FIXED POINT THEOREMS FOR ASYMPTOTICALLY CONTRACTIVE MAPPINGS

TOMONARI SUZUKI

In this short paper, we prove fixed point theorems for nonexpansive mappings whose domains are unbounded subsets of Banach spaces. These theorems are generalizations of Penot's result in [4].

1. Introduction.

Let C be a closed convex subset of a Banach space E, and let T be a *nonexpansive mapping* on C, i.e., $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. We know that T has a fixed point in the case that E is uniformly convex and C is bounded; see Browder [1] and Göhde [2]. Kirk [3] extended these result to the case that C is weakly compact and has normal structure. We note that such domain C of T is a bounded subset. Recently, Penot proved the following in [4]: T has a fixed point in the case that E is uniformly convex, C is unbounded, and T is *asymptotically contractive*, i.e.,

$$\limsup_{y \in C \\ \|y\| \to \infty} \frac{\|Tx_0 - Ty\|}{\|x_0 - y\|} < 1$$

Entrato in redazione il 28 Maggio 2004.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47H10 - 47H09.

Key words and phrases: Nonexpansive mapping, Asymptotically contractive mapping, Fixed point.

for some $x_0 \in C$.

In this paper, we prove fixed point theorems for nonexpansive mappings whose domains are unbounded subsets of Banach spaces. These theorems are generalizations of Penot's result in [4].

2. Conditions for Mappings.

In this section, let T be a nonexpansive mapping on a nonempty closed convex subset C of a Banach space E. We discuss the following conditions for T:

(C1) There exists $r \in (0, 1)$ such that for every $x_1 \in C$, there exists $\eta > 0$ satisfying

$$||Tx_1 - Ty|| \le r ||x_1 - y||$$

for all $y \in C$ with $||y|| > \eta$;

(C2) there exist $r \in (0, 1)$, $x_0 \in C$ and $\eta > 0$ such that

$$||Tx_0 - Ty|| \le r ||x_0 - y||$$

for all $y \in C$ with $||y|| > \eta$;

(C3) for each $\lambda > 0$ and for each $x_1 \in C$, there exists $\eta > 0$ satisfying

$$||Tx_1 - Ty|| \le ||x_1 - y|| - \lambda$$

for all $y \in C$ with $||y|| > \eta$;

(C4) there exists $x_0 \in C$ for each $\lambda > 0$, there exists $\eta > 0$ satisfying

$$||Tx_0 - Ty|| \le ||x_0 - y|| - \lambda$$

for all $y \in C$ with $||y|| > \eta$;

(C5) there exists $\lambda > 0$ such that for each $x_1 \in C$, there exists $\eta > 0$ satisfying

$$||Tx_1 - Ty|| \le ||x_1 - y|| - \lambda$$

for all $y \in C$ with $||y|| > \eta$;

(C6) there exist $x_0 \in C$ and $\eta > 0$ such that

$$||Tx_0 - Ty|| \le ||x_0 - y|| - ||Tx_0 - x_0||$$

for all $y \in C$ with $||y|| > \eta$.

We obtain the following.

Proposition 1. (*C*1) \Leftrightarrow (*C*2) \Rightarrow (*C*3) \Leftrightarrow (*C*4) \Rightarrow (*C*5) \Rightarrow (*C*6) *holds*.

Proof. It is obvious that $(C1) \Rightarrow (C2)$, $(C3) \Rightarrow (C4)$, and $(C3) \Rightarrow (C5)$. We first prove $(C2) \Rightarrow (C1)$. We assume (C2), i.e., there exist $r' \in (0, 1)$, $x_0 \in C$ and $\eta' > 0$ such that $||Tx_0 - Ty|| \le r' ||x_0 - y||$ for all $y \in C$ with $||y|| > \eta'$. Put r = (1 + r')/2. We let $x_1 \in C$ be fixed and put

$$\eta = \max\left\{\eta', \|x_1\| + \frac{\|x_1 - x_0\| + \|Tx_1 - Tx_0\|}{r - r'}\right\}.$$

Then for $y \in C$ with $||y|| > \eta$, we have

$$||x_1 - x_0|| + ||Tx_1 - Tx_0|| \le (r - r') (\eta - ||x_1||) \le (r - r') (||y|| - ||x_1||) \le (r - r') ||x_1 - y||$$

and hence

$$\begin{aligned} \|Tx_1 - Ty\| &\leq \|Tx_1 - Tx_0\| + \|Tx_0 - Ty\| \\ &\leq \|Tx_1 - Tx_0\| + r'\|x_0 - y\| \\ &\leq \|Tx_1 - Tx_0\| + r'\|x_1 - x_0\| + r'\|x_1 - y\| \\ &\leq \|Tx_1 - Tx_0\| + \|x_1 - x_0\| + r'\|x_1 - y\| \\ &\leq r\|x_1 - y\|. \end{aligned}$$

This implies (C1). We can similarly prove (C2) \Rightarrow (C4) and (C4) \Rightarrow (C3). We finally show (C5) \Rightarrow (C6). We assume (C5), i.e., there exists $\lambda > 0$ such that for each $x_1 \in C$, there exists $\eta > 0$ satisfying $||Tx_1 - Ty|| \le ||x_1 - y|| - \lambda$ for all $y \in C$ with $||y|| > \eta$. We put

$$d = \inf_{x \in C} \|Tx - x\|$$

and assume d > 0. Then there exists $x_1 \in C$ such that $||Tx_1 - x_1|| < d + \lambda/2$. For such x_1 , we choose $\eta > 0$ satisfying $||Tx_1 - Ty|| \le ||x_1 - y|| - \lambda$ for all $y \in C$ with $||y|| > \eta$. For each $t \in (0, 1)$, since a mapping $x \mapsto (1 - t)Tx + tx_1$ on *C* is contractive, there exists $y_t \in C$ such that

$$y_t = (1-t)Ty_t + tx_1.$$

Since

$$d \le ||Ty_t - y_t|| = t ||Ty_t - x_1|| \le t (||Ty_t - Tx_1|| + ||Tx_1 - x_1||) \le t (||y_t - x_1|| + ||Tx_1 - x_1||) \le t (||y_t|| + ||x_1|| + ||Tx_1 - x_1||),$$

we have $||y_t|| > \eta$ for some small t > 0. So, we have

$$||x_1 - y_t|| + ||y_t - Ty_t|| = ||x_1 - Ty_t||
\leq ||x_1 - Tx_1|| + ||Tx_1 - Ty_t||
\leq ||x_1 - Tx_1|| + ||x_1 - y_t|| - \lambda
\leq d + \lambda/2 + ||x_1 - y_t|| - \lambda$$

and hence

$$\|y_t - Ty_t\| \le d - \lambda/2$$

This contradicts to the definition of *d*. Therefore we obtain d = 0. We can choose $x_0 \in C$ with $||Tx_0 - x_0|| < \lambda$. Then there exists $\eta > 0$ such that

$$||Tx_0 - Ty|| \le ||x_0 - y|| - \eta < ||x_0 - y|| - ||Tx_0 - x_0||$$

for all $y \in C$ with $||y|| > \eta$. This completes the proof. \Box

We can easily prove the following.

Proposition 2. Suppose that C is unbounded. Then the following are equivalent to (C1) and (C2):

- (i) *T* is asymptotically contractive;
- (ii) for every $x_1 \in C$,

$$\limsup_{\substack{y \in C \\ \|y\| \to \infty}} \frac{\|Tx_1 - Ty\|}{\|x_1 - y\|} < 1$$

holds.

And the following are equivalent to (C3) and (C4):

(i) there exists $x_0 \in C$ such that

$$\lim_{y \in C \\ \|y\| \to \infty} \left(\|T x_0 - T y\| - \|x_0 - y\| \right) = -\infty;$$

(ii) for every $x_1 \in C$,

$$\lim_{y \in C \\ \|y\| \to \infty} \left(\|Tx_1 - Ty\| - \|x_1 - y\| \right) = -\infty$$

holds.

3. Sufficient and Necessary Condition.

In this section, we discuss about the sufficient and necessary condition for nonexpansive mappings having a fixed point.

Lemma 1. Let C be a closed convex subset of a Banach space E and let T be a nonexpansive mapping on C. Suppose that (C6), i.e., there exist $x_0 \in C$ and $\eta > 0$ such that

$$||Tx_0 - Ty|| \le ||x_0 - y|| - ||Tx_0 - x_0||$$

for all $y \in C$ with $||y|| > \eta$. Then there exists $\rho > 0$ such that $T(D) \subset D$, where

$$D = \{ y \in C : \| y - x_0 \| \le \rho \}.$$

Proof. We put

$$\rho = \eta + \|x_0\| + \|Tx_0 - x_0\| > 0.$$

Then in the case of $y \in D$ and $||y|| \le \eta$, we have

$$||Ty - x_0|| \le ||Ty - Tx_0|| + ||Tx_0 - x_0|| \le ||y - x_0|| + ||Tx_0 - x_0|| \le ||y|| + ||x_0|| + ||Tx_0 - x_0|| \le \eta + ||x_0|| + ||Tx_0 - x_0|| = \rho.$$

In the case of $y \in D$ and $||y|| > \eta$, we have

$$\|Ty - x_0\| \le \|Ty - Tx_0\| + \|Tx_0 - x_0\| \\ \le \|y - x_0\| \\ \le \rho.$$

Therefore we obtain the desired result. \Box

A closed convex subset C of a Banach space E is said to have the *fixed point property* for nonexpansive mappings (*FPP*, for short) if for every bounded closed convex subset D of C, every nonexpansive mapping on D has a fixed point. Similarly, C is said to have the *weak fixed point property* for nonexpansive mappings (*WFPP*, for short) if for every weakly compact convex subset D of C, every nonexpansive mapping on D has a fixed point. Let E^* be the dual of E. Then a closed convex subset C of E^* is said to have the *weak* fixed point property* (with respect to E) for nonexpansive mappings (*W*FPP*, for short) if for every weakly* compact convex subset D of C, every

nonexpansive mapping on D has a fixed point. So, by the results of Browder [1] and Göhde [2], every uniformly convex Banach space has FPP. Also, by Kirk's result [3], every Banach space with normal structure has WFPP. We recall that a closed convex subset C of a Banach space E is *locally weakly compact* if and only if every bounded closed convex subset of C is weakly compact. So, every closed convex subset of a reflexive Banach space is locally weakly compact.

Using Lemma 1, we obtain the following propositions.

Proposition 3. Let C be a closed convex subset of a Banach space E. Assume that C has FPP. Let T be a nonexpansive mapping on C. Then the following are equivalent:

- (i) *T* has a fixed point in *C*;
- (ii) T satisfies (C6).

Proof. We first show (ii) implies (i). We suppose that (ii), i.e., there exist $x_0 \in C$ and $\eta > 0$ such that

$$||Tx_0 - Ty|| \le ||x_0 - y|| - ||Tx_0 - x_0||$$

for all $y \in C$ with $||y|| > \eta$. By Lemma 1, there exists $\rho > 0$ such that $T(D) \subset D$, where

$$D = \{ x \in C : \|x - x_0\| \le \rho \}.$$

So, by the assumption, there exists $z_0 \in D$ such that $Tz_0 = z_0$. Conversely, let us prove that (i) implies (ii). Let x_0 be a fixed point of T. Since T is nonexpansive, we have

$$||Tx_0 - Ty|| \le ||x_0 - y|| = ||x_0 - y|| - ||Tx_0 - x_0||$$

for all $y \in C$. This implies (C6). This completes the proof.

Proposition 4. Let C be a closed convex subset of a Banach space E. Assume that C is locally weakly compact and has WFPP. Let T be a nonexpansive mapping on C. Then T has a fixed point in C if and only if T satisfies (C6).

Proposition 5. Let E be a Banach space and let E^* be the dual of E. Let C be a weakly^{*} closed convex subset of E^* . Assume that C has W^*FPP . Let T be a nonexpansive mapping on C. Then T has a fixed point in C if and only if T satisfies (C6).

As a direct consequence, we have the following.

Theorem 1. Let *E* be a Banach space and let E^* be the dual of *E*. Assume that either of the following:

- (i) *C* is a closed convex subset of *E* and has FPP.
- (ii) *C* is a closed convex subset of *E*, which is locally weakly compact and has WFPP.
- (iii) C is A weakly^{*} closed convex subset of E^* and has W^*FPP .

Let T be a nonexpansive mapping on C. Suppose that C is unbounded, and T is asymptotically contractive. Then T has a fixed point.

Remark. (ii) implies (i).

Theorem 2. (Penot [4]) Let C be a unbounded closed convex subset of a uniformly convex Banach space E. Let T be a nonexpansive mapping on C. Suppose that T is asymptotically contractive. Then T has a fixed point.

4. Examples.

In Proposition 1, we prove $(C1) \Rightarrow (C3) \Rightarrow (C5) \Rightarrow (C6)$. In this section, we give three examples which show that the inverse of the above implications do not hold in general.

Example 1. Put $E = \mathbb{R}$ and $C = [1, \infty)$. Define a nonexpansive mapping T on C by

$$Tx = x - \log(x)$$

for all $x \in C$. Then T satisfies (C3) and does not satisfy (C1).

Proof. Since

$$\lim_{y \in C \\ \|y\| \to \infty} \frac{\|T1 - Ty\|}{\|1 - y\|} = \lim_{y \to \infty} \frac{y - \log(y) - 1}{y - 1} = 1,$$

T does not satisfy (C1) by Proposition 2. Since

$$\lim_{y \in C \ \|y\| \to \infty} \left(\|T1 - Ty\| - \|1 - y\| \right) = \lim_{y \to \infty} \left(\left(y - \log(y) - 1 \right) - \left(y - 1 \right) \right)$$

$$=\lim_{y\to\infty}-\log(y)=-\infty,$$

T satisfies (C3) by Proposition 2. \Box

Example 2. Let $E = c_0$ be the Banach space consisting of all real sequences converging to 0 with supremum norm. Define a closed convex subset C of E by

$$C = \{x \in E : 0 \le x(n) \le n \text{ for all } n \in \mathbb{N}\}.$$

Define a nonexpansive mapping T on C by

$$(Tx)(n) = \max\{0, x(n) - 2\}$$

for $n \in \mathbb{N}$. Then *T* satisfies (5) and does not satisfy (3).

Proof. Put $\lambda = 3$ and $x_1 = 0 \in C$. It is clear that $Tx_1 = 0$. Fix $\eta > 0$ and choose $n \in \mathbb{N}$ with $\eta < n$ and $2 \le n$. Put $y \in C$ by

$$y(k) = \begin{cases} n, & \text{if } k = n, \\ 0, & \text{if } k \neq n. \end{cases}$$

Then $||y|| = n > \eta$ and

$$(Ty)(k) = \begin{cases} n-2, & \text{if } k = n, \\ 0, & \text{if } k \neq n. \end{cases}$$

So, we have

$$||Tx_1 - Ty|| = ||Ty|| = n - 2 > n - \lambda = ||y|| - \lambda = ||x_1 - y|| - \lambda.$$

Therefore *T* does not satisfy (C3). We next put $\lambda = 1$ and fix $x_1 \in C$. Then there exists $n_1 \in \mathbb{N}$ such that $0 \le x_1(n) < 1$ for all $n \in \mathbb{N}$ with $n \ge n_1$. By the definition of *T*, $(Tx_1)(n) = 0$ for $n \in \mathbb{N}$ with $n \ge n_1$. Put $\eta = n_1 + 5$, and fix $y \in C$ with $||y|| > \eta$. We choose $n_2 \in N$ with $y(n_2) = ||y||$. Then from the definition of *C*, we have

$$n_1 < n_1 + 5 = \eta < ||y|| = y(n_2) \le n_2.$$

It is clear that $||y|| = y(n_2) > 2$. For $n \in \mathbb{N}$ with $n < n_1$, we have

$$|(Tx_1)(n) - (Ty)(n)| \le n < n_1 < n_1 + 3 = \eta - 2.$$

On the other hand, for $n \in \mathbb{N}$ with $n \ge n_1$, we have

$$|(Tx_1)(n) - (Ty)(n)| = |(Ty)(n)| =$$

= max{y(n) - 2, 0} $\le ||y|| - 2 = y(n_2) - 2.$

Since $n_1 < n_2$, $\eta - 2 < ||y|| - 2 = y(n_2) - 2$, and

$$|(Tx_1)(n_2) - (Ty)(n_2)| = \max\{y(n_2) - 2, 0\} = y(n_2) - 2,$$

we have

$$||Tx_1 - Ty|| = y(n_2) - 2.$$

So, we obtain

$$\|Tx_1 - Ty\| = y(n_2) - 2$$

$$\leq y(n_2) - x_1(n_2) - \lambda$$

$$\leq \|x_1 - y\| - \lambda.$$

his completes the proof. \Box

This implies (C5). This completes the proof.

Exmple 3. Put $E = \mathbb{R}$ and $C = [1, \infty)$. Define a nonexpansive mapping T on C by

Tx = x

for all $x \in C$. Then *T* satisfies (C6) and does not satisfy (C5). *Proof.* Since

$$||Tx - Ty|| = ||x - y|| = ||x - y|| - ||x - Tx||$$

for all $x, y \in C$, T satisfies (C6). And from the first equality, T does not satisfy (C5).

REFERENCES

- [1] F.E. Browder, *Nonexpansive nonlinear operators in a Banach space*, Proc. Nat. Acad. Sci. USA, 54 (1965), pp. 1041–1044.
- [2] D. Göhde, Zum Prinzip def kontraktiven Abbildung, Math. Nachr., 30 (1965), pp. 251–258.
- [3] W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), pp. 1004–1006.
- [4] J.P. Penot, A fixed-point theorem for asymptotically contractive mappings, Proc. Amer. Math. Soc., 131 (2003), pp. 2371–2377.

Department of Mathematics, Kyushu Institute of Technology 1-1, Sensuicho, Tobataku Kitakyushu 804-8550, (JAPAN) e-mail: suzuki-t@mns.kyutech.ac.jp