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FIXED POINTS
FOR NON-EXPANSIVE SET-VALUED MAPPINGS

JEAN SAINT RAYMOND

Let E be a Banach space and F : E ⇒ E be a 1-Lipschitz set-valued
mapping with closed convex non-empty values. We study the set of fixed
points Fix(F) = {x ∈ E : x ∈ F(x)} and provide in any space E with
dim(E) ≥ 2 an example of such a mapping F such that Fix(F) is not
connected.

1. Introduction

In this paper we are concerned with set-valued mappings from a Banach space
E into itself having closed convex values. We will consider only mappings F
which are 1-Lipschitz for the Hausdorff distance dH on the set F (E) of non-
empty closed subsets of E. Recall that, for A and B in F (E):

dH(A,B) = max
(
sup
x∈A

d(x,B),sup
y∈B

d(y,A)
)

so d(z,F(y))≤ ‖x− y‖ for all x,y ∈ E and z ∈ F(x).
For such a mapping F we will be essentially interested in the set Fix(F) =

{x ∈ E : x ∈ F(x)} of fixed points of F which is clearly closed in E. Of course
it can happen that Fix(F) = /0, for example if F(x) = {x+a} where a is a fixed
non-zero vector in E.
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The case of multivalued contraction mappings, i.e. the case where F is q-
Lipschitz for a q < 1 was extensively studied for long (see [2], [1], [3], [4]) and
many properties of structure or conservation for the set Fix(F) of fixed points
were shown. For example:

i. Fix(F) 6= /0 (even for non convex-valued mappings). ([2], [1])

ii. Fix(F) is an absolute retract, in particular it is path-connected. ([3])

iii. Fix(F) is not a singleton if all values F(x) have several points ([4] for the

case where q <
1
2

or E is a Hilbert space, [5] for the general case)

iv. Fix(F) is bounded if so are all values F(x) for x ∈ E (or even for only one
x ∈ E). ([5])

v. Fix(F) is compact if so are all values F(x) for x ∈ E.([5])

We shall show in this paper that most of these results disappear when the
Lipschitz constant q of F (which is < 1 if F is a contraction mapping) is only
assumed to be ≤ 1 and dim(E)≥ 2.

In the sequel we will call quasi-contraction any 1-Lipschitz set-valued map-
ping from E to E with (non-empty) closed convex values.

Clearly properties (iv) and (v) become false already in the trivial example
where E = R and F(x) = {x} since F(x) is then always single-valued, and a
fortiori compact and bounded though Fix(F) = R is unbounded. We provide in
section 4 an example of quasi-contraction in a Hilbert space for which property
(iii) does not hold. Concerning property (ii) and namely the connectedness of
the set of fixed points of a quasi-contraction, the main part of this paper consists
in proving that it does not hold in general.

After studying in section 2 the very simple case where E has dimension 1,
we look in section 3 at the case where F(x) is single-valued. It turns out that if
E is finite-dimensional we can prove that Fix(F) is connected but that this is no
more true for infinite-dimensional spaces.

The remainder of the paper is devoted to show that in every normed space
of dimension at least 2 one can construct a quasi-contraction having a non-
connected set of fixed points. In section 5 we provide such a construction for the
2-dimensional euclidean space, and generalize it to every 2-dimensional smooth
normed space in section 7. The general case is dealt in sections 6 and 7.

For any two points a and b in a normed space E we will denote by [a,b]⊂ E
the segment with endpoints a and b, it is the set {(1− t)a+ tb : t ∈ [0,1]}. The
following simple lemma will be of constant use troughout the paper.
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Lemma 1.1. Let E be a normed space, a, b, a′, b′ be points of E. Then

dH([a,b], [a′,b′])≤max(‖a−a′‖,‖b−b′‖) .

Proof. If w ∈ [a,b] we have w = ta+(1− t)b for some t ∈ [0,1] hence

d(w, [a′,b′])≤ d
(
ta+(1− t)b, ta′+(1− t)b′

)
= ‖t

(
(a−a′

)
+(1− t)

(
b−b′

)
‖

≤ t‖a−a′‖+(1− t)‖b−b′‖
≤max(‖a−a′‖,‖b−b′‖)

whence it follows that sup
w∈[a,b]

d(w, [a′,b′])≤max(‖a−a′‖,‖b−b′‖), hence that

dH([a,b], [a′,b′])≤max(‖a−a′‖,‖b−b′‖).

2. The case of dimension 1

Proposition 2.1. Let F be a quasi-contraction from R to R (the values of F are
closed intervals). Then Fix(F) is either empty or a closed interval. In particular
Fix(F) is connected.

Proof. Since F is a quasi-contraction, it is easy to see that there are two map-
pings a and b from R to R̄ = R∪{−∞,+∞} such that F(x) = R∩ [a(x),b(x)]
where a(x) = −∞ for all x or a(x) > −∞ for all x (and b(x) = +∞ for all x or
b(x)<+∞ for all x). If−∞< a(x)≤ a(y) we have d(a(x),F(y)) = |a(y)−a(x)|
hence dH(F(x),F(y)) ≥ |a(y)− a(x)| and similarly dH(F(x),F(y)) ≥ |b(y)−
b(x)| if b(x)<+∞. So by Lemma 1.1

dH(F(x),F(y)) = max(|a(x)−a(y)|, |b(x)−b(y)|)

whence it follows that both a and b are 1-Lipschitz or constantly infinite.
Suppose towards a contradiction that there exist x0,x′0 ∈ Fix(F), x′0 < x < x0

and x /∈ Fix(F). Then we have b(x) = b(x0) = +∞ or b(x0)≥ x0, hence

b(x)≥ b(x0)−|x− x0| ≥ x0− (x0− x) = x

Thus since x /∈ Fix(F) we necessarily get a(x) > x, so a(x) > −∞, and since
x′0 < x,

a(x′0)≥ a(x)−|x− x′0|> x− (x− x′0) = x′0

hence x′0 /∈ F(x0), a contradiction. This shows that Fix(F) is an interval.
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3. The case of functions

In this section we consider single-valued quasi-contractions F , which we iden-
tify with 1-Lipschitz functions f by F(x) = { f (x)}. More generally we will
study the case where H is a closed convex subset of the Banach space E and
f : H→ H is 1-Lipschitz.

Proposition 3.1. Let E be a strictly convex normed space, H ⊂ E be closed and
convex, f : H→ H be 1-Lipschitz. Then Fix(F) is convex, possibly empty.

Proof. Clearly, if H = E, a ∈ E is not zero and f is the translation x 7→ x+a, f
is an isometry and Fix( f ) = /0.

If f : H → H is 1-Lipschitz and u,v are two distinct points of Fix( f ) then
for all t ∈]0,1[ the points xt = tu+(1− t)v and yt = f (xt) satisfy

‖yt −u‖= ‖ f (xt)− f (u)‖ ≤ ‖xt −u‖= (1− t)‖u− v‖
‖yt − v‖= ‖ f (xt)− f (v)‖ ≤ ‖xt − v‖= t‖u− v‖

thus ‖u− v‖ ≤ ‖yt − u‖+ ‖yt − v‖ ≤ ‖u− v‖, whence yt ∈ [u,v] because E is
strictly convex, and yt − v = s(u− v) for some s ∈ [0,1]. Then since s‖u−
v‖ = ‖yt − v‖ = t‖u− v‖, we conclude that s = t and yt = xt , hence that xt ∈
Fix(F).

If E is not strictly convex, the previous result does not hold any more. For
example if E = R2 equipped with the norm u = (x,y) 7→ ‖u‖∞ = max(|x|, |y|),
the function f : (x,y) 7→ (x,sinx) is 1-Lipschitz: indeed

‖ f (x,y)− f (x′,y′)‖= max(|x−x′|, |sinx− sinx′|) = |x−x′| ≤ ‖(x,y)− (x′,y′)‖

and Fix( f ) = {(x,sinx) : x ∈ R} is connected, but not convex. So far it is un-
clear, even in a finite-dimensional space, whether a 1-Lipschitz mapping could
have a non-connected set of fixed points. Nevertheless we shall see later on, in
Theorems 3.3, 3.4 and Corollary 7.7 what really happens.

Lemma 3.2. Let H be a non-empty convex compact subset of a finite-dimensio-
nal space E and f : H → H be a 1-Lipschitz function. Then the set Fix( f ) is
compact connected and non-empty.

Proof. It follows readily from Brouwer’s theorem that Fix( f ) is non-empty.
And it is closed in H hence compact. For the connectedness we proceed by
induction on the dimension of E, or more precisely on the dimension δ (H)
of the linear subspace AH generated by H −H. If δ (H) = 1 then AH ≈ R is
strictly convex and it follows from Proposition 3.1 that Fix( f ) is convex, hence
connected.
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Assume that the statement of the lemma holds for all compact convex K such
that δ (K)< n, that H is a compact convex subset of E such that δ (H) = n and
that a0 and a1 are two distinct fixed points of the 1-Lipschitz function f : H→H.
By translation invariance we can and do assume that 0 ∈ H and H spans E.
Choose by Hahn-Banach’s theorem a linear functional ξ ∈ E∗ of norm 1 such
that 〈ξ ,a1−a0〉= ‖a1−a0‖.

For all t ∈ [0,1] consider the set

Ht = {x ∈ H : ‖x−a0‖ ≤ t‖a1−a0‖ and ‖x−a1‖ ≤ (1− t)‖a1−a0‖}

which is convex and compact. Then f (Ht)⊂Ht : indeed if x ∈Ht , y = f (x) ∈H
and {

‖y−a0‖= ‖ f (x)− f (a0)‖ ≤ ‖x−a0‖ ≤ t‖a1−a0‖
‖y−a1‖= ‖ f (x)− f (a1)‖ ≤ ‖x−a1‖ ≤ (1− t)‖a1−a0‖ .

Moreover for x ∈ Ht ,{
〈ξ ,x−a0〉 ≤ ‖ξ‖.‖x−a0‖ ≤ t‖a1−a0‖
〈ξ ,a1− x〉 ≤ ‖ξ‖.‖x−a1‖ ≤ (1− t)‖a1−a0‖

hence

0 = 〈ξ ,a1−a0〉−‖a1−a0‖= 〈ξ ,x−a0〉+ 〈ξ ,a1− x〉−‖a1−a0‖
=
(
〈ξ ,x−a0〉− t‖a1−a0‖

)
+
(
〈ξ ,a1− x〉− (1− t)‖a1−a0‖

)
and

0≤ t‖a1−a0‖−〈ξ ,x−a0〉=
(
〈ξ ,a1− x〉− (1− t)‖a1−a0‖

)
≤ 0

from what we deduce that

〈ξ ,x−a0〉= t‖a1−a0‖ and 〈ξ ,a1− x〉= (1− t)〉‖a1−a0‖ ,

hence that 〈ξ ,x〉= θ := 〈ξ ,a0〉+t‖a1−a0‖. Thus this shows that Ht is included
in the affine hyperplane Vθ = {x ∈ E : 〈ξ ,x〉= θ} for which δ (Vθ )< dim(E) =
n. It follows then from the induction hypothesis that Ht ∩Fix( f ) = Fix( f|Ht ) is
compact connected and non-empty.

Assume that Fix( f ) is not connected. So it would exist two disjoint compact
subsets A0 and A1 of H such that Fix( f )⊂ A0∪A1 and two points a0 and a1 with
ai ∈ Ai. For t ∈ [0,1], let Ht be the set intoduced above which corresponds to the
points a0, a1. Then, from what precedes, for all t ∈ [0,1], Fix( f|Ht ) ⊂ A0 ∪A1
(i ∈ {0,1}) and, by connectedness of Fix( f|Ht ), Fix( f|Ht )⊂ Ai for some i. Then
the sets Ti = {t ∈ [0,1] : Fix( f|Ht ) ⊂ Ai} form a partition of [0,1]. Moreover,
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note that 0 ∈ T0 and 1 ∈ T1. Thus, if we prove that T0 and T1 are also closed, we
will get a contradiction which will complete the proof of the connectedness of
Fix( f ).

Let (tn) be a sequence in T0 which converges to t∗; there exists for all n
a point xn ∈ A0 ∩Fix( fHtn

). Since H ∩B(a0,‖a1− a0‖) is compact and Htn ⊂
H ∩B(a0,‖a1− a0‖), up to passing to a subsequence we can assume that (xn)
converges to some point x∗ ∈ A0. We have

‖x∗−a0‖= lim
n
‖xn−a0‖ ≤ limsup

n
tn‖a1−a0‖= t∗‖a1−a0‖

and similarly ‖x∗−a1‖ ≤ (1− t)‖a1−a0‖.
Thus x∗ ∈ Ht∗ . Moreover ‖ f (x∗)− x∗‖ = lim‖ f (xn)− xn‖ = 0. It follows

that x∗ ∈ Fix( fHt∗ )∩A0, hence that Fix( fHt∗ )∩A0 6= /0 and that t∗ ∈ T0. By the
same argument one can show that T1 is closed. This completes the proof of the
connectedness of Fix( f ), hence this of Lemma 3.2.

Theorem 3.3. Let E be a normed finite-dimensional space, H ⊂ E be a closed
convex subset and f : H → H be a 1-Lipschitz function. Then the set of fixed
points of f is connected.

Proof. It is enough to consider the case where Fix( f ) is non-empty. Then let
a ∈ Fix( f ). For all integer n ≥ 1 the set Hn = {x ∈ H : ‖x− a‖ ≤ n} is com-
pact convex non-empty and stable under f . So it follows from Lemma 3.2 that
Fix( f|Hn)= Fix( f )∩Hn is connected and contains a. Then

⋃
n Fix( fHn)= Fix( f )

is connected.

We now show that for infinite-dimensional spaces E there is no particular
topological property of the sets Fix( f ) for 1-Lipschitz functions f : E → E.
Indeed :

Theorem 3.4. Let X be a complete metric space. Then there exist a Banach
space E and a 1-Lipschitz function f : E → E such that Fix( f ) is isometric to
X. Moreover is X is separable the space E can be chosen separable.

Proof. Remark first that since Fix( f ) is closed in E hence complete, the com-
pleteness of X is a necessary condition.

It is well-known that any metric space X can be isometrically embedded into
a Banach space. For example if a ∈ X and D is a dense subset of X the function
ψ : x 7→

(
d(x,y)− d(a,y)

)
y∈D

is an isometry from X to a subset of the space

`∞
D. And if X is separable, the space span(ψ(X)) is a separable Banach space.

Recall that c0 denotes the Banach space of all real sequences converging to
0 equipped with the norm : u = (xn) 7→ ‖u‖ = supn |xn| and denote 0 the null
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sequence in c0. Choose an isometric embedding j : X →W for some Banach
space W and define H = j(X) ⊂W and E = W × c0 equipped with the norm
(w,u) 7→max(‖w‖,‖u‖).

For w ∈W and u ∈ c0 define f (w,u) = (w,v) where v = (vn) ∈ c0 is defined
by

vn =

{
d(w,H) if n = 0
un−1 if n > 0

Claim 3.5. The function f is 1-Lipschitz and even an isometry.

Proof. We have

‖ f (w,u)− f (w′,u′)‖= max
(
‖w−w′‖, |d(w,H)−d(w′,H)|,sup

n≥1
|un−1−u′n−1|

)
= max

(
‖w−w′‖, |d(w,H)−d(w′,H)|,‖u−u′‖

)
= max

(
‖w−w′‖,‖u−u′‖

)
= ‖(w,u)− (w′,u′)‖

since |d(w,H)−d(w′,H)| ≤ ‖w−w′‖. �

Claim 3.6. Fix( f ) = H×{0}.

Proof. It is clear that if w ∈ H then f (w,0) = (w,0).
Conversely, if u = (xn) and (w,u) is a fixed point of f we have x0 = d(w,H)

and xn = xn−1 for all n≥ 1. Thus u is the constant sequence with value d(w,H),
which does not belong to c0 if d(w,H) 6= 0. So w ∈ H and u = 0. �

It follows from previous claim that the function x 7→ ( j(x),0) is an isometry
from X onto Fix( f ).

4. Uniqueness of fixed points

We provide in this section an example of a quasi-contraction F on a Hilbert
space H such that F(x) is a singleton for no x ∈ H but Fix(F) is a singleton.
And this shows that Property (iii) in the Introduction does not hold in general
for quasi-contractions.

Theorem 4.1. There exists a quasi-contraction F on a Hilbert space H such
that diam(F(x)) = 1 for all x ∈ H but Fix(F) is a singleton.

Proof. Let H be the Hilbert space `2, S : H → H be the isometric mapping
defined by x = (xn)n≥0 7→ y = (yn)n≥0 where y0 = 0 and yn = xn−1 for n > 0.
Let u = (un) ∈ H be the unit vector such that u0 = 1 and un = 0 for n > 0, and
0 be the null vector of H.



328 JEAN SAINT RAYMOND

For x ∈ H define F(x) as the segment [S(x),S(x)+ u] whose diameter is 1.
We claim that F is a quasi-contraction. Indeed by Lemma 1.1:

dH(F(y),F(x))≤max
(
‖S(y)−S(x)‖,‖(S(y)+u)− (S(x)+u)‖

)
= ‖S(y)−S(x)‖= ‖S(y− x)‖= ‖y− x‖ .

If x∗ = (x∗n) is a fixed point of F there exists some t ∈ [0,1] such that

x∗ = (1− t)S(x∗)+ t(S(x∗)+u) = S(x∗)+ tu

so x∗0 = tu0 = t and x∗n = x∗n−1 for n > 0. This implies that the sequence (xn)∈ `2

has to be constant with the value t, which is possible only with t = 0, and x∗ = 0.
And this shows that Fix(F) = {0} is a singleton.

5. The 2-dimensional euclidean space

The aim of this section is to construct a quasi-contraction on the 2-dimensional
euclidean space R2 whose set of fixed points is not connected. It follows from
Proposition 2.1 that such a construction cannot be achieved in a 1-dimensional
space, and from Proposition 3.1 that it is impossible with a single-valued quasi-
contraction.

Consider the points x0 = (−1,0) and x1 = (1,0) of the euclidean space R2

and the symmetry S : (u,v) 7→ (−u,v) of R2 exchanging x0 and x1. We want to
define two 1-Lipschitz mappings α and β from R2 to itself such that α(x0) = x0
and S◦β (z) = α◦S(z) for all z. In particular this implies β (x1) = S◦α(x0) =
S(x0) = x1. We define then the set-valued mapping F by F(z) = [α(z),β (z)],
which is clearly convex and closed.

Lemma 5.1. If the mapping α is 1-Lipschitz then F is a quasi-contraction.

Proof. Since S is an isometry it is clear that β = S◦α◦S is 1-Lipschitz too. Then
by Lemma 1.1, if z and z′ are in R2

dH(F(z),F(z′))≤max(‖α(z)−α(z′)‖,‖β (z)−β (z′)‖)≤ ‖z− z′‖ ,

the wanted inequality.

Fix ε ∈ ]0,1] and define the function ϕ : R→ R by

ϕ(t) =

{
ε if t ≤ 0
t + εe−t if t ≥ 0

Claim 5.2. The function ϕ is 1-Lipschitz and has no fixed point on R.
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Proof. It is immediately checked that ϕ is continuous, derivable on R \ {0},
that ϕ ′(t) = 0 for t < 0 and ϕ ′(t) = 1− εe−t ≥ 0 if t > 0. Since |ϕ ′(t)| ≤ 1
for t 6= 0, the function ϕ is 1-Lipschitz. It is non-decreasing with values in
[ε,+∞[ and if t∗ were a fixed point of ϕ we would have t∗ = ϕ(t∗)≥ ε > 0 and
t∗ = ϕ(t∗) = t∗+ εe−t∗ hence e−t∗ = 0, that is impossible. �

Define now the function α on X = {x0,x1}∪ ({0}×R) by
α(x0) = x0

α(x1) = (0,ε)

α(0,v) =
(
−1

2
,ϕ(v)

)
Lemma 5.3. It is possible to choose ε ∈ ]0,1] such that this function α be 1-
Lipschitz on X.

Proof. For v ∈R denote yv = (0,v) ∈ X . We have to prove that for some conve-
nient ε > 0:

i. ‖α(x0)−α(x1)‖2 ≤ ‖x0− x1‖2 = 4,

ii. ∀v ∈ R, ‖α(x0)−α(yv)‖2 ≤ ‖x0− yv‖2,

iii. ∀v ∈ R, ‖α(x1)−α(yv)‖2 ≤ ‖x1− yv‖2,

iv. ∀v,w ∈ R, ‖α(yv)−α(yw)‖ ≤ ‖yv− yw‖.

For (i) we must have 1+ ε2 ≤ 4, that is true since ε ≤ 1 <
√

3.

For (ii) we must have

(
−1+

1
2
)2

+ϕ(v)2 ≤ 1+ v2

it is
1
4
+ϕ(v)2 ≤ 1+ v2. And since ϕ(v)2 = ε2 if v≤ 0 and if v≥ 0 :

ϕ(v)2 = (v+ εe−v)2 = v2 + ε
2e−2v +2εve−v ≤ v2 + ε

2 +2ε sup
t≥0

te−t

= v2 + ε
2 +2e−1

ε ≤ v2 + ε
2 + ε

we must have
1
4
+ v2 + ε2 + ε ≤ 1+ v2, that holds as soon as ε2 + ε ≤ 3

4
, hence

whenever 0 < ε ≤ 1
2

.
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For (iii) we must have
(1

2
)2
+(ϕ(v)−ε)2 ≤ 1+v2. And since ϕ(v)≥ ε we

have (ϕ(v)− ε)2 ≤ ϕ(v)2. We have seen that if ε is chosen in ]0,
1
2
] then for all

v:
1
4
+ϕ(v)2 ≤ 1+ v2, so a fortiori

1
4
+(ϕ(v)− ε)2 ≤ 1+ v2.

Finally for (iv), we have to show that

‖α(yv)−α(yw)‖= |ϕ(v)−ϕ(w)| ≤ ‖yv− yw‖= |v−w|

but this follows immediately from Claim 5.2.

Taking ε =
1
2

completes the proof of Lemma 5.3.

Using Kirszbraun-Valentine’s Theorem, we can extend the function α into
a 1-Lipschitz function (still denoted by α) from R2 to R2, and then define β =
S◦α◦S, wich is 1-Lipschitz too.

Theorem 5.4. The set-valued mapping F : z 7→ [α(z),β (z)] is 1-Lipschitz, but
the set Fix(F) of its fixed points is not connected.

Proof. That F be 1-Lipschitz follows from Lemma 5.1. Since x0 = α(x0) ∈
F(x0) we have x0 ∈ Fix(F) and since x1 = β (x1) ∈ F(x1) we have x1 ∈ Fix(F).
Hence {x0,x1} ⊂ Fix(F).

We now show that ({0} ×R)∩ Fix(F) = /0. Indeed if there were some
yv = (0,v) in Fix(F) we should have yv ∈ conv(α(yv),β (yv)). Since α(yv) =(
−1

2
,ϕ(v)

)
and β (yv) =

(1
2
,ϕ(v)

)
we would get

(0,v) = yv ∈ conv(α(yv),β (yv)) = [−1
2
,
1
2
]×{ϕ(v)}

hence ϕ(v) = v, in contradiction with Claim 5.2.
It follows that the two disjoint open subsets W0 = {(x,y) ∈ Fix(F) : x < 0}

and W1 = {(x,y) ∈ Fix(F) : x > 0} of Fix(F) are both non-empty and cover
Fix(F). Thus Fix(F) is not connected.

6. The non-smooth case

It is also possible to give a simple example in any normed space E whose dual
space E∗ is not strictly convex (in particular if the norm of E itself is not smooth)
of a quasi-contraction whose set of fixed points is not connected.

It E∗ is not strictly convex there are two non-zero vectors u and v of E∗ such
that ‖u‖= ‖u+ v‖= ‖u− v‖= 1. Define then the real function h on E by

h(x) = 〈u,x〉+ sin2(〈v,x〉)
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Lemma 6.1. The function h is 1-Lipschitz.

Proof. In fact h is of class C 1 and its differential at x is h′(x)= u+sin(2〈v,x〉).v.
The convex function ν : t 7→ ‖u+ tv‖ satisfies ν(−1) = ν(1) = 1 hence ν(t)≤ 1
for t ∈ [−1,1]. It follows that ‖h′(x)‖ ≤ 1 for all x hence that h is 1-Lipschitz.

Lemma 6.2. The set-valued mapping P : R ⇒ E defined by P(t) = {y ∈ E :
〈u,y〉 ≥ t} is 1-Lipschitz and takes closed convex non-empty values.

Proof. It is clear that P(x) is convex closed and non-empty. Notice that if t ≤ t ′

then we have P(t ′)⊂ P(t), so dH(P(t),P(t ′)) = supy∈P(t) d(y,P(t ′)). If y ∈ P(t)
and ε > 0 we can find some z ∈ E with ‖z‖ ≤ 1+ ε and 〈u,z〉= 1.

Then y′ = y+(t ′− t)z satisfies 〈u,y′〉= 〈u,y〉+(t ′− t)≥ t ′, hence y′ ∈ P(t ′)
and ‖y− y′‖ ≤ (1+ ε)(t ′− t). So d(y,P(t ′))≤ t ′− t and P is 1-Lipschitz.

Theorem 6.3. Let E be a normed space. Assume that the norm on E∗ is not
strictly convex. Then there exists a quasi-contraction F : E ⇒ E with closed
convex values such that Fix(F) is not connected.

Proof. Take h and P as in previous Lemma, and define F = P◦h which is clearly
1-Lipschitz since so are P and h. If x ∈ Fix(F) we must have

〈u,x〉 ≥ h(x) = 〈u,x〉+ sin2(〈v,x〉)

hence sin(〈v,x〉) = 0, that implies 〈v,x〉 = kπ for some integer k ∈ Z. If a ∈ E
satisfies 〈v,a〉= 1 (and such points exist since v 6= 0) we get

Fix(F) =
⋃
k∈Z

(k.a+kerv)

which is the discrete union of a countable family of pairwise disjoint closed
hyperplanes, hence it cannot be connected.

7. The smooth case

We now want to extend Theorem 5.4 to every normed space E of dimension 2. It
follows from Theorem 6.3 that one can assume the norm of E is smooth. Recall
that a basis (e1,e2, . . . ,en) of a finite-dimensional normed space E is called an
Auerbach basis of E if ‖e j‖ = 1 for all j = 1,2, . . . ,n and moreover ‖e∗j‖ = 1
for all j = 1,2, . . . ,n where (e∗1,e

∗
2, . . . ,e

∗
n) is the dual basis of E∗ (what means

〈e∗j ,ek〉= δ k
j ).

Lemma 7.1. If E is a 2-dimensional normed space with smooth norm, there
exists an Auerbach basis (e1,e2) of E such that ‖e2 + te1‖> 1 for all real t 6= 0.
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Proof. Let B be the unit ball of E. It is a well-known fact that if the determinant
function ∆ : (u,v) 7→ u∧v attains at (x,y) its supremum on B×B then (x,y) is an
Auerbach basis. It can be easily seen that the converse is not true: the canonical
basis (e1,e2) of `∞

2 satisfies ∆(e1,e2) = 1 though e1 + e2 and e2− e1 have norm
1 and ∆(e1 + e2,e2− e1) = 2.

Assume that (e1,e2) is such an “extremal” Auerbach basis. If there is some
t 6= 0 such that e2 + te1 ∈ B then we have e1∧ e2 > 0 and for all s > 0

((1− s
2
)e1−

s
t
e2)∧ (e2 + te1) = (1− s

2
+ s)e1∧ e2 = (1+

s
2
)e1∧ e2 > e1∧ e2

what shows that zs = (1− s
2
)e1−

s
t
e2 /∈ B: indeed if not the basis

(zs,e′2) = (zs,e2 + te1)

would satisfy ∆(zs,e′2)> ∆(e1,e2) with (zs,e′2) ∈ B×B.
For s < 0 we have ‖zs‖≥ 〈e∗1,zs〉= 1− s

2
> 1. It follows that ‖zs‖≥ 1 for all

s ∈R. Denote u∗ = e∗1−
t
2

e∗2. If u ∈ {v : 〈u∗,v〉= 1} we have 〈u∗,u−e1〉= 0 so

u = zs for some s∈R, hence ‖u‖≥ 1. This shows that ‖u∗‖≤ 1. Then ‖e∗1‖= 1,
‖u∗‖ ≤ 1 and

1≥ ‖λu∗+(1−λ )e∗1‖= ‖e∗1−λ
t
2

e∗2‖ ≥ 〈e∗1−λ
t
2

e∗2,e1〉= 1

for λ ∈ [0,1], what shows that the norm of E∗ is not strictly convex, in contra-
diction with the hypothesis of smoothness of E.

Lemma 7.2. Let f : R+→R be a continuous positive function such that f (0)≤
1. Then there exists a convex non-increasing positive and 1-Lipschitz function
ϕ : R+→ R satisfying ϕ(x)≤ f (x) for all x≥ 0.

Proof. For all α > 0 set f̃ (α)= inf0≤t≤2α f (t) which is positive by compactness
of [0,2α]. And the affine decreasing function

fα : x 7→ f̃ (2α)(1− x
2α

)

satisfies fα(x) ≤ 0 < f (x) for x ≥ 2α , fα(x) ≤ f̃ (2α) ≤ f (x) for 0 ≤ x ≤ 2α

and fα(α) =
1
2

f̃ (2α) > 0. It follows that ϕ : x 7→ supα≥1/2 fα(x) is convex,

non-increasing, everywhere positive on [
1
2
,+∞[ hence a fortiori on R+, and that

ϕ ≤ f .

Finally since the function fα is
f̃ (2α)

2α
-Lipschitz the function ϕ is λ -Lipschitz

for λ = supα≥1/2
f̃ (2α)

2α
= f̃ (1)≤ f (0)≤ 1.
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Lemma 7.3. If the basis (e1,e2) of E is as in Lemma 7.1 there exists a positive
convex non-decreasing 1-Lipschitz function ϕ :R+→R such that for all x∈R+

the inequality
|x|+ϕ(|x|)≤ ‖e1 + xe2‖

holds true.

Proof. Consider the function f+ : x 7→ ‖e1 + xe2‖− x on R+. Since (e1,e2) is
an Auerbach basis we have ‖e1 + xe2‖ ≥ ‖xe2‖ = x, hence f+(x) ≥ 0. And if
we had f+(x) = 0 for some x ∈ R+ we would have x = ‖e1 + xe2‖ ≥ 1 hence

1 = ‖e2 +
1
x

e1‖ > ‖e2‖ = 1 since by hypothesis ‖e2 + se1‖ > 1 for all s 6= 0.
It follows that f+ is positive. And in the same way one sees that the function
f− : x 7→ ‖e1− xe2‖− x is positive on R+. Moreover f = min( f+, f−) satisfies
f (0) = 1.

Applying then Lemma 7.2 to f we get a positive convex non-decreasing
1-Lipschitz function ϕ : R+ → R such that |x|+ ϕ(|x|) ≤ ‖e1 + xe2‖ for all
x ∈ R.

Still assuming the basis (e1,e2) of E satisfies the condition of Lemma 7.1,
we define the closed convex set H by

H = {x ∈ E : 〈e∗1,x〉 ∈ [−1,1] and 〈e∗2,x〉 ≥ 0}

Claim 7.4. There exists a 1-Lipschitz retraction p from E to H.

Proof. The function p1 : (x,y) 7→
(
x,max(y,0)

)
is 1-Lipschitz: indeed if u and

v belong to E, p1(u)− p1(v) is a convex combination of the vectors u− v and
〈e∗1,u− v〉e1 which have both a norm at most ‖u− v‖. Thus ‖p1(u)− p1(v)‖ ≤
‖u− v‖. Moreover p1 is the identity mapping on H and p1(E)⊂ R×R+.

In the same way the mapping p2 : (x,y) 7→ (max(−1,min(1,x)),y) is the
identity on H and is 1-Lipschitz since when u and v belong to E, p2(u)− p2(v)
is a convex combination of the vectors u−v and 〈e∗2,u−v〉e2 which have both a
norm at most ‖u− v‖. Moreover p2(R×R+)⊂ H.

Then p = p2◦p1 is the identity on H, is 1-Lipschitz and satisfies p(E)⊂ H,
so is a 1-Lipschitz retraction on H. �

Theorem 7.5. If E is a 2-dimensional normed space with smooth norm, there
exists on E a quasi-contraction F such that Fix(F) is not connected.

Proof. Choose the basis (e1,e2), the function ϕ and the set H as above. We
will define two 1-Lipschitz functions α and β from H to H and set F(x) =
[α(x),β (x)] which will be a quasi-contraction by Lemma 1.1.
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In order to ensure Fix(F) is not connected we want to have α(−e1 + te2) =
−e1 + te2, β (e1 + te2) = e1 + te2, and te2 /∈ Fix(F) for all t ≥ 0, so {−1,1}×
R+ ⊂ Fix(F) and ({0}×R+)∩Fix(F) = /0.

Let ϕ be as in Lemma 7.3 and define the function α : H0 = {−1,0}×R+→
E by :

α(u) =−e1 +λ (u)e2

where λ : H0 → R+ is defined by λ (−e1 + te2) = t and λ (te2) = t +ϕ(t). In
particular α(H0)⊂ H, α(−e1) =−e1 and α(ye2) = (−1,y+ϕ(y)).

Claim 7.6. The function λ is 1-Lipschitz from H0 to R+.

Proof. Denote at = (−1, t) and ct = (0, t). We have to prove the following
inequalities, for s and t ≥ 0:

i. |λ (as)−λ (at)| ≤ ‖as−at‖,

ii. |λ (cs)−λ (ct)| ≤ ‖cs− ct‖,

iii. |λ (as)−λ (ct)| ≤ ‖as− ct‖.

For (i) we have ‖λ (as)−λ (at)‖= |s− t|= ‖as−at‖.
For (ii) we have ‖cs− ct‖= ‖(s− t)e2‖= |s− t| and

‖λ (cs)−λ (ct)‖= |(t +ϕ(t))− (s+ϕ(s))|= |s+ϕ(s)− t−ϕ(t)|

Without loss of generality we can assume s ≤ t; so we have ϕ(t) ≤ ϕ(s) and
s+ϕ(s)≤ t +ϕ(t) since s 7→ s+ϕ(s) is non-decreasing, so

|s+ϕ(s)− t−ϕ(t)|= t− s− (ϕ(s)−ϕ(t))≤ t− s = |s− t|= ‖cs− ct‖

Finally for (iii) we have

|λ (as)−λ (ct)|= |s− (t +ϕ(t))|= |s−ϕ(t)− t|
≤ |s− t|+ϕ(t)≤ |s− t|+ϕ(|s− t|)

since t ≥ |s− t| and by Lemma 7.3 applied to x = t− s :

‖as− ct‖= ‖− e1 + se2− te2‖= ‖e1 +(t− s)e2‖ ≥ |s− t|+ϕ(|s− t|)

hence |λ (as)−λ (ct)| ≤ |s− t|+ϕ(|s− t|)≤ ‖as− ct‖. �

It is well-known that any 1-Lipschitz function λ defined on a subset H0 of
the metric space H can be extended into a 1-Lipschitz function λ̃ on H by the
formula

λ̃ (x) = inf
y∈H0

(
λ (y)+d(x,y)

)
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which yields a non-negative function λ̃ if λ ≥ 0. Define then the function α on
H by α(u) =−e1 + λ̃ (u)e2. We clearly have for u and v in H :

‖a(u)−a(v)‖= ‖
(
λ̃ (u)− λ̃ (v)

)
e2‖= |λ̃ (u)− λ̃ (v)| ≤ ‖u− v‖

Replacing −e1 by e1 we can define in the same way a 1-Lipschitz function
β : H→H such that β (e1+te2) = e1+te2 and β (te2) = e1+(t+ϕ(t))e2. Then
the set-valued mapping F defined on H by F(u) = [α(u),β (u)] takes closed
convex values. It is 1-Lipschitz because by Lemma 1.1:

dH(F(u),F(v))≤max(‖α(u)−α(v)‖,‖β (u)−β (v)‖)≤ ‖u− v‖ .

By definition we have α(−1, t) = (−1, t) and β (1, t) = (1, t) ; so all points of
{−1,1}×R+ are fixed points for F .

Conversely for t ≥ 0 we have F(0, t) = [−1,1]×{t +ϕ(t)} and this shows
that (0, t) /∈ Fix(F) since ϕ(t) 6= 0, hence that the two non-empty open subsets
W0 = {u = (x,y) ∈ Fix(F) : x < 0} and W1 = {u = (x,y) ∈ Fix(F) : x > 0}
of Fix(F) form a partition of Fix(F). Thus Fix(F) is not connected. And since
G=F◦p satisfies Fix(G)= Fix(F), we have just constructed a quasi-contraction
on E whose set of fixed points is not connected. And this completes the proof
of Theorem 7.5.

Corollary 7.7. If the normed space E has dimension at least 2, there exists on
E a quasi-contraction G such that Fix(G) is not connected.

Proof. Notice that following Theorem 2.1 the condition “dim(E)≥ 2” is neces-
sary and that following Theorem 3.3 such a quasi-contraction cannot be single-
valued if E is finite-dimensional.

Take a closed linear subspace E0 of codimension 2 and denote π the canon-
ical projection onto the quotient space E/E0. Recall that the norm on E/E0 is
given by ‖y‖= inf{‖x‖ : x ∈ π−1(y)}.

It follows from Theorems 7.5 and 6.3 that there exists on the 2-dimensional
space E/E0 a quasi-contraction F with closed convex values such that Fix(F)
is not connected. Define then for x ∈ E : G(x) = π−1(F(π(x))) which is clearly
a non-empty closed convex subset of E. And

x ∈ Fix(G) ⇐⇒ x ∈ G(x) ⇐⇒ π(x) ∈ F(π(x)) ⇐⇒ π(x) ∈ Fix(F)

so Fix(G) = π−1(Fix(F)), and π(Fix(G)) = Fix(F) since π is onto.
If Fix(G) were connected so would be Fix(F) = π(Fix(G)). Thus Fix(G))

is not connected. It remains to show that G is 1-Lipschitz. And this follows
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immediately from the facts that F is 1-Lipschitz and that the mapping T 7→
π−1(T ) is 1-Lipschitz from F (E/E0) to F (E). Indeed :

d(x,π−1(T )) = inf
t∈T

inf
y∈t
‖x− y‖= inf

t∈T
inf

u∈E0,y∈t
‖(x−u)− y)‖

= inf
t∈T
‖π(x)− t‖= d(π(x),T )

whence dH(π
−1(S),π−1(T )) = dH(S,T ).
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