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A SHORT PROOF FOR A DETERMINANTAL FORMULA
FOR GENERALIZED FIBONACCI NUMBERS

MILICA ANDELIĆ - CARLOS M. DA FONSECA

The aim of this note is to provide a short and elegant proof for a recent
determinantal formula for generalized Fibonacci numbers. The attractive-
ness of the proof presented here is its elementary nature.

1. Preliminaries
The study of sequences generated by the homogeneous linear second order dif-
ference equation with constant coefficients

un+1 = aun +bun−1 , for n > 1 , (1)

with certain initial conditions, goes back to the beginning of 1960s with the
analysis of the algebraic properties of (un) [2, 7, 8]. Many relevant number
sequences are obtained from (1), namely the Fibonacci numbers, setting a =
b = u1 = 1 and u0 = 0.

It is well-known that (1) can be represented by the determinant of the Jacobi
matrix

Tn =


a −1

b
. . . . . .
. . . . . . −1

b a


n×n

(2)
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together with the specialisation of the initial conditions, namely, detT0 = 1 and
detT1 = a . From the well-established theory of orthogonal polynomials (see,
e.g., the standard reference [3]), the determinant of Tn can be given by (cf. e.g.
[6])

detTn = (−i
√

b)nUn

(
ai

2
√

b

)
,

where {Un(x)}n>0 are the Chebyshev polynomials of second kind, i.e., the or-
thogonal polynomials satisfying the three-term recurrence relations

Un+1(x) = 2xUn(x)−Un−1(x) , for all n = 1,2, . . . ,

with initial conditions U0(x) = 1 and U1(x) = 2x. The main explicit formula for
the Chebyshev polynomials of second kind is

Un(x) =
sin(n+1)θ

sinθ
, with x = cosθ (0 6 θ < π), (3)

for all n = 0,1,2 . . .. While (3) is more common to find in the orthogonal poly-
nomials theory, there are other explicit representations and relations for Un(x).
Among them, the most frequent to find in number theory are

Un(x) =

(
x+
√

x2−1
)n+1

−
(

x−
√

x2−1
)n+1

2
√

x2−1
,

an immediate consequence of de Moivre’s formula, or

Un(x) =
b n

2c
∑
k=0

(−1)k
(

n− k
k

)
(2x)n−2k

which can be found for example in [1, (22.3.7)]. As stated in [5, p.187], many
of them are paraphrases of trigonometric identities and derivations from (3).
Nonetheless, here no explicit formula for Un(x) is required for our aims.

Now, the Fibonacci numbers can be obtained directly from (cf. e.g. [4])

det


1 −1

1
. . . . . .
. . . . . . −1

1 1


n×n

,

with a = b = 1, u0 = 0 and u1 = 1 in (2). This means that the nth Fibonacci
number Fn can be given by (cf. [2, 7])

Fn = (−i)n−1Un−1

(
i
2

)
.



A DETERMINANTAL FORMULA FOR GENERALIZED FIBONACCI NUMBERS 365

We observe that the determinant of a tridiagonal matrix is known in the
literature as a continuant (cf. [10]). The terminology “tridiagonal determinant”
is however inaccurate.

2. A determinantal formula

Recently in [9], Qi and Guo using intricate techniques proved that

un =
1
n!
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. (4)

Using the multilinearity of the determinant, our purpose here is to provide a
simple proof for (4). Indeed,
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= n!un ,

for any positive integer n.
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