let E be a Banach space and let E∗ be the dual of E . Let C
be a weakly∗ closed convex subset of E∗ . Assume that C has W∗FPP. Let T be
a nonexpansive mapping on C. Then T has a �xed point in C if and only if T
satis�es (C6).

As a direct consequence, we have the following.
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Theorem 1. Let E be a Banach space and let E∗ be the dual of E . Assume
that either of the following:

(i) C is a closed convex subset of E and has FPP.
(ii) C is a closed convex subset of E , which is locally weakly compact and

has WFPP.
(iii) C is A weakly∗ closed convex subset of E∗ and has W∗FPP.

Let T be a nonexpansive mapping on C. Suppose that C is unbounded, and T
is asymptotically contractive. Then T has a �xed point.

Remark. (ii) implies (i).

Theorem 2. (Penot [4]) Let C be a unbounded closed convex subset of a
uniformly convex Banach space E . Let T be a nonexpansive mapping on C.
Suppose that T is asymptotically contractive. Then T has a �xed point.

4. Examples.

In Proposition 1, we prove (C1) ⇒ (C3) ⇒ (C5) ⇒ (C6). In this section,
we give three examples which show that the inverse of the above implications
do not hold in general.

Example 1. Put E = R and C = [1, ∞). De�ne a nonexpansive mapping T
on C by

T x = x − log(x )

for all x ∈C . Then T satis�es (C3) and does not satisfy (C1).

Proof. Since

lim
y∈C

�y�→∞

�T1− T y�

�1− y�
= lim

y→∞

y − log(y)− 1

y − 1
= 1,

T does not satisfy (C1) by Proposition 2. Since

lim
y∈C

�y�→∞

�
�T1− T y�− �1− y�

�
= lim

y→∞

��
y − log(y)− 1

�
−

�
y − 1

��

= lim
y→∞

− log(y) = −∞,

T satis�es (C3) by Proposition 2. �



156 TOMONARI SUZUKI

Example 2. Let E = c0 be the Banach space consisting of all real sequences
converging to 0 with supremum norm. De�ne a closed convex subset C of E
by

C = {x ∈ E : 0 ≤ x (n) ≤ n for all n ∈ N}.

De�ne a nonexpansive mapping T on C by

(T x )(n) = max{0, x (n)− 2}

for n ∈ N. Then T satis�es (5) and does not satisfy (3).

Proof. Put λ = 3 and x1 = 0 ∈ C . It is clear that T x1 = 0. Fix η > 0 and
choose n ∈ N with η < n and 2 ≤ n. Put y ∈C by

y(k) =

�
n, if k = n,

0, if k �= n.

Then �y� = n > η and

(T y)(k) =

�
n − 2, if k = n,

0, if k �= n.

So, we have

�T x1 − T y� = �T y� = n − 2 > n − λ = �y� − λ = �x1 − y� − λ.

Therefore T does not satisfy (C3). We next put λ = 1 and �x x1 ∈ C . Then
there exists n1 ∈ N such that 0 ≤ x1(n) < 1 for all n ∈ N with n ≥ n1. By the
de�nition of T , (T x1)(n) = 0 for n ∈ N with n ≥ n1. Put η = n1 + 5, and
�x y ∈C with �y� > η. We choose n2 ∈ N with y(n2) = �y�. Then from the
de�nition of C , we have

n1 < n1 + 5 = η < �y� = y(n2) ≤ n2.

It is clear that �y� = y(n2) > 2. For n ∈ N with n < n1, we have

| (T x1)(n)− (T y)(n) | ≤ n < n1 < n1 + 3 = η − 2.

On the other hand, for n ∈ N with n ≥ n1, we have

| (T x1)(n) − (T y)(n) | = | (T y)(n) | =

= max{y(n)− 2, 0} ≤ �y� − 2 = y(n2) − 2.



FIXED POINT THEOREMS FOR ASYMPTOTICALLY. . . 157

Since n1 < n2, η − 2 < �y� − 2 = y(n2)− 2, and

| (T x1)(n2)− (T y)(n2) | = max{y(n2) − 2, 0} = y(n2)− 2,

we have
�T x1 − T y� = y(n2)− 2.

So, we obtain
�T x1 − T y� = y(n2)− 2

≤ y(n2) − x1(n2)− λ

≤ �x1 − y� − λ.

This implies (C5). This completes the proof. �

Exmple 3. Put E = R and C = [1, ∞). De�ne a nonexpansive mapping T on
C by

T x = x

for all x ∈C . Then T satis�es (C6) and does not satisfy (C5).

Proof. Since

�T x − T y� = �x − y� = �x − y� − �x − T x�

for all x , y ∈C , T satis�es (C6). And from the �rst equality, T does not satisfy
(C5). �
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