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A NEW MODEL FOR THE THETA DIVISOR

OF THE CUBIC THREEFOLD

MICHELA ARTEBANI - REMKE KLOOSTERMAN - MARCO PACINI

In this paper we give a birational model for the theta divisor of the
intermediate Jacobian of a generic cubic threefold X . We use the standard
realization of X as a conic bundle and a 4−dimensional family of plane
quartics which are totally tangent to the discriminant quintic curve of such
a conic bundle structure. The additional data of an even theta characteristic
on the curves in the family gives us a model for the theta divisor.

1. Introduction.

Most of the notions mentioned in this introduction are de�ned in Sections
2 (curves), 3 (surfaces) and 6 (threefolds).

In this paper we give a new birational model for the theta divisor of the
intermediate Jacobian of a generic cubic threefold X . In [10], Section 4, a
birational model for the theta divisor is given in terms of linear systems of skew
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cubics on hyperplane sections of X . We give a model in terms of even theta
characteristics on plane quartics.

Consider the triple (S, p, D), with S a smooth cubic surface, p a point on
S , not on any line of S and D a double six on S . We can associate to such a
triple a smooth plane quartic C together with a bitangent b and an Aronhold set
A containing b. Moreover, we can recover (S, p, D) from the triple (C, b, A).
This observation is the main ingredient of our construction.

We try to extend this correspondence as far as possible. The notion of
double six can be generalized for a (singular) cubic surface with at most isolated
ADE singularities. If S has an elliptic singularity, contains a double line or is
reducible, then it seems harder to de�ne degenerations of double sixes. In some
of these cases the possible limit position of the twelve lines giving a double
six seems to depend on the degenerating family, hence an intrinsic de�nition of
double six would be impossible.

On the side of plane quartic curves, we need to generalize the notion of
bitangent and Aronhold set. The former can be easily de�ned, while the latter is
harder to generalize. Contrary to the smooth case, we need to form generalized
Aronhold sets using both generalized bitangents and some components of a
curve C̃ associated to C . This is enough to give a correspondence between
generalized Aronhold sets and generalized double sixes. We show that if C is
a stable curve, then our generalization coincides with that given by Cornalba in
[12], Section 2 .

Let X ⊂ P4 be a generic cubic threefold and � ⊂ X be a generic line. Let
π̃� : X̃ → P2 be the resolution of the projection from �. The discriminant curve
of the conic bundle π̃� is a smooth plane quintic Q . If E is the exceptional
divisor of X̃ → X, then π̃�|E is a �nite covering of P2 branched over a smooth
conic T . Moreover T ·Q = 2t so that θ := OQ(t) is an odd theta characteristic.

The line bundle θ (−1) de�nes a non-split étale double covering Q̃ → Q such
that Q̃ parameterizes the irreducible component of the �bers of π̃� over Q .

Our model for the theta divisor is given by the following:

Theorem 1.1. Let W be the set of quartic curves C such that dC =
1
2
(Q ·C) ∼

θ (1) and C has at most ADE singularities. Denote with W 0 the locus of smooth
quartics in W .

If C ∈ W 0 consider the odd theta characteristic θC = 3KC − dC with
associated bitangent bC . Let B

0 = {(C, bC )|C ∈ W 0} and B its closure in
W × P

2∗ .
Then
�
(C, bC , A) | (C, bC )∈ B, A generalized even theta

characteristic on (C, bC )
�
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denoted by VX,� is a birational model for �/�−1�, the theta divisor of the
intermediate Jacobian of X modulo −1.

The paper is organized as follows:
In Section 2 we give some further generalizations of theta characteristics

given by Cornalba.
In Section 3 we discuss some basic properties of Del Pezzo surfaces.
In Section 4 we discuss the correspondence between pairs (S, �) with S a

cubic hypersurface in P
n and� ⊂ C such that � ∼= P

n−3 and pairs (Q, θ ) with
Q a curve of degree n + 1 and θ an odd theta characteristic.

In Section 5 we give generalizations of odd and even theta characteristics.
We use the properties mentioned in Sections 2 to 4 to show that our de�nition
coincides with the de�nition of spin structure (from Section 2) in the case of
a stable quartic curve. Moreover, we prove the existence of a correspondence
between blow-down linear systems on an associated (nodal) Del Pezzo surface
and generalized Aronhold sets.

In Section 6 we compare the model of the theta divisor given by Clemens
with our model.

In Section 7 we describe the new model and give some consequences.
In Section 8 we give a connection between the new model and the stable

reduction of curves.

2. Spin curves.

In this section we discuss degenerations of pairs (C, θ ) with C a smooth
curve of genus g and θ a theta characteristic, using the concept of spin curve.
Cornalba introduced the notion of spin curve and constructed a moduli space
Sg of stable spin curves (see [12]) with a natural morphism πg : Sg → Mg of
degree 22g .

First, we recall the de�nition of theta characteristic.

De�nition 2.1. Let C be a smooth curve of genus g. Let θ be a line bundle on
C . Then θ is called a theta characteristic if θ ⊗ θ ∼ KC . A theta characteristic
θ is called odd (resp. even ) if h0(C, θ ) is odd (resp. even).

It is a classical result that a smooth curve of genus g has 22g theta
characteristics, of which N−

g := 2
g−1(2g − 1) are odd and N+

g := 2
g−1(2g + 1)

are even.

De�nition 2.2. A semi-stable curve is a reduced, connected curve with only
ordinary double points as singular points such that every smooth rational com-
ponent contains at least 2 nodes.
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A stable curve is a semi-stable curve such that every smooth rational
component contains at least 3 nodes.

Let C be a semi-stable curve and E an irreducible component of C . Then
E is called an exceptional component of C if E is smooth and rational, such
that #(C − E ∩ E) = 2.

A quasi-stable curve is a semi-stable curve such that any pair of distinct
exceptional components is disjoint.

Remark 2.3. If C is a quasi-stable curve then the stable model of C is obtained
by contracting every exceptional component. In particular, its stable model is
unique.

We recall the de�nition of stable spin curve and explain how to calculate
the scheme-structure of the �ber of πg over the points in Mg − Mg . For the
latter part we follow [6], Section 1.3, to which we refer for the proofs.

De�nition 2.4. A stable spin curve is a pair (Y, θ ) with Y a quasi-stable curve
(called the support of the spin curve) and θ a line bundle on Y such that

1. the restriction of θ to each exceptional component E is OE (1);

2. if we denote Z := Y −∪E , where we take the union over all exceptional
components, then

(θ |Z )
⊗2 � ωZ ,

where ωZ is the dualizing sheaf.

A stable spin curve is called even (resp. odd) if h0(Y, θ ) is even (resp. odd).
Let C be a stable curve of arithmetic genus g. Let Sg be the moduli

space of stable spin curves. The scheme of spin structures on C is the scheme-
theoretical �ber of πg over [C] ∈Mg and is denoted by SC . Denote with S

+
C

(resp. S−C ) the scheme of even (resp. odd) spin structures on C .

Cornalba ([12], Lemma 6.3) showed that πg has two disjoint irreducible
components π+

g and π−
g corresponding to even and odd spin curves.

Fix a stable curve C . We characterize all quasi-stable curves appearing
as supports in SC . Let ν : Cν → C be the normalization map, B ⊂ C an
irreducible component and Bν the corresponding component in Cν . For every
subset � ⊂ Csing of nodes, set DB := ν−1(� ∩ B). Note that DB is a divisor

on Bν .

De�nition 2.5. We say that � is even if deg DB is even for every irreducible
component B of C .
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Notation 2.6. Let C be a reduced nodal curve. We denote with �C the dual
graph of C , that is the graph whose vertices are the irreducible components of
C and whose edges are the nodes. An edge connects two vertices if and only
if the two corresponding irreducible components intersect in the corresponding
node. If � is a graph we denote with b1(�) the �rst Betti number of �, that is

b1(�) = #{ edges } − #{ vertices } + #{ connected components }.

Moreover, if C is smooth and irreducible then we denote with pg(C) its
geometric genus.

The set of all quasi-stable curves Y having C as stable model is in bijection
with the set of subsets of nodes of C . To such a Y we can associate in a unique
way the set�Y ⊂ Csing of nodes corresponding to the nodes of Y not contained

in an exceptional component. Conversely, for every� ⊂ Csing there is a unique

quasi-stable curve Y with stable model C and �Y = �.

Proposition 2.7. A quasi-stable curve Y is the support of a spin curve in SC if
and only if �Y is even. The number of even subsets of nodes of C is 2

b1(�C ) .

This is proven in [12]. Fix a quasi-stable curve Y which is the support of
a spin curve in SC with �Y = �. Denote with ν : Y ν → Y the normalization
map.

First we describe which line bundles η on Y ν are the pullback of a line
bundle θ on Y such that (Y, θ ) is a spin curve. These η are characterized by the
following properties:

(1)� For every component E of Y ν such that ν(E) is an exceptional component
of Y we have η|E = OE (1).

(2)� For every non-exceptional component B of Y we have (θν |Bν )⊗2 = KBν ⊗

O(DB ).

From this we deduce that the number of choices for η is 22
�

pg(B) where
B runs through all the irreducible components of Y . Let Z as in (2). If we �x
η then the set of all θ on Y satisfying relations (1) and (2) and ν∗θ = η can be
calculated using the exact sequence

1→ (C∗)b1(�Z ) → Pic(Z )→ Pic(Z ν)→ 0.

On every node of Z there are two compatible gluings, hence we have 2b1(�Z ) of
such line bundles. The multiplicity of θ as a point in SC is 2

b1(�C )−b1(�Z ) (see
[12], Section 5).
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Proposition 2.8. Let C be an irreducible curve of arithmetic genus g. Suppose
C has n nodes. Then there are exactly

�
n
k

�

22g−n−k

points in SC of multiplicity 2
k . If k < n then half of them are odd and half of

them are even. If k = n then N−
g−n of them are odd and N

+
g−n are even.

Proof. Since b1(�C ) = n, there are 2n quasi-stable curves which occur as
the support of a spin curve in SC . Denote by Y a resolution of k nodes.
Then there are 22g−2n line bundles on Y ν satisfying (1)� and (2)� . There are
2n−k gluing conditions, hence there are 22(g−n)+(n−k) points in SC with support
Y . The multiplicity of (Y, θ ) in SC equals 2

k . If k < n then half of the
theta characteristics are odd and half of them are even (see for example [17],
Corollary 2.7). If k = n then the component Z in the support of the spin curve
is the normalization of C . The number of odd (resp. even) spin structures with
support Y equals the number of odd (resp. even) theta characteristics on Z .
Note that Z has N−

g−n odd and N
+
g−n even theta characteristics. The multiplicity

of such a spin curve (Y, θ ) in SC is 2
n . There are exactly

�
n
k

�

sets of k nodes,

which gives the proposition. �

Example 2.9. If g = 3 then we have the following results:

smooth one node two nodes three nodes
multiplicity 1 even 36 16 8 4
multiplicity 1 odd 28 16 8 4
multiplicity 2 even − 10 8 6
multiplicity 2 odd − 6 8 6
multiplicity 4 even − − 3 3
multiplicity 4 odd − − 1 3
multiplicity 8 even − − − 1
multiplicity 8 odd − − − 0

3. Del Pezzo surfaces.

In the sequel we construct several cubic surfaces and double covers of P
2

rami�ed along a reduced quartic. The former are Del Pezzo surfaces of degree
3, the latter of degree 2. These surfaces are the blow-up of P2 in 6, resp. 7
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points. In this section we list some properties of Del Pezzo surfaces and discuss
degenerations of Del Pezzo surfaces of degree 2 and 3. Let S be a smooth Del
Pezzo surface of degree d ∈ {2, 3}. This means that S is the blow-up of P

2 in
9 − d distinct points P1, . . . P9−d , such that no three of them lie on a line, and
no six lie on a conic. The (9 − d)-uple (P1, . . . P9−d), (or, equivalently, the
corresponding 9− d exceptional curves on S) is called a marking of S .

Notation 3.1. To mark the Picard group of S we de�ne the following divisors.

• Let L be the pre-image of a line in P
2 not passing through the Pi .

• Let Ei be the exceptional divisor corresponding to Pi .
• Let Li, j , i ≤ j be the strict transform of the line connecting Pi and Pj . In
Pic(S) we have Li, j = L − Ei − Ej .

• If d = 3 then let Ci be the strict transform of the conic passing through all
the Pk except Pi . In Pic(S) we have Ci = 2L −

�6
t=1 Et + Ei .

• If d = 2 then let Ci, j be the strict transform of the conic passing through

all the Pk except for Pi and Pj . In Pic(S) we have Ci, j = 2L−
�7

t=1 Et +
Ei + Ej .

• If d = 2 then let Di be the strict transform of the cubic passing through
P1, . . . , P7 with a double point in Pi . In Pic(S) we have Di = 3L −�7
t=1 Et − 2Ei .

Remark 3.2. Except for L all the above listed divisors have self-
intersection −1.

Remark 3.3. If d = 2 there are 56 smooth rational curves D with D2 = −1,
we call such a curve an exceptional line. The morphism π : S→ |− KS| ∼= P

2

is of degree 2 and the rami�cation locus of π is a quartic curve C(S). The 56
lines of D are the irreducible components of the pre-images of the 28 bitangents
of C . The covering involution σ associated to π is called theGeiser involution.

We have σ (Ei ) = Di , σ (Ck,l ) = Lk,l and σ (L) = 8L − 3
�7

t=1 Et (see
[13], Section VII. 4, [16], Section 7).

Notation 3.4. Suppose d = 2. Let C = C(S) ⊂ P
2 be the quartic curve

from Remark 3.3. Let D be a line on S . Then we denote by bD the bitangent
corresponding to D, i.e., bD = π (D).

Remark 3.5. If d = 3 then there are 27 smooth rational curves D with D2 =
−1. They are precisely the 27 lines on the cubic surface S ⊂ |− KS| ∼= P2. Let
p be a point on S , not on any of the 27 lines. Consider the projection πp of S

with center p. Resolving this map gives a morphism π from S̃ to P2 where S̃ is
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the blow up of S in p. The morphism π coincides with the anti-canonical map,
hence is rami�ed along a quartic curve C(S, p) = C(S̃). The 28 bitangents
of C(S̃) are the image of the 27 lines of S under πp , plus the images of the
exceptional divisor of the blow-up in p.

Proposition 3.6. If d = 3 then there are exactly 72 ways of obtaining S as the
blow-up of six points in P2 . Below we list the 72 associated linear systems |D|,
together with the 6 curves with self-intersection −1 which are blown down by
|D|.

L {E1, E2, E3, E4, E5, E6}
2L − El − Em − En {Ei , Ej , Ek, Ll,m, Lm,n, Ll,n}

3L −
�6

t=1 Et + Ei − Ej {Ei,Ci , Lj,k, Lj,l, Lj,m, Lj,n}

4L −
�6

t=1 Et − El − Em − En {Ci ,Cj ,Ck , Ll,m, Lm,n, Ll,n}

5L − 2
�6

t=1 Et {C1,C2,C3,C4,C5,C6}

In all cases i, j, k, l,m, n are such that #{i, j, k, l,m, n} = 6.

Proof. See for example [15], page 485. �

De�ntion 3.7. If d = 3 then a double six on S is a six-uple of pairs of
lines on S

((D1, D
�
1), . . . , (D6, D

�
6))

such that Di .Dj = D�
i .D

�
j = 0, Di .D

�
j = 1 for i �= j and Di .D

�
i = 0.

Using Proposition 3.6 one can show that up to permutation there are 36
double sixes.

Proposition 3.8. If d = 2 then there are exactly 576 ways of obtaining S as the
blow-up of seven points on P

2:

L {E1, E2, E3, E4, E5, E6, E7}
2L − Em − En − Ep {Ei, Ej , Ek, El, Lm,n, Ln,p, Lm,p}

3L −
�7

t=1 Et + Ei + Ej − Ek {Ei , Ej ,Ci, j , Lk,l , Lk,m , Lk,n, Lk,p}

4L−
�7

t=1 Et + Ei − Em − En − Ep {Ei ,Ci, j ,Ci,k ,Ci,l , Lm,n, Ln,p, Lm,p}

5L − 2
�7

t=1 Et + 2Ei {Ei,Ci, j ,Ci,k ,Ci,l ,Ci,m ,Ci,n ,Ci,p}

8L − 3
�7

t=1 Et {D1, D2, D3, D4, D5, D6, D7}

7L − 2
�7

t=1 Et − Em − En − Ep {Di , Dj , Dk, Dl ,Cm,n,Cn,p,Cm,p}

6L − 2
�7

t=1 Et − Ei − Ej + Ek {Di , Dj , Li, j ,Ck,l ,Ck,m ,Ck,n ,Ck,p}

5L−
�7

t=1 Et − 2Ei − Ej − Ek − El {Di , Li, j , Li,k , Li,l ,Cm,n,Cn,p,Cm,p}

4L −
�7

t=1 Et − 2Ei {Di , Li, j , Li,k , Li,l , Li,m , Li,n, Li,p}

In all cases i, j, k, l,m, n, p are such that #{i, j, k, l,m, n, p} = 7.
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Proof. The order of the Weyl group W (E7) equals the number of ordered 7-
uples of points in P2 (up to automorphisms of P2) giving the same Del Pezzo
surface (cf. [13], Theorem 3, VI). Since #W (E7) = 576#S7 there are 576
markings up to permutation of the 7 points in P2. One can easily show that all
the above listed systems give different markings and that their number is 576.

�

Remark 3.9. The horizontal line divides the linear systems mentioned in
Proposition 3.8 in two groups. The upper half are those coming from the
following construction: let Y be the blow-up of P

2 at 6 points out of the 7
points Pi . List all the linear systems that give a blow-down model Y → P2.
Take then the blow-up of the 7th point, to obtain a blow-down model S → P2.
The lower half is obtained by applying the Geiser involution (see Remark 3.3)
to the upper half of the list.

The �rst 288 items in the list of 7-uples of divisors give rise to 288 sets of 7
bitangents. These are precisely the 288 Aronhold sets associated to C(S). Each
Aronhold set determines an even theta characteristic by mapping {D1, . . . , D7}
to

�
bDi − 3K . Each even theta characteristic can be obtained from 8 different

7-uples of divisors. Fix a divisor D0 and consider all linear systems |D| in
Proposition 3.8 containing D0, then we �nd 72 linear systems. These 72 linear
systems are divided up in 36 pairs, such that each pair corresponds to an even
theta characteristic. Consider the cubic surface Y � obtained by blowing down
D0. Then the 72 above linear systems correspond to the 72 linear systems on
the cubic surface Y � which give a blow-down model Y � → P

2. The 36 pairs of
linear systems correspond to the 36 double six.

Del Pezzo surfaces can be de�ned equivalently as nonsingular rational
surfaces with ample anti-canonical class −KS . If d > 2 then the anti-canonical
linear system maps the surface isomorphically to a smooth surface of degree d
in Pd . As mentioned before, to obtain a Del Pezzo surface of degree d , d ≥ 1,
we have to choose 9− d distinct points Pi in P

2 such that no three of them are
collinear and no six of them are on a conic. Thus a parameter space for these
surfaces is an open dense subset of (P2)9−d . Taking the quotient for the action
of PGL(3) gives rise to a moduli spaceMDP (d) for marked Del Pezzo surfaces
of degree d ≤ 8 (cf. [13], Theorem VI. 3).

De�nition 3.10. A nodal Del Pezzo surface is a smooth surface S with almost
ample (i.e., big and nef) anti-canonical class. The degree of S is K 2

S .

Nodal Del Pezzo surfaces can be obtained by taking point sets in P
2 in

�almost general� position, namely, point sets containing �in�nitely near� points,
three collinear points or six points on a conic (see [13], Sections VII. 3 and VII.
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4 for precise conditions on point sets). A parameter space for such surfaces is
then given by an open set in the smooth variety P̂9−d2 parameterizing in�nitely
near point sets in P

2.

The anti-canonical model of a nodal Del Pezzo surface S of degree d > 2
is a normal surface in Pd with rational double points (coming from contracting
the −2-curves on S). If d = 2 the anti-canonical map of S can be factored as
the contraction of all the −2-curves, composed with a degree 2 morphism to P2

rami�ed along a (possibly singular) quartic curve.

Notation 3.11. We denote with N ⊂ Pic(S) the subgroup generated by smooth
rational curves with self-intersection−2.

De�nition 3.12. Let S be a nodal Del Pezzo surface of degree d . The scheme
of lines LS is the Hilbert scheme of smooth rational curves D on S with
ωS ⊗ OD

∼= OP1 (1). The multiplicity of D is

#{σ ∈Aut(NS(S)) : σ (D) ≡ D mod N }

#{σ ∈Aut(NS(S)) : σ (D) = D}
.

The scheme of blow-down models BMS is the zero-dimensional scheme of
blow-down models |L| : S → P2. The multiplicity of |L| is

#{σ ∈Aut(NS(S)) : σ (L) ≡ L mod N }

#{σ ∈Aut(NS(S)) : σ (L) = L}
.

If d = 3 we can de�ne an involution on BMS in the following way. Suppose
|L| is blow-down morphism. Then there are six rational curves contracted
by L say F1 up to F6. We can form a unique set of divisors {D1, . . . , D6},
such that the Di are reduced connected effective divisors, Di .Dj = −δi, j
and Di contains at least one component which is an exceptional line. Then
σ (L) = 5L−2

�
Di mod N . We de�ne the scheme of double-sixDS as BMS

modulo the action of σ .

Remark 3.13. To the knowledge of the authors, there is no place in the
literature where the schemes LS, BMS and DS are de�ned. It seems to the
authors that this is the most natural de�nition.

If S were a classical Del Pezzo surface then Aut(NS(S)) would act tran-
sitively on all exceptional lines in S , and if D is an exceptional line then the
divisor σ (D) is an exceptional line for every σ ∈ Aut(NS(S)). If S is nodal
then there might exists σ ∈ Aut(NS(S)) such that σ (D) is not an exceptional
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line, but one can show that the class σ (D) mod N contains precisely one ex-
ceptional line. Similar reasonings can justify the de�nition of the other two
schemes.

To obtain a good de�nition of double six on a nodal Del Pezzo surface of
degree 3, one needs to describe this double six in terms of the two associated
linear systems. One can construct examples where the position of the −1
divisors modulo N does not determine the double six in the above sense (cf.
Example 5.12).

Remark 3.14. To show that DS is well-de�ned one has to prove that the set
{D1, . . . , D6} exists and is unique. This is an easy exercise using Dynkin
diagrams.

Remark 3.15. If d = 2 then the scheme LS has length 56 and the scheme
BMS has length 576. There is a natural action of the Geiser involution on both
schemes.

If d = 3 then the length ofDS is 36.

4. Determinantal hypersurfaces.

For an overview of this subject we refer to a recent paper of A. Beauville
[5]. That paper deals with the classical question to determine when an integral
hypersurface in Pn can be written as the zero-set of the determinant of a matrix
with homogeneous entries. We are interested in a special case, namely the
symmetric determinantal representations of smooth plane curves:

Proposition 4.1. (Beauville [5], Proposition 4.2). Let C be a smooth plane
curve of degree d , de�ned by the equation F = 0. Let θ be a theta characteristic
on C.

1. If h0(θ ) = 0 then there exists a minimal resolution of θ (unique up to
isomorphism)

0→ OP2 (−2)
d M
→ OP2 (−1)

d → θ → 0,

where M is a symmetric matrix of linear forms and det(M) = F .

2. If h0(θ ) = 1 then there exists a minimal resolution of θ (unique up to
isomorphism):

0→ OP2 (−2)
d−3 ⊕OP2 (−3)

M
→ OP2 (−1)

d−3 ⊕ OP2 → θ → 0,
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where M is a symmetric matrix of the form







L1,1 · · · �1,d−3 Q1
...

...
...

L1,d−3 · · · Ld−3,d−3 Qd−3
Q1 · · · Qd−3 H







with Li, j linear forms, Qk quadratic forms, H a cubic and det(M) = F .

Conversely, the cokernel of the map de�ned by a matrix M of the form in (1)
(resp. (2)), such that det(M) �= 0, gives rise to a theta characteristic on the
curve given by det(M) = 0 with h0(θ ) = 0 (resp. h0(θ ) = 1).

If d = 5 then the determinantal representation of C through θ can be
endowed with a geometric interpretation.

Fix a couple (Q, θ ) where Q is a smooth plane quintic and θ a theta
characteristic on Q with h0(θ ) = 1. The associated matrix M has the form

�
L1,1 L1,2 Q1
L1,2 L2,2 Q2
Q1 Q2 H

�

.

De�ne the cubic threefold X = X (C, θ ) in P4 as the zero-set of

�

i, j∈{1,2}

uiuj Li j (x0, x1, x2)+

2�

i=1

2ui Qi (x0, x1, x2)+ H (x0, x1, x2),

with u1, u2, x0, x1, x2 coordinates for P
4. The cubic threefold X (Q, θ ) is

smooth and contains the line �̄ = {x0 = x1 = x2 = 0}.
Conversely, �x a pair (X, �) with X a smooth cubic threefold and � a

line on it. Let π� be the projection of X with center � and π̃� : X̃ → P
2

its resolution. The �ber over a point p ∈ P2 is a conic Cp coplanar with �.
Let Q(X, �) ⊂ P

2 be the discriminant of this �bration, i.e., the locus in P
2

parameterizing reducible conics. The curve Q(X, �) is a smooth plane quintic
for general � in X (cf. [18], Lecture 2). Consider the curve

Q̃ = {(��, p)∈G(2, 5)× Q(X, �) | �� ∈ π−1
� (p), � �= ��}

then Q̃ is an unrami�ed double cover of Q . Let η� be the line bundle associated
to this double cover, then η�⊗OQ(1) is an odd theta characteristic θ� on Q(X, �)
(cf. [9]). We call the couple (Q(X, �), θ�) the discriminant curve of the pair
(X, �).

With notation as above, the following holds:
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Proposition 4.2. The spin curve (Q, θ ) is the discriminant curve of the pair
(X (Q, θ ), �̄).

In fact, it can be proven that the previous constructions give a birational
correspondence (up to isomorphism on both sides):

�
Smooth quintic plane curves with
a marked odd theta characteristic θ

�

←→

�
Smooth cubic threefolds
with a marked line

�

.

Remark 4.3. This result can be generalized to the case of a (reduced) nodal
plane quintic plus an odd theta characteristic on its normalization (cf. [9]).

Consider a couple (Q, θ ) and the corresponding matrix M as above. The
conic T = {L11L22 − L12L21 = 0} has an interesting geometric meaning:

Lemma 4.4. The conic T parameterizes plane sections P = �̄ ∪ Cp of X with
Cp tangent to �̄. In fact, it is the branch curve of π̃�|E where E is the exceptional

divisor of the blow-up X̃ → X .
It is totally tangent to Q and the intersection divisor Q.T is the odd theta

characteristic θ on Q.

Proof. The �rst two assertions follows from an easy calculation. The third one
is proven in [9, Proposition 4.2]. �

Similarly, in the case of smooth quartics, we can associate to a couple
(C, θ ) a marked cubic surface (X, p).

Proposition 4.5. There is a one-to-one correspondence between
�

Quartic plane curves with
at most isolated singularities
and a marked bitangent

�

←→

�
Irreducible cubic surfaces with
at most isolated singularities
and a marked smooth point

�

up to isomorphisms on both sides.

Proof. Suppose C is a quartic plane curve and b a bitangent of C . Let Y � be the
double cover of P

2 rami�ed along C , let E be one of the pre-images of b in Y � .
Let S � be the surface obtained by contracting E , then S � is a cubic surface. The
image of E is the marked point p. (Contracting the other exceptional divisor
gives an isomorphic cubic surface.)

Suppose that S � is a cubic surface and p ∈ S � a point. Let π be the
projection with center p. Resolving π gives a morphism Y � → P

2 rami�ed
along a quartic curve with at most isolated singularities. The marked bitangent
is the image of the exceptional divisor of Y � → S �.

One can easily show that both constructions are each-other�s inverse. �
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5. Del Pezzo surfaces and theta characteristics.

In this section we generalize the notion of odd and even theta characteristic
to quartic curves with at most ADE singularities.

Notation 5.1. For the rest of the section let C be a quartic curve with at most
ADE singularities. Let π � : S � → P

2 be the double cover of P
2 rami�ed

along C . Let S be the minimal desingularization of S �. Let π : S → P
2

be the composition of both maps. Let N ⊂ Pic(S) be the subgroup generated
by smooth rational curves with self-intersection −2. Let LS and BMS be the
scheme of lines on S and the scheme of blow-downmodels on S (see De�nition
3.12).

On a smooth plane curve of degree 4 one can describe both the odd and
the even theta characteristics in terms of bitangents. We prove that generalized
bitangents on a stable quartic curve C correspond in a natural way to odd spin
structures on C , and that generalized Aronhold sets on C correspond to even
spin structures on C .

De�nition 5.2. A generalized bitangent on C is a line � ⊂ P2 such that either
the intersection multiplicity (C.�)p is even at every point p ∈ C ∩ �, or � is a
component of C .

Proposition 5.3. Suppose E is a line on S then π (E) is a generalized bitangent
and the strict transform of π �−1(b) on S consists of one or two lines. The �rst
case occurs if and only if b is a component of C or b connects two double points
of C.

Proof. Cf. the proof of [13], Proposition IX. 1. �

De�nition 5.4. De�ne the scheme of generalized bitangentsB(C) as LS mod-
ulo the action of the Geiser involution.

Remark 5.5. From Proposition 5.3 it follows that points of B(C) correspond
to generalized bitangents. The reason to de�neB(C) in this way is to obtain the
right multiplicity.

Another way of de�ning the multiplicity of a generalized bitangent would
be to de�ne an unrami�ed degree 28 covering of the set of smooth quartic curves
in the moduli space of GIT semi-stable quartic curves, and compactify this.
This is the approach followed in [7], Proposition 2.3.1. It seems that taking the
most natural compacti�cation gives the same multiplicity as de�ned above. This
strategy has a disadvantage: it does not de�ne a multiplicity for bitangents on
quartic curves that are not GIT semi-stable.



A NEW MODEL FOR THE THETA DIVISOR . . . 215

Proposition 5.6. Suppose C is a stable nodal plane curve of degree 4. Then
there is an isomorphism from S−C to B(C).

Proof. We want to de�ne an isomorphism of schemes A : S−C → B(C).
Let C → T be a suf�ciently general 1−parameter family of quartics whose
general �ber is smooth and whose �ber over o ∈ T is C . Let S−C and B(C) be
the corresponding families of odd spin curves and bitangents. On the generic
�ber the correspondence between odd theta characteristics and bitangents is an
isomorphism of reduced zero-dimensional schemes. So we get an isomorphism
ψ from S−C to B(C), at least away from the central �ber. As S−C is a smooth
curve (see [8, Proposition 2.2.1]), we can extend ψ to the special �ber. Since ψ

is generically an isomorphism, it suf�ces to show that ψ |S−
C
induces a bijection

of sets between S−C and B(C). It is explained in [7], Section 3, how to construct
this bijection. �

It remains to generalize the notion of even spin curve. First of all, we
generalize the notion of Aronhold set.

De�nition 5.7. Let C be a quartic plane curve with at most ADE singulari-
ties. A set of three distinct generalized bitangents A = {�1, �2, �3} is called
asyzygetic if one of the following occurs:

• The intersection point of �i and �j is a singular point of C , for some i �= j .
• The points of contact of the �i with C do not lie on a conic K such that all
the hyper�ex lines of C , which are contained in A, are tangents of K .

We recall the de�nition of Aronhold set for a smooth quartic curve:

De�nition 5.8. Suppose C is smooth. A set {�1, . . . , �7} of seven bitangents is
called an Aronhold set if for all I = {i, j, k} ⊂ {1, 2, . . . , 7} such that #I = 3
the triple {�i , �j , �k} is asyzygetic.

For our aims it will not suf�ce to de�ne an Aronhold set in terms of gen-
eralized bitangents. If C is smooth then there is a 2:1 correspondence between
Aronhold sets on C and blow-downmodels of S . The data of generalized bitan-
gents together with a multiplicity will not always determine uniquely a blow-
down linear system up to the Geiser involution. See Example 5.12.

De�nition 5.9. The ADE-zation of C ⊂ P2 is a triple (C �, R, ψ) with R a
surface, ψ : R → P

2 a morphism and C � = ψ−1(C). The morphism ψ is
such that ψ−1(p) is a point if p ∈P2 \ Csing and consists of a union of smooth

rational curves Ei,p if p ∈Csing. For every p ∈Csing the intersection-numbers

Ei,p.Ej,p , are as on [3], page 88.
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The existence of the ADE-zation can be proven as follows. Let ι be the
involution associated to the double cover π �. We can lift ι to S in an uniqueway,
call this involution σ . Then R = S/�σ � is a smooth surface, let p : S → R be
the induced morphism. Then the reduced scheme structure on p∗π

∗(C) gives
the ADE-zation curve C � . The morphism ψ is the unique morphism such that
ψp = π .

De�nition 5.10. Let (C �, R, π ) be the ADE-zation of C . An Aronhold line is a
smooth rational curve D on R that is either the strict transform of a generalized
bitangent of C (which we call type 1) or a component of C � not contained in the
strict transform of C (which we call type 2).

An (unordered) 7-uple A = D1 + . . . + D7 of Aronhold lines is called a
generalized Aronhold set if the following conditions hold:

1. Suppose D is an Aronhold line occurring more then once in A, then D is
of type 2, occurs exactly twice in A and either D2 = −2 or D2 = −1 and
D is tangent at the strict transform of C .

2. Every connected component � of the dual graph of the Aronhold lines of
type 2 (without multiplicities) in A, is of type Ak , for some k > 0.

3. For every connected component � of the dual graph of the Aronhold
lines of type 2 in A, we have an unique Aronhold line D ∈ A of type
1, which intersects some of the components corresponding to the vertices
of �. Moreover, D intersects at most one component, and intersects it
transversally.

4. For every connected component � of the dual graph of the Aronhold lines
of type 2 in A, we have that the subgraph �2 of Aronhold lines occuring
twice in A, is connected, and either a −1-curve contained in C intersects
one of the components corresponding to � or one of the Aronhold lines
occuring twice intersects the strict transform of C .

5. Any three distinct Aronhold lines of type 1 in S are asyzygetic.

Remark 5.11. Suppose C is smooth, let A be a generalized Aronhold set, then
A is a classical Aronhold set.

Example 5.12. Suppose C has a singularity of type A5 and one of type A2. Let
D be the strict transform on R (the ADE-zation surface) of a bitangent passing
through the singular points. Let E1, E2, E3 be the Aronhold lines of type 2, at
the singular point of type A5 , (where E3 intersects the strict transform of C)
and E �1 is the Aronhold line of type 2 over the cusp.

Then both

D + 2E1 + 2E2 + E3 + E
�
1 and D + E1 + 2E2 + E3 + 2E

�
1
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are generalized Aronhold sets, hence D and its multiplicity do not determine
the generalized Aronhold set.

In a very similar way one can construct singular cubic surfaces Y such that
one limit position of a double-six (i.e. lines with a given multiplicity) corre-
sponds to more than one point inDỸ , where Ỹ is the minimal desingularization
of Y .

Proposition 5.13. Let A = {b1, . . . , bn} be a set of Aronhold lines of type 1.
Then the following are equivalent:

1. Any triple of distinct Aronhold lines is asyzygetic.
2. We can choose lines Li , i = 1, . . . , n on S, such that Li .Lj = 0 if i �= j ,
and π (Li ) = bi .

Proof. Recall the following diagram, where R is the ADE-zation surface:

S
p
→ R

↓ � π ↓ ψ

S �
π �

→ P2

.

We have that (2) is not satis�ed if and only if π |π−1(bi∪bj∪bk) admits a section
for some i, j, k pairwise distinct. This is equivalent to π �|π �−1(bi∪bj∪bk )

admits a
section and none of the points in bi ∩ bj , bj ∩ bk and bj ∩ bk are in the singular
locus of C . A reasoning as in [19], Proposition III.1.7, shows that we can �nd
a section to π �|π �−1(bi∪bj∪bk )

, only when the points of contact of the bi with C lie
on a conic K such that if bi is hyper�ex line then it is tangent to K . From this
we obtain the proposition. �

Proposition 5.14. Let A = b1 + . . . + b7 be an unordered 7-uple of Aronhold
lines. Then the following are equivalent:

1. A is a generalized Aronhold set.

2. There are 7 exceptional curves E1, . . . , E7 in S, such that we can blow
down subsequently E1, . . . , E7, if D ∈ A then at least one of the Ei is
contained in π−1(D) and if D occurs twice in A then there are i, j, i �= j ,
such that π−1(D) = Ei ∪ Ej .

Proof. Suppose A is a generalized Aronhold set. Then the pre-image of
an Aronhold line bi of type 1 consists of one irreducible curve Di or two
irreducible curves Di,1 and Di,2 , with self-intersection −1. The �fth condition
in De�nition 5.10 and Proposition 5.13 imply that we can label the lines over
π−1(bi ) as Di,1 and Di,2 such that Di,k and Dj,k do not intersect whenever
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i �= j (if π−1(bi ) consists of one line then we take Di,1 = Di,2 = Ei and the
intersection property holds also). If bi is of type 1, we take Ei := Di,1 .

Suppose bi is an Aronhold line of type 2 occuring twice in A. Then choose
Ei , Ej such that π

−1(bi ) = Ei ∪ Ej .
Consider now the bi which are Aronhold lines of type 2 occuring only

once in A. We have a unique way of choosing exceptional curves Ei over
bi , such that each connected component of the dual graph of the −2 curves in
{E1, . . . , E7} intersects a unique line contained in {E1, . . . , E7}. Hence we can
reorder E1, . . . , E7 to obtain a blow-down morphism to P

2.
Conversely, if (2) holds, then the �rst four conditions of De�nition 5.10

are satis�ed, (see for example [3], page 88), the �fth condition follows from
Proposition 5.13. �

Corollary 5.15. Let C be a quartic curve with at most ADE singularities.
Let S be the desingularization of the double cover of P2 rami�ed along C.
Then there is a 2:1 correspondence between blow-down models S → P2 and
generalized Aronhold sets.

Remark 5.16. In [16], Section 7, there is a 1:1 correspondence between blow-
downmodels S → P

2 and Aronhold sets, but in that paper the blow-down linear
systems are considered up to the Geiser involution.

De�nition 5.17. De�ne the scheme of Aronhold sets A(C) as the quotient of
BMS by the Geiser-involution.

Let b0 be a generalized bitangent. Let E be a smooth irreducible curve
on S such that π (E) = b0. Let BMS,E be the scheme of blown-down models
|L| : S → P

2 such that L.E = 0. The multiplicity of |L| equals

#{σ ∈ Aut(NS(S)) : σ (E) = E, σ (L) ≡ L mod N }

#{σ ∈ Aut(NS(S)) : σ (E) = E, σ (L) = L}
.

The scheme of Aronhold sets containing b0 is BMS,E modulo the Geiser
involution and is denoted byA(C, b0). OnA(C, b0) acts the involution induced
by the involution of Pic(S) �xing the irreducible components over b0. The
quotient T (C, b0) by this involution is the scheme of generalized even theta
characteristics on (C, b0).

Proposition 5.18. Let b0 be a generalized bitangent of C not passing through
any of the singular points of C. Let (X, p) be the marked cubic surface
corresponding to C from Proposition 4.5. Then there is an isomorphism from
A(C, b0) to BMX .
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Let X � be the nodal Del Pezzo surface corresponding to X . Then there is
an isomorphism between DX � and T (C, b0). If C is stable the two schemes are
both isomorphic to S+C .

Proof. Our assumption on b0 implies that p is a smooth point on X , not on any
of the lines of X .

From Proposition 5.14 it follows that there is a 2 : 1 correspondence
between blow-down linear systems on S (which is the desingularization of X
blown up in p) and generalized Aronhold sets on C . From this we obtain a
2 : 1 correspondence between blow-down linear systems on X � and Aronhold
sets containing b0. If X were smooth then there would be a 1 : 1 correspondence
between blow-downmodels on X and Aronhold sets containing b0 (see Remark
3.9). By de�nition ofA(C, b0) this correspondence extends to the singular case.

Suppose now that C is a stable curve. Let C → T be a (suf�ciently
general) 1-parameter family of plane quartics, such that the generic �ber is
smooth and the �ber over o ∈ T is C . Let S+C be the scheme of even spin
structures on C, let T (C, B0) be the corresponding scheme of Aronhold sets
containing B0 modulo the involution. There is an isomorphism of schemes
away from the central �ber. Since S+C is a smooth curve, it suf�ces to give
a bijection of points on the central �ber, to obtain an isomorphism S+C

∼=
T (C, B0).

Given a generalized Aronhold set B , we have B = {E1, . . . , En, F1, . . . ,

F7−n}, where the Ei are Aronhold lines of type 1 and the Fj are (distinct)
Aronhold lines of type 2. We denote with F(Ej ) the (unique) Aronhold line
in B of type 1 intersecting Ej . Let θ be the line bundle on C

� , the ADE-zation
curve of C , such that

θ = OC�

�
1

2

�
�

i

Fi +
�

j

F(Ej )+ 2Ej − 6�̄

�

∩ C �

�

,

with �̄ the strict transform of a general line in P2. Then on every exceptional
component of C the degree of θ is 0 or 1. Let Y be the curve obtained by
contracting all the components of C � such that θ restricted to that component
has degree 0. Then the push forward of θ gives a line bundle on Y . Since (Y, L)
is the limit of family of even spin structures, we obtain that (Y, L) is even.

Given a spin curve (Y, L), take a family of smooth plane quartics with even
theta characteristics with central �ber (Y, L). Associate to this an Aronhold set
containing b0 (this is possible away from the central �ber). Let D1, . . . , D7 the
limit position of the bitangents in the Aronhold set. These lines are of the form
Ei (of type 1) or a sum of Aronhold lines of type 1 and type 2, with only one
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of type 1. The set A consisting of the irreducible components of the Di has 7
elements. Since being asyzygetic is an open condition, all triples of Aronhold
lines of type 1 in A are asyzygetic.

Since b0 does not pass through any singular points of C we have a
canonical isomorphism BMX � → BMS,E , where E is one of the components
of the pre-image of b0. This induces an isomorphism T (C, b0) and DX � . �

Remark 5.19. If we drop the assumption that b0 does not pass through any
singular point, then there exists at least two distinct double-six on X giving rise
to the same point in T (C, b0).

Remark 5.20. We would like to use points in eitherA(C) orA(C, b0) to de�ne
a line bundle on the ADE-zation curve C � .

Fix a point θ in A(C). Fix a blow-down linear system L ∈BMS over θ .
We can �nd seven distinct, effective and reduced divisors Di on S such that

• The support of Di contains exactly one line E(i), and E(i) is contracted
by L .

• All the irreducible components of Di−E(i) are smooth rational curves Fj ,
with F2j = −2 and Fj .L = 0.

• The dual graph of the support of Di − E(i) is connected.
• Di .Dj = −δi, j .

The most natural line bundle to associate to θ is the intersection divisor of C �

with the sum of the push-forwards of the Di minus 3 times a general line and
this divided by two (as in the proof of Proposition 5.18). If we choose a different
blow-down linear system, corresponding to the same Aronhold set, we obtain 7
divisors on S which differ from the Di by the Geiser involution.

Example 5.21. Consider a family of Del Pezzo surfaces of degree 2. Suppose
that the generic �ber is a smooth Del Pezzo surface and the special �ber S is a
nodal Del Pezzo surface with a unique −2-curve F .

The linear system | − KS| is the blow-down of S onto a normal surface S
�

with a node combined with a degree 2 morphism π : S → P2. The morphism π

is branched along a quartic curve C(S). One way of obtaining such a family is
to take 7 points in general position Pi in P2 and then move P3 to a point on the
line connecting P1 and P2 with P3 �= P1, P2. We consider now this case. The
Picard group of S has still rank 8 and is generated by L and the Ei . In Notation
3.1 we gave 56 divisors expressed in terms of L and the Ei . Of these divisors
only 44 de�ne irreducible divisors on S . The reducible ones are the Li, j and Di
for 1 ≤ i < j ≤ 3 and Ci, j for 4 ≤ i < j ≤ 7. They satisfy the following
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relations in Pic(S):

Li, j = F + Ek, Dk = F + Ci, j for {i, j, k} = {1, 2, 3},(1)

Ci, j = F + Lk,m for {i, j, k,m} = {4, 5, 6, 7}.(2)

In total we have 56 curves on S with self-intersection−1. If we contract F then
we get 12 pairs of divisors that coincide.

The curve C(S) is a curve with one node P . If D is an effective divisor
on S with D2 = −1 then D.S = 0 if and only if bD does not pass through the
node P . In total there are 16 bitangents not passing through the node, and 6
bitangents passing through the node. The latter 6 bitangents correspond to theta
characteristics with multiplicity 2.

For the even theta characteristics, we study the Aronhold sets, or, equiva-
lently the linear systems on S giving blow-downs S → P2, modulo the Geiser
involution. We characterize the degeneration of the linear system |D| by the
intersection number F.D:

1. Suppose F.D = 2, then |D| : S → P2 is the blow-up of seven points
P1, . . . , P7 such that P1, . . . , P6 are on a conic, no other set of six points
lie on a conic, no three points are on a line and no two points coincide.

2. Suppose F.D = 1, then |D| : S → P
2 is the blow-up of seven points

P1, . . . , P7 such that P1, P2 and P3 are collinear, no other set of three
points lie on a line, no six points are on a conic and no two points coincide.

3. Suppose F.D = 0, then |D| : S → P2 is the blow-up of seven points
P1, . . . , P7 such that P1 and P2 are in�nitesimal close, no other two points
are in�nitesimal close, no three points lie on a line and no six points are on
a conic.

4. Suppose F.D = −1, then F is in the �xed part of |D|, and the movable
part of |D| is a linear system |D̃| with D̃.F = 1.

5. Suppose F.D = −2, then F is in the �xed part of |D|. The linear system
D̃ = D − 2F is a blow-down linear system.
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The frequencies of intersection numbers are given below:

Linear system |D| \D.F 2 1 0 -1 -2

L 0 1 0 0 0

2L − Em − En − Ep 4 18 12 1 0

3L −
�7

t=1 Et + Ei + Ej − Ek 12 39 36 18 0

4L −
�7

t=1 Et + Ei − Em − En − Ep 12 40 48 36 4

5L − 2
�7

t=1 Et + 2Ei 0 3 0 4 0

8L − 3
�7

t=1 Et 0 0 0 1 0

7L − 2
�7

t=1 Et − Em − En − Ep 0 1 12 18 4

6L − 2
�7

t=1 Et − Ei − Ej + Ek 0 18 36 39 12

5L −
�7

t=1 Et − 2Ei − Ej − Ek − El 4 36 48 40 12

4L −
�7

t=1 Et − 2Ei 0 4 0 3 0

total 32 160 96 160 32

To each even theta characteristic we can associate 16 Aronhold sets. The linear
systems with D.F = ±1 identify all Aronhold sets on C(S) for which the
associated even theta characteristic has multiplicity 2. So 160

16
= 10 even theta

characteristics have multiplicity 2.
It turns out that for every even theta characteristics with multiplicity 1 there

are exactly 2 linear systems |D| with D.F = 2, there are 2 linear systems with
D.F = −2 and 12 linear systems with D.F = 0. In total there are 256

16
= 16

even theta characteristics with multiplicity 1. The symmetry in the above table
follows from the fact that the Geiser involution sends F to −F .

Example 5.22. Consider a family of Del Pezzo surfaces of degree 3. Suppose
that the generic �ber is a smooth Del Pezzo surface and the special �ber
S is a degenerate Del Pezzo surface with two -2-curves F1, F2 intersecting
transversally.

The linear system | − KS| is the blow-down of S onto a cubic surface
with an A2 singularity combined with a degree 2 morphism π branched along a
quartic curve C(S) with a cusp. One way of obtaining such a family is to take 6
points in general position Pi in P

2 and then move P1 in�nitely close to P2 and
P3 in�nitely close P2. De�ne E2 = F2 + E1 and E1 = F1 + F2 + E3.

Then E3 up to E6 still exists. De�ne E2 = F2+E1 and E1 = F1+F2+E3.
Then L1,k , for k = 2 and k ≥ 4, the line Li, j for 4 ≤ i ≤ j ≤ 7 and Ck for
k ≥ 3 are irreducible. The other −1-curves satisfy the following relations
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(3) L2,k = L1,k + F1, L3,k = L1,k + F1 + F2, for k ≥ 4
(4) C2 = C3 + F2, C1 = C3 + F1 + F2
(5) L1,3 = L1,2 + F2, L2,3 = L1,2 + F1 + F2

In total there are six −1 curves with multiplicity 3, and nine −1 curves with
multiplicity 1. From this we can deduce that a quartic curve with a cusp has 10
proper bitangents and six bitangents passing through the cusp.

There are 12 linear systems with multiplicity 1, there are 18 linear systems
with multiplicity 3, and one linear system L with multiplicity 6. The linear
system L gives rise to the double six (L, L). This double-six has multiplicity
3. Hence on a quartic curve with a cusp there are 6 even theta characteristics of
multiplicity 1, and 10 of multiplicity 3.

Example 5.23. Suppose S is a Del Pezzo surface of degree 2 containing 7
curves of self-intersection −2 such that they intersect as E7. Then X contains
a unique line, so C(S) has only one generalized bitangent b, and b is the
unique line intersectingC(S) with multiplicity 4. There is an unique generalized
Aronhold set A and a unique blow-down linear system.

The uniqueAronhold set A has multiplicity 36 inA(C, b), and multiplicity
288 in A(C). The fact that the multiplicity of A is different in both schemes
comes from the fact that b has a multiplicity in B(C).

6. Clemens� model.

An essential tool in the study of the geometry of the cubic threefold X ⊂ P4

is given by its intermediate Jacobian J (X ), de�ned as

J (X ) = (H 3,0 ⊕ H 2,1)∗/H3(X,Z).

Since H 3,0(X ) = 0 we have that J (X ) is a principal polarized abelian variety.
We denote with � ⊂ J (X ) the theta divisor of J (X ). Mumford has established
a connection between the intermediate Jacobian of cubic threefolds and Prym
varieties. Given a smooth cubic threefold X and a line � ⊂ X , there is an
isomorphism of principally polarized abelian varieties:

(J (X ), �) ∼= (P(C, η), �),

where (P(C, η), �) is the Prym variety associated to the double cover η : C̃ →

C coming from the conic bundle induced by (X, �) (see Section 4). Analogous
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to the case of Jacobians of smooth projective curves, Clemens and Grif�ths
de�ned an Abel-Jacobi map (see [11], Section 4):

A : A1(X )→ J (X ),

where A1(X ) is the group of algebraic 1-cycles on X homologically equivalent
to zero modulo the group generated by cycles rationally equivalent to zero. For
a family {�b}b∈B of algebraic 1-cycles with a base point b0, denote by AB the
Abel-Jacobi map base changed by the map b �→ �b − �b0 . In this section we
consider the cases where B is either the Fano scheme F(X ) of lines on X or the
scheme T of rational cubics on X . The maps AF (X ) and AT have interesting
geometric interpretations and both lead to parameterizations of the theta divisor
� ⊂ J (X ).

A complete description of the Abel-Jacobi map AF on the Fano scheme is
due to Clemens and Grif�ths (cf. [11]). In the following, let ψ : (F×F)−� →

P
4∗ be the map:

(�, ��) �→

�
span (�, ��) if � ∩ �� = ∅

TxX if {x} = � ∩ ��
.

Let G : � → P4
∗

be the Gauss map, via identi�cation of P(H 1,2(X )) with P4
∗

through Grif�ths residue calculus (see [14]). Let φ : F × F → J (X ) be the
difference of the Abel-Jacobi map, i.e. φ(�, ��) = AF (�) − AF (�

�).

Theorem 6.1. (Clemens-Grif�ths [11]). We have the following

• The image of φ is contained in � and φ has degree 6 onto its image.
• The general �ber of φ is given by a double six {(l1,m1), . . . , (l6,m6)} (li
pairwise skew, mi pairwise skew, li and mj skew if and only if i = j ) in a
smooth hyperplane section of X.

• On F × F −� we have Gφ = ψ .
• The branch locus of G equals X �, the dual variety of X .

A different model of the theta divisor using smooth cubic curves on X has
been given by Clemens in [10], Section 4. Cubic curves in the family T are
of two types: those contained in a plane sections and smooth twisted cubics
contained in an hyperplane. It can be easily proven that if X ∩ H is a smooth
hyperplane section, then the smooth twisted cubics in H give all the blow-down
linear systems on the cubic surface X ∩ H .

Theorem 6.2. (Clemens [10]). We have the following:

• The image of the Abel-Jacobi map AT : T → J (X ) is the theta divisor
� ⊂ J (X ).
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• The general �ber of AT consists of a linear system LH of twisted cubics
in a single hyperplane section XH = H ∩ X . In particular, this holds for
hyperplane sections of X with A1 -singularities.

• The set of rational plane cubics is mapped by AT to the only singular point
of �.

Let U be the set of hyperplane sections having at most rational double
points. Let

C = {(H, LH ) : H ∈U, LH ∈BMXH },

with, in the case that XH is singular, we de�ne BMXH as BM X̃ H
with X̃ H the

desingularization of XH .

Corollary 6.3. The Abel-Jacobi map AT induces a birational correspondence
between C and �.

Combining the previous results, we obtain a simple description of the
Gauss map on the theta divisor:

Proposition 6.4. There exists a birational map A : C − − → � such that
GA = π where π : C → P4

∗

is the projection on the �rst factor. Moreover the
map A induces a birational isomorphism Ã between

C̃ = {(H, DH ) : H ∈U, DH ∈DXH } − − → �̃ = �/�−1�.

In the following we call C̃ Clemens� model for the theta divisor �.
Essentially, Clemens� model is the blow-up of � at its triple point.

7. The new model.

Let X be a smooth cubic threefold in P4. Assume that all isolated
singularities on hyperplane sections X ∩ H are of type ADE . Fix a line �

on X . Let (Q, θ ) be the associated pair from Proposition 4.2, where Q is a
quintic plane curve and θ an odd theta characteristic on Q . Assume that Q is
smooth and h0(θ ) = 1 (the last assertion is equivalent to θ �∼= OP2 (1)|Q ). For
a general smooth cubic threefold X the above assumptions are satis�ed. We
identify divisors and line bundles, whenever no confusion arises.

Let V = |θ (1)| and d ∈ V . Since

2d ∈ |θ (1)⊗2| = |OQ(4)|

and d is effective, we have that 2d is cut out by a unique quartic Cd ⊂ P2. By
varying d we obtain a four dimensional irreducible family of quartics totally
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tangent to Q . Note that d is also a divisor on Cd . If Cd is smooth, then the
divisor θd := 3KCd − d gives an (odd) theta characteristic on Cd , call the
corresponding bitangent bd . The idea is to take the family of quartics in V
(possibly singular) with all possible even theta characteristics on them.

Notation 7.1. Let U ⊂ V be the set of d ∈ V such that Cd is non-reduced. Let
B0 = {(Cd , bd) | Cd smooth} and B its closure in (V −U )× P

2∗ . We de�ne:

VQ,θ := {(Cd , bd, A)|(Cd , bd)∈ B, A∈ T (Cd , bd)}.

Consider the natural projection

F : VQ,θ → V (Cd , bd, A) �→ d.

Since a smooth quartic possesses 36 even theta-characteristics, F is generically
36-to-1 and hence it is dominant. We show in Proposition 7.13 that the elements
of U are conics with a double line. In the sequel, we show that VQ,θ is a
birational model for the quotient �̃ = �/�−1� and the map F is essentially
the Gauss map G̃ : �/�−1� → P4

∗

.

De�nition 7.2. Let η := θ (−1) ∈ Jac(Q)[2]. The morphism de�ned by
V = |KQ ⊗ η| is called Prym canonical map associated to η:

φ : Q → Q � ⊂ |KQ ⊗ η|∗.

We can de�ne an isomorphism �∗ :| KQ ⊗ η |∗→ P
4 such that {�∗(ϕ(x ))} is

the singular point of π−1
� (x ) (cf. [4]).

If d ∈ | KQ ⊗ η | then we denote by Hd the corresponding hyperplane in
P
4. We call a point in the intersection of X ∩ Q � a vertex. We call � : V → P

4∗

the dual Prym canonical map. Denote Xd := X ∩�(d) for d ∈ V .

Lemma 7.3. Let d ∈ V and let � be a line not contained in Hd . Then the quartic
Cd is the rami�cation curve of the projection πd of Xd from pd = Hd ∩ �.

Proof. Let Bd be the rami�cation curve of the projection πd . Notice that
πd = π�|Xd . A point x ∈ P

2 lies on the intersection Bd ∩ Q if and only if
the hyperplane Hd cuts the plane spanned by �x and ��x in a line containing the
vertex v = �x ∩ ��x , where �x ∪ ��x = π−1

� (x ).
On the other hand, the support of d is given by �∗−1(Q � ∩ Hd), that is, by

planes with vertexes on Hd . Then the quartic Bd cuts the quintic Q in d . Since
Cd and Bd cut out the same divisor d on Q it follows that Bd = Cd . �
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Proposition 7.4. There is a birational map B : VQ,θ → �̃.

Proof. It suf�ces to give a birational correspondence � between VQ,θ and

Clemens� model C̃.
The correspondence between V and P

4∗ is given by �. Suppose Hd is a
hyperplane in P4 such that � is not contained in H . Then Lemma 7.3 assures that
the corresponding plane quartic Cd is the rami�cation curve of the resolution of
π�|Hd . Moreover, if H is a generic hyperplane then Proposition 5.18 implies
that the double-six on Xd correspond to the even theta-characteristics on Cd .
This de�nes the birational correspondence between VQ,θ and C̃ . �

Corollary 7.5. Let G̃ : �̃ → P
4∗ be the Gauss map. Then G̃B = F .

In the following we describe the rami�cation divisor of the model F :
VQ,θ → V for the Gauss map G̃. Moreover, we compare it with Clemens�

model π̃ : C̃ → P4
∗

. We have seen (Proposition 6.1) that the branch locus
of G is given by the dual variety of X . The branch locus of F has additional
components.

Notation 7.6. Denote

C� := {(H, DH )∈ C̃ | � ⊂ H } andH := {(H, DH )∈ C̃ | H ∈ X �}

It follows from the proof of Proposition 7.4 that we obtain a birational map

� : C̃ −−→ VQ,θ .

The map � is de�ned on an open dense subset U � of H. For generic
(H, DH )∈U

� the curve CH is a quartic with one node q , and q does not lie on
the quintic Q .

Let H1 be the closure in VQ,θ of the locus corresponding to quartics with
a node not on Q . An easy calculation shows that H1 has dimension 3.

Let H2 be the closure in ⊂ VQ,θ of the locus corresponding to quartics C
with a node p ∈ Q .

Denote � : P
4∗ − − → V the morphism associating to a hyperplane

section H , such that � �⊂ H , the rami�cation curve of the resolution of π�|X∩H .
We can extend the map �� to whole P

4 such that it is the identity map (see
Lemma 7.3).

If (H, DH ) ∈ C� then � is not de�ned at (H, DH ). Since � ⊂ H , the
rational map π�|XH is not a projection with center in a point, hence we cannot
obtain a quartic curve as branch locus.
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Let �̃ : P� → V the morphism obtained by blowing up P4
∗

along the plane

parameterizing hyperplanes containing �. Denote with C̃ � = P� ×P4
∗ C̃

ν
→ C̃ .

Then C̃ � parameterizes triples (H, DH , p) with p ∈ �∩H . The regularized map
� � : C̃ � → VQ,θ maps (H, DH , p) to the rami�cation curve of the projection
with center p and associates an even theta-characteristic to it. Note that p is on
a line of X ∩ H , hence C(X ∩ H, p) is singular.

We denote with F(X )� the subvariety of the Fano surface of lines on X
given by

F(X )� := {�̃∈ F(X ) : � ∩ �̃ �= ∅} .

De�ne

H� = {(H, DH , p)∈ C̃ � : p ∈ �H with �H ∈ F(X ), �H ⊂ H },

i.e., the set of hyperplane sections such that p lies on one of the lines of X
contained in that hyperplane.

Proposition 7.7. Let d ∈ V such that Xd is a smooth hyperplane section of X ,
the line � is not contained in Xd and the point p ∈ � ∩ Xd lies on one of the 27
lines contained in Xd . Then the quartic Cd is nodal with at most three nodes.
The singularities lie on the common intersection of Cd , the quintic Q and the
bitangent bd .

The locus H2 ⊂ VQ,θ is of dimension 3.

Proof. Let X̃d be the blow-up of Xd in p. Then X̃d is a Del Pezzo surface
containing at least one and at most three disjoint −2-curves, namely the strict
transforms of lines through p.

The morphism π̃p contracts the −2-curves to nodes of Cd (see Example
5.21). Consider now the projection from X with center �. Let �� be a line
intersecting �. All the points on �� − (�� ∩�) are mapped to one point q � (namely
the image of the 2-plane spanned by � and ��). The �ber of π̃� over q

� is a
reducible conic, hence q � ∈ Q . Since �� is mapped to q � we obtain that the node
q of C coincides with q �. The line bd parameterizes lines that are tangent at Xd
in p, so q � ∈ bd .

The locus H2 is birational to a covering of degree 36 onto the set of
hyperplanes containing a line in F(X )� . Since F(X )� is a curve in the Fano
scheme F(X ) ([18], Lecture 2.1), it follows that H2 is 3-dimensional. �

Remark 7.8. Suppose �1, �2 and �3 are coplanar lines having a common
intersection point p. (Then p is called a star point or Eckardt point). If we
project from p we obtain a quartic curve Cd with three collinear nodes, hence
Cd is reducible and contains the line bd . Such a d exists, because the locus of
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cubic surface with a star point in {Xd}d∈V has codimension at most 1, so the
locus of cubic surfaces Xd with Xd ∩ � as star point has codimension at most 3.

Lemma 7.9. Suppose H is a hyperplane such that X ∩ H has non-isolated
singularities. Then X ∩ H is an irreducible cubic surface containing a double
line. Resolving the projection π̃p from a point p∈ X ∩ H not on the double line
gives rise to a double cover of P2 rami�ed along a reduced conic and a double
line, or a triple line union with a line.

Proof. If X ∩ H is reducible then X contains a 2-plane. An easy calculation
shows that then X is singular, which contradicts our assumptions on X . Hence
X ∩ H is irreducible. By the classi�cation of cubic surfaces it follows that the
singular locus of X ∩ H is a double line.

Since XH can be obtained in a family of smooth cubic surfaces, the
rami�cation locus of π̃p is a quartic curve C . Since the singular locus of the
double cover is mapped to the singular locus of C , we obtain that C is non-
reduced. If C were a double conic or a line with multiplicity four, then the
double cover would be reducible. So C is either the union of a conic and a
double line or the union of a line and a triple line. �

We describe what type of non-reduced quartics occur in {Cd }d∈V . Let

N := {d ∈ V : Cd is non-reduced }.

Lemma 7.10. The family V contains no d such that Cd is a double (possibly
singular) conic.

Proof. Suppose d ∈ |KQ ⊗ η| is such that Cd is a double conic. This means
that 2d is cut out by the double conic, hence d is cut out by a conic, so
d ∈ |OQ(2)| = |KQ |. This implies that η ∼ 0, hence θ ∼ O(1). This cannot
happen, since h0(θ ) = 1. �

Let T be the conic cutting out on Q the effective divisor of θ .

Proposition 7.11. The morphism � maps N isomorphically to the set of
hyperplanes in P4 containing the line �. In fact, N = {θ + t : t ∈ | O(1) |}. The
quartic curves Cd with d ∈ N are the union of the conic T and a double line.

Proof. From Lemma 7.10 it follows that d ∈ N if and only if the quartic Cd
contains at least a double line r . This means that d − (r.Q) ∼ θ is effective,
d = (r.Q)+ (T .Q) and Cd = 2r + T . Thus N = θ+ | O(1) |∼= P2 and the last
assertion follows.

Let I be the 2-dimensional subvariety in P4
∗

of hyperplanes containing �.
Let H ∈ I and � := Q � ∩ � be the set of vertexes on the line �. We have seen
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(cf. Lemma 4.4) that the conic T parameterizes plane sections P = Cp ∪� such
that the conic Cp is tangent to �. Then the set � parameterizes plane sections
P over T ∩ Q . Let d ∈ V be such that �(d) = H . If the support of d contains
T ∩ Q , then d ∈ θ+ | O(1) | and Cd is the union of T and a double line r .
The pencil of planes in H containing � gives a line h = π�(H ) in P

2. The
intersection Q ∩ h is the projection of vertexes in H\�, so r = h.

Conversely, let d ∈ N such that 2d is cut out by the non-reduced quartic
Cd = T + 2r . The corresponding hyperplane Hd contains the 5 vertexes in
Q � ∩ �, hence H contains �. In fact, Hd is the unique hyperplane containing �

and the pencil of planes corresponding to r . �

Remark 7.12. The conic T can be reducible. In this case there are d1, d2 ∈ N
such that Cd1 and Cd2 are the union of a triple line and a line.

The �ve points in Q ∩ T correspond to plane sections of X with a vertex
on �. These are the Eckardt planes in X containing �.

Proposition 7.13. There does not exist an H ∈ P4
∗

such that X ∩ H has non-
isolated singularities. Moreover, if d ∈ Im(�) then Cd is a quartic curve with
at most ADE singularities.

Proof. If X∩H had non-isolated singularities, then by Lemma 7.9, there would
be a d ∈ Im(�) with Cd a conic with a double line or a triple line with a line.
However, by Proposition 7.11, non-reduced quartics in V are not in the image
of �. �

Consider the diagram:

C̃ � ν
−→ C̃

Ã
−→ �̃

↓ � � G̃ ↓

VQ,θ

F
−→ V

�
−→ P4

∗

.

We de�ne

X �
F := {H ∈ P

4∗ : ∃�� ∈ F(X )�, �� ⊂ H }

Proposition 7.14. The following properties hold:

1. the branch locus of π̃ = G̃Ã is X � and π̃−1(X �) = H;

2. the map � � induces an isomorphism from C̃ �\(H�) to VQ,θ\H2;

3. the locus in V of points p such that F−1(p) has less then 36 elements is
�−1(X � ∪ X �

F ). Moreover, (�F )−1(X � ∪ X �
F ) = H1 ∪H2 .
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Proof.

1. The map π̃ is regular on the open subset corresponding to nodal hyperplane
sections (see 6.2), where it is just the projection (H, DH )→ H . Then the
result follows from Example 5.21.

2. This follows from Proposition 5.18.
3. The map VQ,θ → V is rami�ed over the locus of d ∈ V such that Cd
is singular. These d correspond to hyperplanes H such that either XH is
singular or H contains a line in F(X )� . �

It is natural to consider the strati�cation of the newmodel VQ,θ correspond-
ing to the number of nodes of the quartics. So we de�ne VQ,θ(δ) the subset of
the model whose general element has a support curve with δ nodes. In this way
we �nd a strati�cation induced in the two divisors corresponding to singular
quartics. We denote the induced strata withHi (δ) := Hi ∩ VQ,θ(δ).

Proposition 7.15. The subset of the quartics in V which are the union of a cubic
K and a line M such that K ∩ M ⊂ Q, is isomorphic to the blow-up of Q in 5
points. In particular, the corresponding subset of H2(3) is one dimensional.

Proof. Consider a line l tangent to Q with l.Q = p + q + r + 2s . The set
of cubics K passing transversally through the points p, q, r with K + l ∈ V is
parameterized by linear systems L with:

2L ∼ O(3)− p − q − r ∼ O(2)+ 2s,

L +O(1)− s ∼ θ (1).

Then L ∼ θ + s . Let Q ∩ T = {p1, . . . , p5} then h
0(θ + pi ) = 2 with

i = 1, . . . , 5.
If s ∈ Q − (Q ∩ T ) then, h0(θ − s) = 0, because θ has a unique section

which is non-zero at s , from the Riemann-Roch Theorem it follows that then
h0(θ + s) = 1. With the same type of argument it follows that h0(θ + pi ) = 2
for i = 1, . . . 5.

Consider the morphism H2(3)
φ
→ Q de�ned as φ(l, K ) = (l∩Q)\(K∩Q).

The �ber of φ over s is isomorphic to P(H 0(θ + s)). Then φ is the blow-up of
Q in p1, . . . , p5, in particular the variety H2(3) is 1-dimensional. �

Remark 7.16. The special interest forH2(3) lies in the fact that, as we observed
in Remark 7.8, the existence of quartics of a cubic and a line in H2 corresponds
to the existence of hyperplanes H such that the section X ∩ H contains an
Eckardt point p and {p} = � ∩ H .



232 MICHELA ARTEBANI - REMKE KLOOSTERMAN - MARCO PACINI

As VQ,θ is a fourfold it is natural to expect that the stratum VQ,θ(4) is a
zero dimensional scheme. We count the number of elements in VQ,θ(4).

De�nition 7.17. A triple θ1, θ2, θ3 of odd theta-characteristics on a smooth
quintic curve Q is called syzygetic if and only if θ1 + θ2 − θ3 is an odd theta
characteristic.

Note that three odd theta characteristics are syzygetic if and only if their
points of contact with Q lie on a quartic curve. Each theta characteristic θ on
Q de�nes a quadratic form qθ on Jac(Q)[2]:

qθ (η) = h0(θ + η)+ h0(θ ) mod 2 .

This quadratic form it closely related to the Weil-pairing �·, ·� on Jac(Q)[2] by
the Riemann-Mumford relation:

qθ (α + β)+ qθ (α)+ qθ (β) = �α, β�, α, β ∈ Jac(Q)[2],

see for example [1], page 290.

Lemma 7.18. A triple of odd theta characteristics θ1, θ2, θ3 is syzygetic if and
only if:

qθ1 (θ2 − θ3) = 0.

Proof. We have that qθ1(θ2 − θ3) = 0 is equivalent to

h0(θ1 + θ2 − θ3) ≡ h
0(θ1) mod 2.

Since h0(θ1) ≡ 1 mod : 2, the above is equivalent to h0(θ1 + θ2 − θ3) ≡ 1
mod 2. �

Proposition 7.19. There are 495 curves appearing as supports of spin curves in
H1(4) corresponding to unordered pairs of conics {C1,C2} such that (C1 .Q)p+
(C2 .Q)p is even for all p ∈ Q ∩ (C1 ∪ C2).

Proof. Suppose D ∈ 2 Div(Q) then we denote red(D) := 1
2
D. If C is a conic

everywhere tangent to Q , then red(C · Q) is an odd theta characteristic on
Q . We are looking for all unordered couples (C3,C4) of distinct conics such
that red(C3 · Q + C4 · Q) ∈ θ (1). Let θ3 and θ4 be the associated odd theta-
characteristics. Then θ3 + θ4 ∼ θ (1).

Let θ1 = θ and θ2 = O(1). We are looking for all θ3 �= θ, O(1) such that
θ1, θ2, θ3 are syzygetic. Given these three, θ4 ∼ θ1 + θ2 − θ3.

De�ne η = θ1 − θ2. Consider Z = (q−1θ1
(0) ∩ q−1θ2

(0))\{η, 0}. From
Lemma 7.18 it follows that the elements in α ∈ Z give rise to syzygetic triple
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(θ1, θ2, θ2 + α), and every syzygetic triple (θ1, θ2, θ3) gives rise to an element
θ3 − θ2 ∈ Z .

We have

qθ2 (α) = qθ1(α) + �α, η�

for every α ∈ Jac(Q)[2] (cf. [19], Corollary I.3.21).
Let α ∈ Z , then �α, η� = 0. Thus α is an element of V = (F2η)

⊥/F2η ∼=
F2

10. We have also qθ1 (η) = qθ2 (η) = 0. It can be shown that the induced
quadratic forms on V coincide and give an odd quadratic form q . The �ber
q−1(0) contains 24(25 − 1) = 496 elements (see for example [16], Section
1). We get 2 · 495 = 990 elements in Z . To any (unordered) pair of conics
correspond two elements in Z , we get 495 pairs of conics in total. �

8. New model and stable reduction of algebraic curves.

In this section we explain one consequence of the existence of our model
for the theta divisor for the stable reduction of non-reduced quartic curves.

First, we recall the stable reduction theorem, a proof can be found in [2],
proof of Theorem 1.1. In this section we denote with � the disc � := {t ∈C :
|t | ≤ 1}.

Theorem 8.1. Let f : C → � be a �at family with Ct = f −1(t) a Deligne-
Mumford stable curve of genus g ≥ 2 for 0 �= t ∈ �. Then there exists a
commutative diagram:

Y
φ

−→ C×� � → C

↓ f̃ ↓ f ×� p ↓ f

� = �
p

−→ �

such that

1. the morphism p : � → � is given by z �→ zk for some integer k > 0.
2. the extension f̃ is a family of Deligne-Mumford stable curves.
3. φ is an isomorphism away from the �ber over 0∈�.

Moreover, any two extensions ( f̃ , p) and (g̃, q) satisfying the above three
conditions have isomorphic �bers over 0.

De�nition 8.2. The stable reduction of C0 with respect to f is the curve f̃
−1(0)

and denoted by R f (C0).
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Note that the stable reduction depends on the family chosen. If the family
f is not a general smoothing of the curve C0, it is usually dif�cult to calculate
the stable reduction.

We consider now the case of the union C0 of a conic T and a double
line L .

Proposition 8.3. There exist in�nitely many �at families f : C → � of plane
quartics whose central �ber is f −1(0) = C0 and f

−1(t) is a Deligne-Mumford
stable quartic, such that R f (C0) is a quartic with one node and everywhere
tangent to a suitable quintic Q with the node on Q.

Proof. Let Q be a smooth quintic curve Q everywhere tangent to T and
satisfying the conditions mentioned at the beginning of Section 7. The divisor
1
2
(T · Q) gives an odd theta characteristic θ on Q . Denote with X the
corresponding cubic threefold and � the line on it. Let V =| θ (1) |, �, �

as in Section 7. Note that C0 belongs to V . Let H2 be the divisor of quartics in
V with a singular point on Q .

From Proposition 7.11 follows that �(Ct ) is a hyperplane not containing �

for t �= 0 and containing � for t = 0. The family �(Ct ), t ∈� gives a curve �

in P4
∗

. Let �̃ be the strict transform of � in P�. Let �0 be the intersection of �̃
with the exceptional divisor. Then by Proposition 7.7, we obtain �̃(�0) ∈H2.
Since �̃�(Ct ) = Ct , for t �= 0, we obtain that if �̃(�0) is a Deligne-Mumford
stable curve, then R f (C0) = �̃(�0).

If we vary Q and f enough then we can �nd families such that �̃(�0) is a
Deligne-Mumford stable curve. If we vary even more, we obtain that �̃(�0) is
a generic element of the associatedH2, hence is a quartic curve with a node on
Q . �
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