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ULTRA-RELATIVISTIC LIMIT OF EXTENDED
THERMODYNAMICS OF RAREFIED POLYATOMIC GAS

SEBASTIANO PENNISI - TOMMASO RUGGERI

The aim of this paper is to evaluate the ultra-relativistic limit of a
recent causal theory proposed for polyatomic dissipative relativistic gas.
The explicit expression of characteristic velocities of the hyperbolic sys-
tem is found in term of the degree of freedom of the molecule and is
compared with the one of monatomic gas.

1. Introduction

In [1] a causal hyperbolic relativistic model of rarefied gas with internal struc-
ture (polyatomic) was presented. The model was completed in [2] with explicit
expression for the production terms using a new relativistic BGK model [3].
The differential system contains a constant parameter a

D-5
a= —
2 9
where D = 3+ f' is related to the degrees of freedom of a molecule given by the
sum of the space dimension 3 for the translational motion and the contribution

from the internal degrees of freedom f° > 0 due to the internal motion (rotation
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and vibration). For monatomic gases D = 3 and a = —1. The singular limit of
the theory, for a — —1, gives the ET theory of monatomic gases of Liu-Miiller-
Ruggeri (LMR) [4]; this property has been proved in [5].

In the paper [1] it was also considered the classical limit obtained when the ratio

WLC2

V= T

is very large (m is the particle mass, ¢ the light velocity, kg the Boltzmann
constant and 7" the absolute temperature), and was proved that the differential
system converges to the corresponding classical ET theory of polyatomic gases
(61, [7].

Instead it was not considered the opposite limit when ¥ — 0 corresponding to
the so-called ultra-relativistic limit. In this limit the bodies are so extremely
hot that the mean kinetic energy of particles surpasses the rest energy or the
mass is extremely small. This limit has been considered in [8] but only for the
equilibrium model with only 5 moments, i.e., for Euler polyatomic gases. Now,
in section 2, we take the limit for the dissipative 14 moments model which was
considered in [1].

In section 3 we find the characteristic velocities in our ultra-relativistic limit and
obtain that they are continuous functions of a.

2. The ultra-relativistic limit for dissipative polyatomic gas

In [1] the authors consider as field variables the quantities

V¥x*)  —  particle, particle flux vector,
T* (x*) —  energy momentum tensor.
For the determination of the 14 state variables one needs the field equations

i.e., the conservation laws of particle number and energy momentum and the
extended balance law of fluxes,

80(Va == 0 5 aaTaﬁ - 0 3 aaAa<B’}/> - I<ﬁY> 5

where dy = d/dx* with x* being the space-time coordinates o = 0,1,2,3. It
is assumed that 7%, A%BY and 1B are completely symmetric tensors and <
.-~ > denotes the traceless part of a tensor. Moreover, the fields (V¥ T*F) are
expressed in terms of the usual physical variables through the decomposition:

2
VE = nmU®, TP =<%F> 4 (p 4 m)nP + 5 U@gh) 4 c% UtUB, (1
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where U? is the four-velocity (U%U, = ¢?), n is the number density, p is the
pressure, 1% is the projector tensor:

1
R L ;U“Uﬁ,

g*® = diag(1,—1,—1, —1) being the metric tensor, e is the energy, 7 is the
dynamical pressure, the symbol < --- >3 denotes the 3-dimensional traceless
part of a tensor, i.e., 1 <®F>3 = THv (hghe — %h“ﬁh#v> is the viscous deviatoric
stress, and g% = —hfovT“v is the heat flux. In this case we can take n, T, U,
1<%B>3 1, q” as independent variables.

The expression of A%BY has been found in [1] and we want now to take its ultra
relativistic limit. We prove here the following:

Theorem 2.1. The ultra relativistic limit of the triple tensor A%AY is:

2hy+ v Y2 A
A“BV:—T nU“UBUY+3E—2mnc2h(“ﬁU7)— )
0 0
_ 3N yeybyr - 3N“ mh@ByY) ¢
02 D] Dy

3 N3 3N ~
) <tx Brry) o 2 231 (apBy) (<aB>3777)
+2D UPUY + 2 5= q “h +3Cst v,

with ~ )
—ho %h}? hy+ }/%
D) = %;;‘,’ —3;*;’2" (hz—i—yahz) ,
B olerR) Ho5
—ho %ﬁ; By +yah2
N = %hyo a;;zo -2 (h n },a;h) 7
3 (eharrgE)  FeaivgEr o & (shsrerdi 4 PYk)
—ho %L;g hy + Yaah;
fu=|% -5 F(eerd) |
hy _ %71; —k <h5+3y8h5>
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372
I 7 7 -
¥ 2hy o 2h,
Dy = _ NS =
Iy 2&—7/ oy 15 5 dy
i ~
5 v 2hy . 1 s
31 = . - » 5= 13 7 Y
—57 —5hs

y3r2—a) if a<?2,

hy={ —y3my if a=2, (3)

y IR, if 2<a.
%Y*SF(S—a)(a—O—S) if a<3,

hy = -3y Iy it a=3,

y 224t R L, if 3<a.

Y 'T(4—a)(a+4)(a+11) if a<4,

—1207 " Iny if a=4,

Ha+1)(a+2)7 9 (R y—2R 4 +R 5 o) =60y 43Ry, if a>4.

In these expressions the numbers R appear and they are defined by

_ _ +oo
Ri=1lim Ry with Rk:/ e V/y2—1ykdy. 4)
T 1

Their expressions are reported in Appendix A.
To prove our theorem we note firstly that, from the calculations reported in [1],

it is evident that the closure is determined by the 4-vector

'a teo -1-£ oTa 1 .
h% = —kgc . e 5 p*I°dPdZI with
R3JO

&)
T 1 27
The closure is
on'® on'® on'®
= T% = AP = : (6)

Va ) - )
IA A 9%,
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Now Taylor’s expansion of K at second order with respect to the state where
Z,B)/ =0is

’ / / 1
B = by Ty Sy P g S

with
/ Lot L z B ~
h* :_ch/w/ o1 e (1 ) }paIadeI, )
3.Jo
, e L ERVI 27 _
hfxﬁyzi/ / e [mH(H”“‘z)Aﬁp]p“pﬁpy(“rﬁ) I°dPdT,
m JR3Jo mc
"aByuv —C Fee 717i[ml+(l+l)l pﬁ} 27 \? =
hy P :2—/ / ek me )PP ] % pP pY pHt pv (l—i-—z) I°dPdT,
mckg J%x3 Jo mc

which are integrable, as it can be seen in [9].
Let us now calculate these integrals. To this end we define

2

mc mc
LMY _me
=1V =

from which it follows

2
oy _my I m
odg ks

Now, from the Representation Theorems, we have that
h® = ho(A, ) 1%, ®)
WP = Cizh’l (A, ) I%1P 1Y 43Ky (A, y) WP )
Ry — C%h;(x., PICPIYIHY 4 Cizh;(x, NROBIIHY) 4 ng (A, ) @B Ry

Thanks to these expressions, it is easier to calculate the above integrals and we
find, in particular,

' _j_mr e
hy = —amkgm’ce ' T /0 J5,I°dT, )
! 4 4 5 _1_M too 27
h2:§7tm ce kg b JZL] 1+W IadI,
o —AmmdeT __ma oo 27 \?
hy= ———— kg / I 1+ =) 7947,
5 kg e o 6,1 ( )

+oo
where  Jp 1 (7) :/0 e YoOshs Ginh™ scosh™ sds |

7
I 18 Jua(y) with y replacedby 7y =y (1 + —2) .
’ ’ me

In effect here ¥ stands for yz and /* stands for I}, = U* to keep the notation
simple. The calculations to solve these integrals are the same as used in [1]; so
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we avoid here to furnish further details. It is not necessary to find the expressions
of h/l, h/3 and h; because we see in (7) that & laﬁ " and hzaﬁ THY are symmetric with
their derivatives with respect to A,; so we can apply the results of sect. IV of

[10] and find that

hy _th_},iz’

4 2ayah’ 2 1 ok (10)
/__7 /_7 ohs /:_7 /_7 ony
ha=—3hs=37%, » B="5h=1575,

Obviously, we can also find directly the expressions of hll, h; and h; and obtain
the same results, thanks to the properties of J,, (7).

Now we want to take the non ultra-relativistic limit of the expressions (9) but,
first of all it is better to clarify what this limit means. It is not a simple limit,
otherwise the independent variables 7y disappears when it tends to zero and we
have only 13 independent variables instead of 14. Instead of this, we do the
following considerations: If a given function F(y) can be written as F(y) =

Fi(y) + F>(7) with limy_, Fzgg = 0, we say that F|(7) is the leading term of

F
F(7y) and substitute F(7) wi{h Fi(y). In other words, we neglect terms which,
in the limit for y going to zero, are of less order with respect to the leading term.
We apply this procedure and obtain that in the ultra-relativistic limit the leading
terms of hé), h’z, h’5 are respectively

’ —1-22 &
hy = —4mkgm®c> (mc®)T(a+ e T ho(7),

/ —1-22 ~

Iy = 4mm*c (mc?)* ' T(a+1)e” '~ ha(y), (11)
, 4 5.7 _{_mA .

hs = — il (mc?)* ' T(a+1)e 7 hs(7y),

kg

with 7o, hp, ho given by the above reported egs. (3). In particular, for the
expression of /15 for a > 3 we have used the property

a—73
R 4=

Ry, for a>3,

which is proved in (31), of appendix A. If we write this expression with a — 1
instead of a and with a+ 1 instead of a, we obtain respectively

a—4
a—1
a—?2 a—2a—4
== "R =2
a+1 at+1la—1

R.,=

Ry, , for a>4,

R > 4 Ry , for a>4,
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and we have taken into account these results in the above expression of /5.

375

After having determined the 4-potential, we are now ready to find the closure

our balance equations in terms of the physical variables.

2.1. The closure at equilibrium

The equations (6) at equilibrium become

mAg
mnU® = 4mm* 3 (mc®) T (a+ e ™ & fig(ye) 1%,

ph%B 4 £ UPUP — 4z S mc ) (a4 1)e” T 2
C

mi
Agﬁy = drm*c? (mcz)’”ll"(a + l)e_l_iL

The modulus of the first one of these equations gives

12)

W {_i (2h2+y5‘?9 )IE zﬁzE+3h2h<°‘ﬁﬂ)]

(13)

mAg
drm*c (me*)* T (a+ l)eilf"TE ho =mn,
and there remains  If =U“.
After that, (12), gives
2
mc
—n=nkgT
p Ye B
=—=— ——mnc
hy dy
where we have used (13);. By using (3) we now have
3nkgT if a<?2
e={3nksT(1-45)  if a=2,
(a+1)nkgT it a>2
from which Theorem 2 of sect. V in [8] follows immediately. Finally, (12);
gives
20+ yahz i
Agﬁy: 7}1 nUaUﬁUV+3il—2mnczh(aﬁU7’):
0 0

AU*UPUY + 349, i PyY)
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with
272
(2—a)(a+5)"5T if a<2
272

A0 — ) T(3-a) _2 nk3T? .
1 R, (a+5),)/1 “m if 2<a<3
—phr s it a=3
2(a+1) P 2ot if a>3

1AV if a<3

2@ Ry i a>3

2.2. First order deviation from equilibrium

The first order deviation from equilibrium of equations (6) is

9hg* ohg* P L a_ye

I I o (ORI
(az ax) M‘“”(ax o7 ) Fere) | 5] Tuv=

= nh*P 32 g OUP) B>
Cc

(14)

on BT on BT :
( oz ) ("‘AE”(a‘M (hg 2+ Py, = AT AP,
E E

From the first two of these relations we obtain now A — Ag, Ag — Ag , Zyv and
substitute them in the third one, obtaining in this way the requested closure. By
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using (8), (10) and (11), egs. (14) become

U™ (A — Ag) + %hyoyauﬂ(xe—ﬂ) h;czhae()te—lgH
A ahZ orTiTTV 7 1QUTTV _
270 ) UURUY Sy~ 2Rh U By =0,

Ohy ayp 7 ap *ho g € ap (7 ,0m0\] u £
(ayU U YhOh (A—2Ag)— a7 u*u +')/2h ho—)/ay U (lp—l”)-i-

2

- oh
¢ Y d(hy+v% )

5 UtUB(UPUYEy )+

31712 ,2 haﬁ

ailz 2 C4 ~ 1
o€ (Uﬂuvzuv)+4()—yc U PV, - T 201 VP 4 c—2U“U"h“ﬁ Ty =

1
m2n

(nh"‘ﬁ + % q“uP) +t<°‘5>3) ,
C

15)

A“ﬂtAgﬁyzH(zhﬁy%y)uaUﬁUV 3¢ hzh(“ﬁUY)} (A—Ag)+
+ —3——9/i U*UPUY +3 222 sy UH(Ay — AE)+
972 Iy HoH
< 3,92 (a8 mm _ 32y (B p
+= Brg, v WOR =32 Iph P ROR | (A —AF)+
+ (—%ﬁs—% %——yz A h5) UCUPUY (UHUY Sy )+

32 (452,905 eybyn vy, o] 9hs\ By vy

2 4- 2 4- 2 5. 2
= hsHORPIUVE,y —  HhsU PR e - 2 2 hSUWhBV)(U“UVzW)} mr.
5 5 15 fioks

Now eq. (15); contracted with Uy, and with /9 B gives respectively the following

egs. (16); and (17);; eq. (15), contracted with UqUpg, with hyg, with Uahg and
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with h§3h2>3 gives respectively the following eqs. (16); 3, (17), and (18):

oh ohy
—hy(A— ).E)—O—B—;Ue(lg—lg) (h2+7/a )U’"‘U"Zuvfo (16)
oho Pho s g OUntYE)

1= = dhy E 1 dh, 5
—;/ho(l—ﬂ,E) "}’ (h()—j/a )UH(AH_A’M)'F?(’}/T,Y — ghz) (U“U"Zuv):

hokg
mzczn ’

%Oczh“ (Ag —AE) +2mh®HUY 2y =0, (17)

L/ g\ s E ahz 5 hokp s
P(—ho—.—yaiy)l’lu(lﬂ—l”) ay”l#UVZ“v—mq s

— 2Ry hH<Ep>Vyy, = #;’ffnﬁ“% : (18)
Now we obtain the expressions of (A — Ag), U® (Ag — AE), URUY X,y from
(16), h®% (A9 — AE) and hPHUY X,y from (17), WH<h®>3VE,, from (18); after
that, we substitute them in (15)3 so obtaining

3 N Ny

afy
AP _ A%PY lenU“UﬁUY 3D—17rh(“’3U7)+
3N (aybyn 3N @y | 56
-5 2 B lapBy) 4 3¢, f(<aB>3gy7)
+ 5 p, VU5 +3Cs uv,

with Dy, Ny, Ni1, D2, N3, N3, Cs reported above in (2)_g.
In fact, from (16) we get

My hokg 0 M, hokg
A—Ap=— U (Ag — A
E D m%c?n (o —Ag) = Dy m2cn
Ms hokg
UPUY S,y = = —B
MV Dy m2etn

where M, M, and M3 are the algebraic complements of the third line of D;.
Similarly, from (17) the following expression follows

M M, hokg
D> m2c*n

M, hok

s Suyrv 2 hokp 5
, hHrUVE,, = — ——F¢°,
9 Ky D2m2c4nq

h56 (l —AE)
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where M, and M, are the algebraic complements of the second line of D.
Finally, from (18) we get

1 hy kg
h“<6h9>3v2 -y t<69>3 )
Y 2" hy m*c*n

By using these results, we find with a simple substitution the closure of our bal-
ance equations in terms of the physical variables and this is reported above in
the theorem expressed by (2).

By using (3), we can find the leading terms of our closure. We may also cal-
culate the wave speeds and we do this in the next section, distinguishing some
sub-cases according to different values of a.

3. Characteristic velocities in the ultra-relativistic limit

Let u be the characteristic velocities of the differential system with unit of mea-
sure chosen so that the light speed is ¢ = 1. We find their values according to
the following cases:

3.1. Casea < 4:

We find

u =0 with multiplicity 6

1
ui = < with multiplicity 2
1 3 if a<2
2_ 1 . T . _ ~
W, = z with multiplicityl and with E { atl if 2<a<4
3
ui = < with multiplicity .

3.2. Casea=4:

We find
u =0 with multiplicty 6
1
=ui= < with multiplicty3

3
3 with multiplicty 1.
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3.3. Casea > 4:

We find

U =0 with multiplicty 6

1 —4)(R1_4)?
) (a=4)(Ri-a) with multiplicity2,

My = +
a+1  (a+2)%a?(R_y)*—(a+1)(a—4)(R1-4)?
(19)
and ,u22 < ,u32 the solutions of the equation
1 a+1 1
a+1 (a+1)(a+2) (a+2)
1 a+2 (a+2)u?
2(a+l) R_j_4 2(a+l)2(a+2) R_| 4 2 (a+1)(Ba+11) R_j_4
“R_a a-3 R_4 3 a—3 R_4
4at; RRlaa 4 (a+:l)£g+2) R[}l;a 4 (a+llz)7a+2) R&l;a 2
4atl Ryg
0 0 -3 ®
+1)2 R_j_, 1R 14

2 (ua—3> Ria 4 % Rla 0
R L 0
2 (a+1((Ba+ll) R4 4 (a+1)(a+2) R_1_4 “2 _4atl R4
3 a—3 R o a—3 R 3a3 Ra |_ 0. 20)
$ 942 (342 4 6a +8) 8 at2 (344 8) 0

1 2
befGars)  neletlenge e
0 — 16 at2 4 a2
a— a—

The graph of the u? # 0 is reported in the Figure 1.

These equations show that the eigenvalues do not depend on ¥; moreover,
they depend on a and on the parameter . Through numerical calculus, we
have confirmed that they are real; more than that, we have obtained that they do
not exceed the speed of light.

In any case, we see that there is continuity with respect to a in the limit for
a — 4 because (19) has limit £, while for the equation (20), we can multiply its
last 3 columns by (@ —4) and, after that, take the limit. In this way this equation
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2
u
i 2
0.6:— M3
osf
0.4f
s 2
03l w3
0:2 5
Wi
01
1 1 | 1 1 a
2 4 6 8 10

Figure 1: Square of characteristic velocities as function of a.

splits into two equations, that is,

1 5 1 640 320 0
5 30 6 |=0 and 320 480 u? 32| =0;

1 6 6u? 0 —32 8

the first one of these equations has solution u?> = % and the second one has
solution pu? = %, as for the case a = 4.

3.4. Proof of the above results

The equations for calculating the wave velocities [ associated to our balance
equation are independent from the variables used; so we may also use the La-
grange Multipliers as independent variables and, in this way, they are
(n,rﬁla) SVE=0 | (n,rﬁla) ST —0
Cc c

(na - %za) §A%<Br> _0,
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with ngn® = —1, ngl* = 0. They can be expressed as

RN 9%h® 9% B
(na Cla) 77 P 3o Mﬁawzwézw —0, Q1)
[ 92n@ 2K 2K
(na — %la) 6& +

8Ag+ 55— 0%uy | =0,
925 A """ 9Agadg " OAgITuy ’”}

RN 9% 9%h® B
(= 1) x5, 1 axg,a0, M0 ax,, 08, O | =0

It is convenient, for the subsequent calculations, to consider the quadratic form

B i PR , Oh 2h
0= (re—" 1) { Gz (BN +2 5757 080 +2 5755 979y

92h @ 24 a

A ST+

2h’a
——————0%3,6Z,uv| =
I%p, 0Ly PYOTHY

B n @ Pl N\ |
= (na—21a) {8/16 ( — )+57L,35 (axﬁ +02,8 55 )| =
B u on'

= (I’lalea) (SA«A(g <(M4> .

It follows that egs. (21) can be written simply as

1 J0 0 1 J0

2060 0 200k
By using (5), we see that

o' B Foo 1A ax AT
5(8)%)_06(/9{3/0 e 87LA T°dPdT

Since ngA is independent of Ag, we deduce that

N _—c teo_-x dx dx AT dP
5<81A>_k3 (/%3/0 e S S TAPAT )8 2.

So the above expression of Q becomes

e **l X ax (x a 7D _
0= (”la ltx E (/9{%/ a),A 8/13 A deI) 0A 8 =

oo .
("a**la / / 1 ox 57LA p*I°dPdT]| .
c R EXN

1 a0

290655,
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By calculating the coefficients of 6 A4 and & Az at equilibrium, it follows
Heo p 2 -
Q:( / / m7L+ 1+-= z)lﬁp} aiskA p(XIadeI .
C R3 a)LA

From this result it is evident the convexity requirement and, consequently, hy-
perbolicity of the field equations. By using the expression (5), of ¥, it follows

B i 2% 2 I h Y
Q—(na—?la) {(W (62)2 + axaxe‘mm"“ S SA ST+

aZh a 'OCLW

‘aByuv
87ng 8/1 511; 52,9 +2—— 8/1,3 6)1:; 5Zﬂv +/’l 5Eﬁy5zuv .

Here it was not necessary to take the traceless parts of h;a“ ¥ and of h/zaﬁ g
because they are contracted with traceless tensors.

We now calculate this expression of Q in the reference frame where [* = (¢, 0,0, 0),
n*=(0,1,0,0) and use the above expressions of he, hla“v, zaﬁwv. More-
over, we take as independent variables 653, 6D = 8Xp — 0X33, O g = 6X00 +
5233 — 26211, 57(,2, 5202, 5212, 6)L3, 5203, 5213, 5[.11 = 51, 5,[12 = 57(0,
Ouz = 86Xy, Olg = OA1, SlUs = OXo; since 8Xy) = OX; + X + 6X33, it
follows that

0L = % (0X00 — Olg) , 0L = é (26Zp0+0uUs+36D)
555 = é (26500 + 81t —38D) .
By using these properties, we obtain the following results:
e The derivatives of Q with respect to §X,3, 6D lead to the equations
hspu X3 =0 , hsudD=0,

which has the eigenvalue u = 0 with multiplicity 2.

e The derivatives of Q with respect to §A;, 62z, 6212, lead to the equa-
tions

. dh dh 2.
b (Fo= v ) teom) -2 52 (5t + 2 (2 5210) =0,
u { 8h2

4 (- Jh 4 .
T2 (eom)— 1 (254752 ) (@om)| + hs @0z =0, @2)

25 A A (P65 =
Y/’lz(CS;Lz)-O- 5 hs (¢ 6Xp2) + 1 5 hs(c®6Z12) =0.
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We note that this system has the symmetric form; its eigenvalues are y =
0 and two others of opposite sign which are the solutions of the equations

& (ho—v%2) —29k 2l
-2%% i (2hsrr%y) ks =00 @
27y Lhhs 1?75 hs

e The derivatives of Q with respect to 0A3, dXo3, 0X13, lead again to the
previous equations but with dA,, 8X, 0L, replaced by the new vari-
ables. It follows that all the 3 eigenvalues of this system have multiplicity
2.

e The derivatives of Q with respect to §1; lead to the equations a;; 6 ; =0
with a;; = a;; and

_ dhy - oh
1W=MKhy=pajy,ap=—p—=_— 9y =paj,,a;3=— #(h2+YT;):#aT3»

1. . 9%hg
a14=}h07015:2h2 ,oaie=0 azz—llaz = paj,

(kg PR\ .1 ([, _dk _ ,oh
023—#(27y+7a7?/2>—l~10237024—?(hO—YTY)JzS——ZTYva%—O»

1 ~ 8?15 82/715 1 7 ahz
= — 17h 15y—= =uai = — hy —3y—=],
ass 45u( s+ ”ay*”z 8}/2) Halyax = 3 <5 2 3Vay)/

2 ohs wa 37
BT (h5+3ya) a6 =0 a44:“?(h0—737;):l¢a§4

N - dhs
~ 2 25— pats,
hy,ass = 15”(h5+y8y> Uass,

ohy 2
ags =—2U—— oy =lays, age = — 3

<=

4 1

ase = — Ehi o as6 = *Hhs M g -
We appreciate that also this system has the symmetric form. Moreover,
we see that it gives again the eigenvalue yu = 0 with multiplicity two and
a bi-quadratic equation for the determination of the other 4 eigenvalues.
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In fact, the determinant of the coefficients can be written in the form

pay Haiy Hais ai4 ais 0
par, pay  May a4 as 0
uays Hass unay as4 ass 0
as ax ass may, Hays ase
ais as ass Hays Hazgs ase
0 0 0 ase ase u agé

It follows that, in correspondence to i = 0 we find duy =0, dus =0,
while the other 4 unknowns are linked by only 2 equations, that is

aa Sy +axs S o +azs O U3 + ase S e = 0,
ays Oy +axs Oy +azs Sz +ase S = 0.

Finally, the other eigenvalues are the solutions of the equation

an ap ap a4 a15 0
ap ax a3 a2 a5 0
aps ay;  ay as4 ass 0
(24)
2 % 2 %
a4 a4 asy4 H=ayy H=ays a6
2 2
ais as ass U ays ucais  asg
0 0 0 dqe ase a26

So we have found the eigenvalue p = 0 with multiplicity 6, the other 4 eigen-
values of eq. (24) each with multiplicity 1 and the other 2 corresponding to eq.
(23) with multiplicity 2.

Let us now study the solutions of these equations for the different possible val-
ues of a.

3.5. Thecasea < 2.
With the above expressions of /;, we have that eq. (23) can be written as

2I(2—a) 5T (3—a)(a+5) 5T (3—a)(a+5)

5ST(3—a)(a+5) 6I'(4—a)(a+4)(a+11) 6I'(4—a)(a+4)(a+11) |=0.

5T(3—a)(a+5)  6T(4—a)(a+4)(a+11)  30u2T(4—a)(a+4)(a+11)
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If we subtract the second column from the third one, we find

30 (uz—;) ['(4—a)T(2—a)T(3—a)(a+4)(a+11)f(a) =0,

with f(a) = 13a® + 564> 4 137a+ 334. We note now that f'(a) > 0Va so that
f(a) =0 has only one real solution. But lim,_, .. f(a) = —cc and f(—1) =240
so that the only real root of f(a) is less than —1 and for a > —1 we have f(a) >
0. Consequently, our equation gives p? = %

Instead of this, eq. (24) with the above expressions of /; becomes

! 3 $(a+5)
3 12 D(a+5)
Ya+5) V(s  leledailhGa
! 4 Zﬁ,o(a-&-S)
2a+5)  W(ats)  §lernGoa
0 0 0
1 %(a+5) 0
4 ?(a-&-S) 0
D(a+5) 8 (er)atl)3-a) 0
=0.
4u? D(a+5)p? —Z(a+5)
Plarsue  fllgnpion,e g legiie
_%(a-&-S) _% (a+4)(a2tlal)(37a) i (a+4)(a24:1al)(3,a)

This equation has solutions p? = % and p? = g (We have to take into

account that 2a® + 104 + 18a +23 > 0 for a > —1 and that 134> + 564> +
137a+334 > 0 fora > —1).

3.6. The case a = 2.

We note that 7; = 3k, and hy = 13—0515 so that we can add to the third column of
eq. (23) the second one multiplied by —é and we find p? — % multiplied by a
term proportional (with positive coefficient) to

70
—~4lny+1 D

70
! 56
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and the limit of this determinant is 56. So we have found also in this case the
eigenvalue p? = %

Let us consider now eq. (24); with the above expressions of /;, and after some
easy simplifications, it becomes

—Iny —3Iny+1 $(a+5T(3—a) —Iny
—3Iny+1 —12Iny+7 D (a+5)T(3—a) —4Iny+1
$(a+5)T(3-a) D(@+5TB-a) Y(a+4)(a+11)T4-a) A (a+5)(3-a)
—Iny —4Iny+1 D (a+5)T(3-a) (—4Iny+1)p?

2(a+5)T(3—a) W(a+5)Tr@3-a) S(a+4)(a+11)T(4—a) W(a+5)T@E—a)p?
0 0 0 ~%@+5rG-a
2(@+5)T(3-a) 0
Ba+51r03-0a) 0
S(a+4)(a+11)T(4—a) 0
D(a+5r3-—a)p? —2(a+35)I'(3-a) -
ta+d@+1)TEd—a)p®>  —E@+4)(a+11)T(4—a)
— £ (a+4)(a+11)I'(4—a) & (@+4)(a+11)T(4—a)

We divide now its columns 1, 2, 4 by Iny and see that the eigenvalues u are

functions of ﬁ; to find the limiting terms of these functions we take the limit

for v — 0, and obtain

32 16
-1 -3 -1 213 613 0
_ 16 8 —0N-
-3 —12 4 |=0 and |%13 8.13u2 -213|=0;
2 8 2
~1 -4  —4p 0 -313 213

the first one of these determinants is the minor of the previous one where the
lines 1, 2, 4 intersect the column 1, 2, 4 and, similarly, the second one of these
determinants is the minor of the previous one where the lines 3, 5, 6 intersect
the column 3, 5, 6. So we find the eigenvalues u? = % and p? = %, as in the
previous case.
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3.7. Thecase2 <a<3.

We can add to the third column of eq. (23) the second one multiplied by —% and
we find u? — é multiplied by a term proportional to

2(a+2)R .7 Ar(3—a)(a+5)

Ar@d-a)(a+s) r@-a)(a+4)(a+11)

and this determinant is different from zero in the limit for Y — 0. So we have
found also in this case the eigenvalue u? = %

Let us consider now eq. (24), with the above expressions of /;; we multiply its
first line by y**!, its lines 2 and 4 by ¥**2, its remaining lines by 7°; after that,

we multiply its columns 2 and 4 by ¥, and its lines 3, 5, 6 by Y>. So it becomes

R, (a+1)R_, 1T(3—a)(a+5)y"?
(a+1)R_, (a+1)(a+2)R_, AT(3—a)(a+5)7y?
4rG-a)(a+5) Ar3-a)(a+s) Br@—a)(a+4)(a+11)
R_q (a+2)R_4 ArGB-a)(a+5) 72
2r(3—a)(a+5) - 0r@E-a)(a+5) Srd—a)(a+4)(a+11)
0 0 0
R_, 2T(3—a)(a+5)y? 0
(a+2)R_, ~0rE—a)(a+5)y? 0
AT(3-a)(a+5) ST(@—a)(a+4)(a+11) 0
(a+2)R_qp? —0rB3-—a)(a+5)yr?u? —2T(3—a)(a+5)y2 -
—¥r3-a)(a+5)u? ir(4—a)(a+4)(a+11)p? —AT(@4-a)(a+4)(a+11)
—2r(3—a)(a+5) —AT(@A-a)(a+4)(a+11) T4 —a)(a+4)(a+11)

This equation shows that the eigenvalues are functions of y*~2; their leading
terms can be obtained by taking the limit of the above determinant for Y — 0. In
this way it splits into the following two equations

1 a+1 1 2 5 0
_ 8 4 41 _0-
a+1 (a+1)(a+2) a+2 |=0 and |3 Fu? —15/=0; (25
2 4 1
1 a+2 (a+2)u 0 - =

the first one of these determinants is the minor of the previous one where the
lines 1, 2, 4 intersect the column 1, 2, 4 and, similarly, the second one of these
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determinants is the minor of the previous one where the lines 3, 5, 6 intersect

the column 3, 5, 6. The first one of these equations has the solution uz = alﬁ

and we note that its limit for a — 2 gives the solution pu? = % of the previous
cases; the second equation has solutions u? = % like in the previous cases.

3.8. The case a = 3.

We have that eq. (23) becomes

10R_3y°° 2y ®(1-5Iny) — 32y Sy
2y ®(1-5ny) 18.49y77 1.49y7 | =0,
~Zy %Iy 249977 249y 72
from which
, 132 y

W =575 51a7r, —329(1—51ny)?

whose limit for y — 0 is again u? = % because limy_,0 7(1 —51ny)> =0.

Let us consider now eq. (24), with the above expressions of /;; we multiply its
first column by ¥* In, its second and 4’ column by ¥’ Iny, the other 3 columns
by ¥°; after that, we multiply its second and 4" line by ¥, and the lines 3, 5, 6
by ¥?; after that, we divide its lines 1, 2, 4 by In 7. So it becomes

R-3 4R_3 § (—4+ ﬁ,)
4R 3 20R_3 $(-20+ %)
8yIny(—4Iny+1) $my(—20ylny+97) 19.7.14
R-3 SR_3 ~8 (zo_ %)
~2y(ny? B (-symy+y)Iny §.7.14
0 0 0
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R3 — 1 0
5R_3 B (-5+m7) 0
~$my(0ymy-3y) §.7.14 0
=0.
5R_3u? B(-s5+ lnly) ®
Bny(-Symy+y)u? $.7-14p? — 714
2 y(iny)? — %714 =714

Now, we have limy._,g }/% In y = 0, from which limy_,o 7(In ¥)? = 0; it follows
that at the limit for Y — O our equation splits into (25) calculated in @ = 3 and in
(25),. So we obtain again the solutions u? = % and u? = %, like in the previous
cases.

3.9. Thecase3 <a<4.

We have that eq. (23) gives

21 12 (a+1B—a)* (Ri-a)’r"*

5T S RT@—a) (a2t dat )@ 12t 1)2(at 22 (R_q)Ppe

whose limit is u? = é

Let us consider now eq. (24), with the above expressions of /;; we multiply its
first column by ¥* and the other columns by 7°; after that, we multiply its first

line by ¥*~3, its second and fourth lines by Y2, and the other lines by 2. So it
becomes

R, (a+1)R_q 2t
(@+1)R_, (@+1)(@a+2)R_q platPai2lp |
platlPp e @Rl g ha 18 (44 4y g+ 1) T(4—a)

R, (a+2)R_q 2Bl p |,
4Ry 4R e St 4)(at 1)T(4-a)
0 0 0
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R_4 44 R, 0
(@+2)R_q glaedp |, 0
2 @flBa ) p | ppa S(a+4)(a+11)I(4—a) 0
(@+2)R_ 12 gl p | 2 —datlp g,
4(a+l%a+2 T $a+4)(a+11)T(4—a)p? — A (a+4)(a+11)T(4—a)
—datlR e — 2 (a+4)(a+11)T(4—a) (@+4)(a+1)I(4—a)

This equation shows that the eigenvalues are functions of Y*~¢; their leading
terms can be obtained by taking the limit of the above determinant for y — 0.
It follows that at the limit for y — 0 our equation splits into (25). So we obtain
again the solutions 2 = alﬁ and u? = %, like in the previous cases.

3.10. The case a =4.

We have that eq. (23) gives

o 1 1125(R3)*—192R 4+25(R 3)*(Iny)"!

575  48R_4(—5Iny+1)—900(R_3)?

whose limit is u? = é

Let us consider now eq. (24), with the above expressions of 4;; we multiply
its first column by y° and the other columns by 7°; after that, we multiply the
second and fourth line by Yy and the lines 3, 5, 6 by 17 So it becomes

R_4 SR_4 50R_5
SR, 30R_4 300R_s
1 1 40 6
SOR.s iy 300R.s % (16 - W)
R_4 6R_,4 0
1 1 40 6
0R.sl  120Rsgh % (8 - W)
0 0 0
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R4 20R_s 0
6R 4 120R_s 0
230 1
R ~9 (8- shy) 0
=0.
6R_4u? 120R_5 u? —-2R;
ROR sp il 32 (=54 ) 2
2 1 32 8
“3Rsmy 3 —3

This equation shows that the eigenvalues are functions of %; their leading
terms can be obtained by taking the limit of the above determinant for y — 0.
It follows that at the limit for ¥ — O our equation splits into (25) calculated
in a = 4. So we obtain again the solutions yu? = 1 and u? = 3 , like in the
previous cases. But in this case we note that u? 7 +] becomes u? = é, the
same value which we obtained from eq. (23). So in the present case we have
the elgenvalues u = 0 with multiplicity 6, and u? 5 with multiplicity 3 and
= =3 3 with multiplicity 1.

3.11. The case a > 4.

We have that eq. (23) gives the above reported eq. (19);. Through numerical
calculus we obtain the graphics in picture 1 which shows that 0 < u? < 1.

Let us consider now eq. (24), with the above expressions of 4;; we divide its first
line by y~¢~! R_, and the other lines by y~¢~2 R_,; after that, we multiply all the
columns, except the first one, by ¥; finally, we use the identity Ry, = %R_u
and exchange the third with the fourth line and the third with the fourth column.
So it becomes the above reported eq. (20).

Through numerical calculus we obtain that its solutions are real and do not ex-
ceed the speed of light.

A. The R; numbers

Since the Ry, numbers are heavily present in our limits, it is important to see that
their expression is

r(-1-%
R = \f c 1k2). (26)
r(%"
To prove this relation, we consider firstly the function f(y,y) =e 77 —1—yy;
since its derivative with respect to ¥ is negative Vy > 1 and, moreover, f(0,y) =



ULTRA-RELATIVISTIC LIMIT OF EXTENDED THERMODYNAMICS 393

0 we obtain that e 7Y < 1 + yy.
Let us multiply now the relation 1 < e~"¥ < 1+ yy times 1/y? — 1y* and inte-
grate in d y:

/ \/yz—lykdy</ e"’y\/yz—lykdy</ V2 — 1ykdy+
1 1 1
~+o0
-H// V2 —1y"dy.
1

If k£ < —3 all integrals in the left hand side and right hand side of this relation
are finite numbers and we can take the limit of this relation for ¥ — 0; we see
that the left hand side and the right hand side have the same limit, so that

—+oo
sz/l V2 —1ykdy. (27)

Since this integral is known in literature, we can use its expression and find (26).
But, for the sake of completeness, we include here the proof of how (27) leads
to the expression (26). To this end, let us use in eq. (27) the change of variables
y = coshx and find

oo
R = / sinh? x cosh* xd x. (28)
0

Now we use the definition of the Beta function
1
B(t,s) = / (1—x)""1xldx,
0

and use for it the change of variables x = cosh™2 g so that it becomes

0 h?g—1
B(t,s) = —2 <C°Sq

t—1
5 ) (cosh ¢)72*"! sinh gd g =
cosh” ¢

~+ oo
—+ oo
= 2/ (cosh ¢) 72"~ (sinh ¢)*~1dq.
0
By comparing this result with (28), we find
1 3 k
Rr==-B|=-,—=—-1].
72 <2 "2 >
But the Beta function satisfies the condition

B(t,s) = ——=
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so that

R, IT(=5-1)r(3) 10 (=5-1)T(3) 7 (2

1
A )

where we have used the known result I (%) = /7. In this way we have proved
eq. (26) in the case k < —3.

There remains to prove it also in the case —3 <k < —2.

To this end, let us consider the above eq. (4); and integrate it by parts as follows

_ e 1 [+ , 3
Rk:/1 efyy\/y2—1ykdy:§/l ylemm {(yz—l)'} dy=

1 I
=3Pt (o)

- 3 1.+m <y2 _ 1)% [(k— DyE2e 1y — k! e,y}} dy—
1

1
= 3/ ¥ 71 Tem '[(kfl)y"fwk“f(kfl)yk‘2+wk"]dy=

k—1 k— 1 _
= *TRkJr TRk 2+ ;/Rk+1 Zkal ;
(29)
from which we deduce that
(k+ 2)Rk = (k — I)Rk,Q + yRk+1 — ’)/Rk,1 . (30)

Now, when k < —2, all the terms Ry, Ry_», R;_ are convergent, as we have seen
above, while YR, | has limit zero (we omit the proof for the sake of brevity); so
we can take the limit of the above relation for Y — 0 and obtain
k—1
(k+2)Rk: (k—l)Rk_z or R,= mRk_Q for k< -2. 3
Since we have to consider only the case —3 < k < —2, it follows that k —2 < —4.
So we can use (26) for R;_;; in this way, (31), gives

k—1ym T(-5) k-1ym T(-5-1) —4-1

k=

So we find again (26) but Vk < —2.
If k is an integer number, (26) assumes simpler expressions

2n—2)11 2n+1 Qn—1)11 1

T
R_ = _ g —
T n—2 (a0 e T Ty T e 2

thanks to the known result

(net) = (1) st e
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