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SINGULAR CUBIC FOURFOLDS CONTAINING A PLANE

PAOLO STELLARI

In this paper we consider cubic 4-folds containing a plane whose dis-
criminant curve is a reduced nodal plane sextic. In particular, we describe the
singular points of such cubic 4-folds and we give conditions on the geome-
try of the plane sextics so that all the associated cubic 4-folds are singular.
Moreover, we construct a family of smooth rational cubic 4-folds whose dis-
criminant curve is reduced but reducible.

1. Introduction.

In this paper, a cubic fourfold is a hypersurface of degree 3 in P
5. Beauville

and Voisin (see [1], [2] and [16]) proved that if C is a smooth plane sextic and
θ is an odd theta-characteristic such that h0(C, θ ) = 1, then the pair (C, θ )
determines a cubic 4-fold containing a plane. In [8], Friedman and Casalaina-
Martin showed that when C is an irreducible nodal plane quintic and θ is the
push-forward of a theta-characteristic on the complete normalization C̃ of C ,
then the corresponding cubic 3-fold is smooth.

The aim of this paper is to study the relation between cubic fourfolds
containing a plane and reduced nodal plane sextics endowed with odd theta-
characteristics. Our main result is Theorem 3.1 which gives an explicit descrip-
tion of the singular points of a cubic 4-fold X containing a plane P which
is associated to a reduced nodal plane sextic C and to a generalized theta-
characteristic θ on C with h0(C, θ ) = 1. In particular, this result analyzes
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the connections with the geometry of θ and C , it counts the number of singu-
lar points and it gives an estimate of the rank of the free abelian group NS2(X )
generated by the equivalence classes of the algebraic cycles of codimension 2
in X . It is worth noticing that, due to the work of Hassett ([11] and [12]), a
better understanding of the lattice-theoretic properties of this group can give in-
teresting information about the geometry of the cubic 4-folds (for example, their
rationality).

Proposition 4.2 gives some suf�cient conditions on the geometry of a plane
sextic which imply that all the associated cubic 4-folds are singular. Proposition
4.7 shows the existence of a family of smooth rational cubic 4-folds whose
discriminant curve is a reduced nodal plane sextic.

In Section 2 we prove some general facts about cubic 4-folds and theta-
characteristics for nodal reduced (but possibly reducible) curves. We will work
over the complex numbers.

2. Cubic 4-folds and theta-characteristics.

Given a smooth curve C , a theta-characteristic is a line bundle θ such that

θ⊗2 = ωC ,

where ωC is the canonical sheaf of C . We say that a theta-characteristic is even
if h0(C, θ ) ≡ 0 (mod 2) and odd if h0(C, θ ) ≡ 1 (mod 2). In particular, by the
adjunction formula, if C is a smooth plane sextic, a theta-characteristic on C is
a line bundle such that

θ⊗2 = OP2 (3)|C .

It is a classical result (see for example [9]) that the number of non-isomorphic
theta-characteristics is equal to 22g , where g is the genus of C . More precisely,
there are 2g−1(2g + 1) even and 2g−1(2g − 1) odd theta-characteristics.

When C is a singular curve, the general picture becomes slightly different.
We recall the following de�nition:

De�nition 2.1. A stable spin curve is a pair (Y, L), where Y is a reduced
connected curve with the following properties:

(a.1) it has only ordinary double points;
(b.1) each smooth rational component contains at least 2 nodes;
(c.1) two smooth rational components never meet each other

(we will often call exceptional component a smooth rational component of C
satisfying property (b.1)). Moreover L is a line bundle such that, if Z =
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Y − (∪i∈I Ei ), where {Ei : i ∈ I} is the set of the exceptional components of
Y , then

(a.2) (L|Z )⊗2 ∼= ωZ ;

(b.2) L|Ei
∼= OEi

(1), for all i ∈ I .

A stable model of a stable spin curve (Y, L) is a curve C which is obtained
by contracting all the exceptional components of Y . The map ν : Y → C
contracting the exceptional components of Y is the contraction map.

Cornalba showed (see [9], page 566) that the isomorphism classes of stable
spin curves whose stable model is a nodal curve C are the natural analogues
of the theta-characteristics for C . In particular, one can prove (see [5]) that
any nodal curve is the stable model of 22g isomorphism classes of spin curves
(counted with multiplicity), where g is the arithmetic genus of the curve C .

De�nition 2.2. A theta-characteristic on a reduced nodal curve C is a sheaf θ

on C , such that there exists a stable spin curve (Y, L) whose stable model is C
and satisfying the following condition:

θ = ν∗L,

where ν : Y → C is the contraction map.

Also in this case, we say that a theta-characteristic θ is even (resp. odd) if
h0(C, θ ) ≡ 0 mod 2 (resp. h0(C, θ ) ≡ 1 mod 2). In particular, one can prove
that there are 2g−1(2g+1) even and 2g−1(2g−1) odd theta-characteristics, where
these sheaves are counted with multiplicity and g is the arithmetic genus of C .

Let C be a reduced nodal curve and θ a theta-characteristic on C . We can
associate to θ a set of points Sθ ⊂ Sing (C) de�ned in the following way:

Sθ := {p ∈ Sing(C) : θp �∼= OC,p}.

The following lemma gives a different characterization of the set Sθ .

Lemma 2.3. Let C be a reduced nodal curve and θ a theta-characteristic such
that θ = ν∗L, where (Y, L) is a stable spin curve whose stable model is C and
ν is the contraction map. Then

Sθ = {p ∈ Sing(C) : ν−1(p) is an exceptional component}.
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Proof. By De�nition 2.2, if p is such that ν−1(p) is an exceptional component
then θ is not invertible in p and thus p ∈ Sθ . Let p ∈ Sθ . Then we have only two
possibilities: (1) ν−1(p) is one point or (2) ν−1(p) is an exceptional component.
It is easy to see that (1) cannot occur. Indeed, in this case, by De�nitions 2.1
and 2.2, θ would be locally invertible in p.

If p is as in case (2) then θp/mpθp
∼= C

2, where mp is the maximal ideal
of θp . Indeed, let U be an open neighborhood of p. Then we have the following
restriction map:

ρ : θ (U ) → L(U1) ⊕ L(U2) ⊕ L(E),

where U1 and U2 are open neighborhoods of the two intersection points p1

and p2 of the strict transform of C with the exceptional component E . Since
θ (U ) = (ν∗L)(U ) = L(ν−1(U )) and (U1)⊕ L(U2)⊕ L(E) = L(U1)⊕ L(U2)⊕
H 0(P1, OP1(1)), let

ρ : s �−→ (s1, s2, v) ∈ L(U1) ⊕ L(U2) ⊕ H 0(P1, OP1 (1)).

We want to show that v is uniquely determined by s1 and s2 and that every v

occurs in the image of ρ (i.e. the values of s1(p) and s2(p) are arbitrary). This
would imply θp/mpθp

∼= C
2.

The fact that v is determined by s1 and s2 follows from easy calculations
(recalling that v must be properly glued with s1 and s2 in p1 and p2). Consider
the exact sequence:

0 −→ OP1 (1)(−p1 − p2) −→ OP1 (1) −→ Op1
⊕ Op2

−→ 0,

where Opi
is the skyscraper sheaf in pi . The �rst sheaf is isomorphic to the

sheaf OP1 (−1). Thus, considering the long exact sequence in cohomology, we
get

0 −→ 0 −→ H 0(P1, OP1 (1)) −→ C ⊕ C −→ 0.

The isomorphism H 0(P1, OP1(1)) → C ⊕ C proves that v is uniquely deter-
mined by s1 and s2. �

Corollary 2.4. Let C be a reduced nodal curve and θ a theta-characteristic
such that θ = ν∗L, where (Y, L) is a stable spin curve whose stable model is C
and ν is the contraction map. Let Z := Y − (∪i∈I Ei ), where {Ei : i ∈ I} is the
set of the irreducible components of C and νZ := ν|Z . Then θ = (νZ )∗(L|Z ).

Proof. This easily follows form the previous lemma and remarks. �
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Corollary 2.4. Let C be a reduced nodal curve and θ a theta-characteristic.
Let us suppose that there are two stable spin curves (Y1, L1) and (Y2, L2) such
that θ = (ν1)∗L1 = (ν2)∗L2 , where ν1 and ν2 are the corresponding contraction
maps. Then Y1 = Y2 .

Proof. Let E := {E1, . . . , Em} and E � := {E �
1, . . . , E �

n}, be the sets of the
irreducible components of Y1 and Y2 respectively. Let S1 and S2 be the subsets
of Sing(C) de�ned in the following way:

S1 := ν1(E) S2 := ν2(E �).

Let us suppose that S1 �⊆ S2. If p ∈ S1 − S2, then, θ = (ν1)∗L1 is not invertible
in p. We have also θ = (ν2)∗L2 and, due to Lemma 2.3, θ must be invertible in
p. This gives a contradiction. The same holds if S2 �⊆ S1. Hence S1 = S2. �

We prove the following generalization of Corollary 4.2 in [1] and Theo-
rem 4.1 in [8]. The techniques are very similar to the ones used by Friedman
and Casalaina-Martin.

Proposition 2.6. Let C be a reduced nodal sextic contained in P
2 and let θ

be a theta-characteristic on C such that h0(C, θ ) = 1. Chosen homogeneous
coordinates x1, x2, x3 in P2 , there exists a matrix

(1) M =






l11 l12 l13 q1

l21 l22 l23 q2

l31 l32 l33 q3

q1 q2 q3 f




 ,

where li j , qk and f are polynomials respectively of degree 1, 2 and 3 in x1 , x2

and x3 and li j = lj i , such that the following sequence is exact:

(2) 0 −→ OP2 (−2)3 ⊕ OP2 (−3)
M

−→ OP2 (−1)3 ⊕ OP2 −→ θ −→ 0.

In particular, det M is the equation which de�nes C.
Conversely, if C is a reduced nodal plane sextic and M is a matrix of type

(1) �tting in a short exact sequence as (2), then θ is a theta-characteristic and
h0(θ ) = 1.

Proof. Let θ = ν∗L , where (Y, L) is a stable spin curve whose stable model
is C and let ν : Y → C be the contraction map. Let Z := Y − (∪i∈I Ei ) and
L̃ := L|Z , where {Ei : i ∈ I} is the set of the irreducible components of Y . By
De�nition 2.1, we have (L̃)⊗2 = ωZ .
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Now we get the following isomorphisms:

Hom(θ, ωC ) ∼= Hom(ν∗ L̃, ωC )
∼= ν∗(L̃−1 ⊗ O(−ν−1(Sθ )) ⊗ ν∗ωC )
∼= ν∗(L̃−1 ⊗ ωZ )
∼= ν∗ L̃ ∼= θ,

where the second isomorphism follows from the same calculation as in Theo-
rem 4.1 in [8].

Adapting the proof of Theorem B in [1] and using the same calculations
of the proof of Corollary 4.2 in [1] we get the desired result (the previous
isomorphism shows that the matrix M is symmetric). The converse follows
using the results in [1]. �

For a reduced nodal plane sextic C in P5, let �(C) ⊂ P5 be the plane
containing C . Let X be a cubic 4-fold in P

5 containing a plane P and let C be
a reduced nodal plane sextic in P5 such that P ∩ �(C) = ∅. Assume that θ is a
theta-characteristic on C so that h0(C, θ ) = 1.

De�nition 2.7. We say that (X, P) is associated to (C, θ ) or that (C, θ )
is a discriminant curve of (X, P) if there exist homogeneous coordinates
x1, x2, x3, u1, u2, u3 in P

5 such that:

(a) the equations of P are x1 = x2 = x3 = 0, the equations of �(C) are
u1 = u2 = u3 = 0 while the equation of X is

F :=
�

i, j=1,2,3

li j uiuj + 2
�

k=1,2,3

qkuk + f,

where li j , qk and f are polynomials in x1, x2 and x3 of degree 1, 2 and 3
respectively;

(b) if M(X, P, C) is the matrix

M(X, P, C) =






l11 l12 l13 q1

l21 l22 l23 q2

l31 l32 l33 q3

q1 q2 q3 f




 ,

whose coef�cients are the polynomials li j , qk and f as in (a), then θ and
M(X, P, C) �t in a short exact sequence

0−→ O�(C)(−2)3 ⊕ O�(C)(−3)
M (X,P,C)
−→ O�(C)(−1)3 ⊕ O�(C) −→θ −→0

of sheaves on �(C) of type (2);
(c) the equations of C in P

5 are detM(X, P, C) = u1 = u2 = u3 = 0.
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We will often say that a cubic 4-fold X containing a plane P is associated
to a plane reduced nodal sextic C in P5 if there exists a theta-characteristic θ

on C so that h0(C, θ ) = 1 and (X, P) is associated to (C, θ ). Furthermore, a
reduced nodal plane sextic C ⊂ �(C) ⊂ P5 is a discriminant curve of a cubic
4-fold X containing a plane P is there is a theta-characteristic θ on C such that
h0(C, θ ) = 1 and (C, θ ) is a discriminant curve of (X, P).

Let X ⊂ P
5 be a cubic 4-fold containing a plane P and let C be a reduced

nodal plane sextic in P5. Assume that θ is a theta-characteristic on C such that
h0(C, θ ) = 1 and that (C, θ ) is a discriminant curve of (X, P). We de�ne the
rational map

πP,C : X − − → �(C)

as the projection from the plane P onto �(C). Given a point p ∈�(C) and the
3-dimensional projective space P3

p containing p and P , we de�ne Fp := P3
p∩X .

We have Fp = Qp ∪ P , where Qp is a quadric surface which is called the �ber
of the projection πP,C over p.

Remark 2.8. We can give a more geometric interpretation of a discriminant
curve C of a cubic 4-fold X containing a plane P . Indeed, it is a classical
result (see [16]) that if X and C are smooth, the curve C can be thought as
the discriminant curve of the quadric bundle π : BlP (X ) → �(C) obtained
from πP,C : X − − → �(C) by blowing up P inside X . Proposition 3.4 and
Lemmas 3.3 and 3.5 show that the same holds true when C is a nodal reduced
plane sextic.

We write W (X, P, C) for the net of conics given by

Cp := Qp ∩ P,

when p varies in �(C). B(X, P, C) is the base points locus of W (X, P, C). To
the pair (C, θ ) it is naturally associated a cubic plane curve D ⊂ �(C). If M is
the matrix with polynomial coef�cients de�ned as in Equations (1) and (2), the
equation of D in �(C) is det G = 0, where

G :=

�
l11 l12 l13

l21 l22 l23

l31 l32 l33

�

is 3 × 3 minor corresponding to the linear part of M . We introduce the sets

IC := D ∩ C SC := Sing(C) − IC

and
S̃θ := {p ∈ Sing(C) : p ∈ supp(θ/sOC )},

where s is such that �s� = H 0(C, θ ).
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Remark 2.9. Let (C, θ ) be a discriminant curve of (X, P), where X ⊂ P5 is a
cubic 4-fold, P ⊂ X is a plane, C is a reduced nodal plane sextic in P5 and θ is
a theta-characteristic on C such that h0(C, θ ) = 1. Assume that P1, P2 ⊂ X are
two planes so that P1 ∩ P2 = ∅. Consider ϕ ∈ PGL(6) such that ϕ(P1) = P and
ϕ(P2) = �(C). By De�nition 2.7, (ϕ−1(C), ϕ∗(θ )) is a discriminant curve of
(X, P1). Moreover, any two discriminant curves (C1, θ1) and (C2, θ2) of (X, P)
are isomorphic.

3. Singular points of cubic 4-folds containing a plane.

This section is devoted to prove the following theorem which describes
the singular points of a cubic 4-fold containing a plane which is associated
to a reduced plane sextic with at most nodal singularities. This results also
gives an estimate of the rank of the free abelian group NS2(X ) generated by the
equivalence classes of the algebraic cycles of codimension 2 in X . We use the
notations introduced in Section 2.

Theorem 3.1. Let X be a cubic 4-fold containing a plane P with discriminant
curve (C, θ ), where C is a nodal reduced plane sextic and θ is a theta-
characteristic on C such that h0(C, θ ) = 1. Then all the singular points of
X are double points, the set Sing(X ) is zero dimensional and

Sing(X ) =
��

p∈(Sing(C)−S̃θ) Sing(Qp)
��

B(X, P, C).

=
� �

p∈SC
Sing(Qp)

� �
B(X, P, C),

where Qp is the �ber over p ∈�(C) of the projection πP,C . In particular, X is
irreducible and

#SC ≤ #Sing(X ) ≤ #SC + 3.

Moreover, the free abelian group NS2(X ) generated by the equivalence classes
of the algebraic cycles of codimension 2 in X contains 2(#Sθ )+1 distinct classes
represented by planes and

rkNS2(X ) ≥ #Sθ + 2.

The proof of this theorem requires some preliminary results. We start with
the following lemmas and propositions.
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Lemma 3.2. Let X be a cubic 4-fold containing a plane P associated to a
reduced nodal plane sextic C with a theta-characteristic θ such that h0(C, θ ) =

1. Let x ∈ Sing(X ) − P. If x1, x2, x3, u1, u2, u3 are homogeneous coordinates
in P5 as in De�nition 2.7 and if x = (a1 : a2 : a3 : b1 : b2 : b3), then

p := πP,C (x ) = (a1 : a2 : a3) ∈ Sing(C).

Furthermore, if f , q1, q2 and q3 are the polynomials appearing in the equation
of X as in De�nition 2.7, then

f (p) = q1(p) = q2(p) = q3(p) = 0

and all the �rst partial derivatives of f evaluated in p are zero.

Proof. For aj �= 0, the map g ∈ PGL(6) de�ned by

(x1 : x2 : x3 : u1 : u2 : u3) �→ (x1 : x2 : x3 : u1 − (b1/aj )xj :
u2 − (b2/aj )xj : u3 − (b3/aj )xj )

is such that g(x ) = (a1 : a2 : a3 : 0 : 0 : 0). Obviously, g|P = Id and
πP,C (x ) = πP,C (g(x )) = p while P � := g(�(C)) can be different from �(C).
Thus, up to passing to the discriminant curve (g(C), g∗(θ )) (see Remark 2.9),
we can suppose without loss of generality that x = (a1 : a2 : a3 : 0 : 0 : 0).

Evaluating the equation of X in x and calculating its partial derivatives in
x in these new coordinates, we get the following equalities:

f (a1, a2, a3) = q1(a1, a2, a3) = q2(a1, a2, a3) = q3(a1, a2, a3) = 0,

where f , q1, q2 and q3 are the polynomials appearing in the equation of X as
in De�nition 2.7. Moreover, the point (a1 : a2 : a3 : 0 : 0 : 0) is a singular point
for the cubic f = 0 in �(C). Thus all the �rst partial derivatives of f in p are
zero.

If h is the equation of C in the local ring of �(C) at p, we get h = g f
modulo m2

p , where mp is the maximal ideal and g is a polynomial of degree 3.

The cubic f = 0 is singular in p and thus h = 0 modulo m2
p .

This implies that p is a singular point of C (similar calculations are done in [8]
for cubic 3-folds). �

Lemma 3.3. Let X be a cubic 4-fold containing a plane P associated to a
reduced nodal plane sextic C with a theta-characteristic θ such that h0(C, θ ) =

1.

(i) If p ∈ S̃θ − Sθ , then Qp is a cone (i.e Sing(Qp) consists of one point) and
Sing(Qp) ⊂ P.

(ii) If p ∈ Sing(C) − S̃θ , then Qp is a cone and Qp ∩ P is a smooth conic.
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Proof. Let x1, x2, x3, u1, u2, u3 be homogeneous coordinates in P5 satisfying
(a)�(c) in De�nition 2.7. By De�nition 2.2, θ = ν∗L , where L is a line bundle
de�ned on a stable spin curve Y whose stable model is C and ν is the contraction
map. Moreover, C is obtained contracting all the exceptional components of Y
and Sθ is the image in C of all these components. If p /∈ Sθ , θ is locally
invertible in p (see Lemma 2.3). This implies that if p ∈ Sing(C) − S̃θ or
p ∈ Sing(C)− Sθ , the rank of M(X, P, C)(p) must be 3 (where M(X, P, C)(p)
means the matrix M(X, P, C) evaluated in p).

For any p = (a : b : c : 0 : 0 : 0) ∈ �(C), let P
3
p be the 3-dimensional

projective space generated by p and P . Chosen in P3
p the homogeneous

coordinates u1, u2, u3, t , the equation of Fp = P
3
p ∩ X in P

3
p is

(3) L :=
�

i, j=1,2,3

li j (a, b, c)tuiuj +2
�

k=1,2,3

qk(a, b, c)t2uk + f (a, b, c)t3 = 0.

When p ∈ Sing(C) − Sθ , the matrix M(X, P, C)(p) has rank 3. Hence, by
Equation (3), the quadric Qp ⊂ Fp is a cone and it has only one singular point.
This proves the �rst part of (i) and (ii).

Let us consider the cubic plane curve D ⊂ �(C) de�ned in the last part
of Section 2. Its equation in �(C) is the determinant of the matrix G which
is the linear part of M(X, P, C). In [8] it is proved (in the case of a cubic 3-
fold, but their proof can be easily modi�ed for our purposes) that p ∈ D ∩ C if
and only if p is in the support of θ/OC (the quotient is given by the inclusion
OX �→ θ , de�ned by a section s of θ such that H 0(C, θ ) = �s�). This means
that if G(p) ≡ 0, then θ is not locally isomorphic to OX in p. By de�nition,
this would imply p ∈ S̃θ . Thus, if p ∈ Sing(C) − S̃θ , then G(p) �≡ 0 and, more
precisely, rkG(p) = 3. On the other hand, if p ∈ S̃θ − Sθ , by de�nition, det
G(p) = 0 and thus the rank of G(p) is less than three.

The equation of the conic Qp ∩ P is
�

i, j

li j (a, b, c)uiuj = 0.

Hence, if p ∈ Sing(C) − S̃θ , then the curve Qp ∩ P is smooth since the rank of

M(X, P, C)(p) and of G(p) is 3. If p ∈ S̃θ − Sθ , then Sing(Qp) ⊂ P , because
the rank of G(p) is smaller than 3. �

Proposition 3.4. Let X be a cubic 4-fold containing a plane P associated
to a reduced nodal plane sextic C with a theta-characteristic θ such that
h0(C, θ ) = 1. Let p ∈ Sing(C) − S̃θ . Then

Sing(X ) ⊇ Sing(Qp).
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In particular, if Sing(C) �= S̃θ , then Sing(X ) �= ∅.

Proof. As usual, assume that x1, x2, x3, u1, u2, u3 are homogeneous coordi-
nates in P5 satisfying (a)�(c) in De�nition 2.7. We prove this result in three
steps.

STEP 1. If p ∈ C −Sing(C) then rkM(X, P, C)(p) = 3, where M(X, P, C)(p)
means the matrix M(X, P, C) evaluated at p. Moreover, Sing (Qp) consists of
one point and Qp is a cone.

Proof. This follows from the trivial remark that if rkM(X, P, C)(p) < 3, then
the determinants of all the 3×3 minors of M(X, P, C) are zero in p. Moreover,
the partial derivatives of the equation of C is

�
i dimi , where di is the derivative

of one of the polynomials entries of M(X, P, C) and mi is the determinant of a
3 × 3 minor of M(X, P, C). �

STEP 2. If p ∈ Sing(C) − S̃θ then there is an open neighborhood U of p in C
such that the map ϕ : U → X de�ned by

ϕ : q � �−→ Sing(Qq � )

is an isomorphism onto its image and πP,C |ϕ(U) : ϕ(U ) → U is an isomorphism.

Proof. We start considering the simplest case of a smooth plane sextic C . It is
possible to introduce the embedding ψ|θ(1)| : C −→ P5, de�ned by the linear
system |θ (1)|. It can be geometrically described by taking the singular points of
the singular quadrics in the �bration πP,C : X − − → �(C) (see, for example,
[16] and [2]). In particular, the image in P

5 of a smooth sextic is smooth itself.
We can produce an analogous construction in the reduced nodal case.

Indeed, let U be a suitable open neighborhood of p. By Step 1, if p ∈

U − Sing(C), then Qp has only one singular point. By Lemma 3.3(ii) the same

is true when p ∈ Sing(C) − S̃θ . Thus, at least, ϕ is well-de�ned.
The injectivity follows easily. Indeed, let q1, q2 ∈U be such that

{x} = Sing(Qq1
) = Sing(Qq2

),

where Qp1
�≡ Qp2

. Then there is a plane P1 meeting P along a line and such
that

C � := Qq1
∩ P1 and C �� := Qq2

∩ P1

are irreducible plane conics. This means that Fq1
would contain C � , C �� and x .

Thus Fq1
⊃ Qq1

∪ Qq2
, where Qq1

�≡ Qq2
. This is absurd, since Fq1

− P is of
degree 2.
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Now we can show that ϕ , restricted to a suitable open neighborhood U is
an isomorphism onto its image and that πP,C |ϕ(U) maps ϕ(U ) isomorphically

onto U . By Lemma 3.3, when p ∈ Sing(C)− S̃θ , there is an open neighborhood
V of p such that Sing(Qq) �⊆ P , when q ∈ V . Now we recall that the equation
of Qq inside the projective space P

3
q containing q and P is obtained by dividing

up Equation (3) by t . Thus, by looking at the partial derivatives of (3), we see
that there is an open neighborhood W of p ∈ Sing(C) − S̃θ such that the map ϕ

is given by

(a, b, c) �−→ (a, b, c, ψ1(a, b, c), ψ2(a, b, c), ψ3(a, b, c)),

where ψ1, ψ2 and ψ3 are rational functions de�ned in W . Restricting W to C
we get the thesis. �

STEP 3. If q ∈ Sing(C) − S̃θ then Sing(Qq) ⊆ Sing(X ).

Proof. Let us consider the differential

(dπP,C )q � : Tq �ϕ(U ) −→ TqP
2,

where q � := ϕ(q). It has rank 2 in q �. Moreover, by de�nition, q � is the singular
point of the quadric Qq which is the �ber of the projection πP,C over the node
q . This means that dim Tq � Qq = 3. Since

dimTq � X = dimTq � Qq + dim(Im(dπq � )) = 3 + 2 = 5,

q � is singular in X and this proves Step 3. �

This concludes the proof of the lemma. �

Lemma 3.5. Assume that X is a cubic 4-fold containing a plane P associated
to the pair (C, θ ), where C is a reduced nodal plane sextic, θ is a theta-
characteristic such that h0(C, θ ) = 1 and p ∈ Sθ . Then

(i) Sing(X ) ∩ Qp ⊂ P;
(ii) Qp = P1 ∪ P2, where P1 and P2 are distinct planes.

Moreover, Sθ ⊆ S̃θ .

Proof. Looking at the short exact sequence of sheaves in �(C) ∼= P
2

(4) 0 −→ O�(C)(−2)3 ⊕ O�(C)(−3)
M (X,P,C)

−→

O�(C)(−1)3 ⊕ O�(C) −→ θ −→ 0,

and at De�nition 2.2, we see that if p ∈ Sθ , then rkM(X, P, C)(p) = 2. In
particular, Qp is the union of two distinct planes as stated in (ii).
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Suppose that x1, x2, x3, u1, u2, u3 are homogeneous coordinates in P5

satisfying (a)�(c) in De�nition 2.7. Let x ∈ Sing(X ) be such that p := πP,C (x ) ∈

Sθ . By Lemma 3.2, if x ∈ Sing(X ) then p = πP,C (x ) ∈ Sing(C) and the
polynomials f , qi (for i = 1, 2, 3) and all the �rst partial derivatives of f
are zero in p (see De�nition 2.7 and Lemma 3.2 for the de�nitions of the
polynomials f and qi ). If x /∈ P but p ∈ Sθ , the previous remarks implies
that, up to a change of variables, we can suppose that the matrix M(X, P, C)(p)
(which has rank 2) is






1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




 .

In particular, the equation of the curve C , in the local ring R of �(C) at p,
would be congruent to −l2

12 mod m3
p , where mp is the maximal ideal of R. This

gives the desired contradiction since C has no cusp of multiplicity 2 (similar
calculations are done in [5] for cubic 3-folds in a slightly different context).
Hence x ∈ P and (i) holds.

The last statement in the lemma is a consequence of the fact that, since θ is
the push-forward of a line bundle on a stable spin curve (see De�nition 2.1), the
sheaf θ is not locally isomorphic to OC in p (by Lemma 2.3), for every p ∈ Sθ .
Thus p is in the support of θ/sOC , where s is such that �s� = H 0(C, θ ). This
implies that p is in S̃θ . �

Remark 3.6. We can �nd examples which show that Sθ can be different from
S̃θ . One can consider the case of an irreducible plane sextic C with a node p
and a theta-characteristic θ on C such that H 0(C, θ ) = �s�, the section s is a
cubic intersecting C in p and θ does not come from a theta-characteristic on
the total normalization of C . It is easy to see that, in this case, Sθ = ∅ and
S̃θ = {p}.

We can describe some more interesting examples. Indeed, let x1, x2, x3,

u1, u2, u3 be homogeneous coordinates in P5. Assume that C is the union of the
nodal plane cubic C1 whose equations are u1 = u2 = u3 = x 2

2 x3−x 3
1 +x 2

1 x3 = 0
and of a smooth plane cubic C2 whose equations are u1 = u2 = u3 = f = 0.
Moreover, suppose that C1 ∩ C2 consists of nine points distinct from the nodes
of C1 . There exists a theta-characteristic θ1 on C1 such that h0(C1, θ1) = 0. In
particular, we can write the equation of C1 in �(C) as the determinant of the
matrix

M1 :=

�
0 x1 x2

x1 −x3 0
x2 0 x1 + x3

�

.
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The equation of C in �(C) is then the determinant of the matrix

M2 :=

�
M1 0
0 f

�

.

As we have seen in the proof of Lemma 3.2, p ∈ Sing(C) is in S̃θ if and only if
p ∈C ∩ D. This means that the point p := (0 : 0 : 1 : 0 : 0 : 0) is in S̃θ but not
in Sθ . This is clear since the rank of M2 in p is 3 (simply because C2 does not
intersect C1 in its node) but the intersection of the quadric Qp with the plane P
is the union of two lines (because the rank of M1 in p is 2).

De�nition 3.7. A couple of planes is given by two planes P1 and P2 such that

P1 ∩ P2 = r,

where r is a line. We write (P1, P2) for such a couple.

We can prove the following proposition.

Proposition 3.8. Let X be a cubic 4-fold containing a plane P associated to a
discriminant curve (C, θ ). If q1, q2 ∈ Sθ and Qq1

= P1 ∪ P2, Qq2
= S1 ∪ S2,

where Pi and Sj are planes, then

Pi ∩ Sj = 1 point,

for any i, j ∈ {1, 2}. Furthermore, given a couple of planes (P1, P2) in X , there
exists a plane P ⊂ X such that P1 ∪ P2 is a �ber of the projection πP,C .

Proof. Observe that, due to Lemma 3.5, if p ∈ Sθ then Qp = P1 ∪ P2, where
P1 and P2 are planes. Moreover P1 �= P and P2 �= P . Indeed, assume that
x1, x2, x3, u1, u2, u3 are homogeneous coordinates in P5 as in De�nition 2.7.
Let P

3
p be the projective space of dimension 3 containing p = (a : b : c : 0 : 0 :

0) and P . As we noticed in the proof of Lemma 3.3, the equation of Fp in P3
p

is the polynomial L de�ned by Equation (3) in the homogeneous coordinates
u1, u2, u3, t . The choice of these coordinates in Lemma 3.3 was such that the
equation of P in P

3
p is t = 0. Thus Pi ≡ P if and only if, in P

3
p , L = t2M ,

where M is a polynomial of degree 1 in u1, u2, u3 and t . This happens if and
only if the matrix G (see the end of Section 2 and Lemma 3.3 for its de�nition) is
the zero matrix in p (i.e. G(p) ≡ 0). This would imply rkM(X, P, C)(p) = 1
but this is a contradiction since rkM(X, P, C)(p) = 2, when p ∈ Sθ .

Let (P1, P2) and (S1, S2) be two couples of planes such that Qq1
= P1 ∪ P2

and Qq2
= S1 ∪ S2, for q1, q2 ∈ Sθ . By Lemma 3.5 the intersection of P1 ∪ P2
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(and S1 ∪ S2) with the plane of projection P is the union of two lines (not
necessarily distinct). Hence Si and Pj meet each other at least in one point
Pi ∩ Sj ∩ P . Suppose that there exist i, j ∈ {1, 2} such that Si ∩ Pj is a line l1
and let l2 be the line P1 ∩ P2.

If l1, l2 ⊂ P , then l1 ≡ l2 because, otherwise, Pj ≡ P (recall that
l1, l2 ⊂ Pj ). Hence, we would have a plane R meeting P , Si , P1 and P2 along
4 lines r1, r2, r3 and r4 . Thus Fq1

⊃ P1 ∪ P2 would contain l1, r1, r2 , r3 , r4 and
so it would also contain Si(�≡ P). If l1 ⊂ P but l2 �⊂ P , then Si ∪ P1 ∪ P2 ⊂ Fq1

because Si∪Pj ⊂ P
3
q1

. On the other hand, if l1 �⊂ P , then (Si ∩P)∪l1 ⊂ Fq1
and

Si ⊂ Fq1
. In all these cases we get a contradiction since Fq1

− P is a quadric.
Hence we can conclude that, for any i, j ∈ {1, 2}, Si ∩ Pj consists of one point.

Suppose now that S1 and S2 are a couple of planes. Let P � ⊂ P5 be a plane
such that P � ∩ S1 = ∅. Consider the projection πS1,P � : X − − → P � from S1.
Remark 2.9 shows that there is a nodal plane sextic C � with a theta-characteristic
θ � such that (C �, θ �) is a discriminant curve of (X, S1), P � ≡ �(C �) and πS1,P �

coincides with the projection πS1,C� : X − − → �(C �). The plane S2 is
contained in a �ber of πS1,P � . Indeed, since S1 and S2 meet along a line, there
exists a P

3 containing both planes and meeting P � in one point. This implies
that S2 is a component of a �ber of πS1,P � = πS1,C� . Applying Lemma 3.5 to
the pairs (X, S1) and (C �, θ �), we see that such a �ber of πS1,C� must contain
two distinct planes. Hence there exists a plane S3 meeting S1 and S2 along two
lines.

This concludes the proof. �

Remark 3.9. Looking more carefully at the proof of Proposition 3.8 and using
Remark 2.9, we can say that each couple of planes (P1, P2) contained in a
cubic 4-fold can actually be described as a triple of planes (P1, P2, P3) such
that Pi ∩ Pj is a line for i, j ∈ {1, 2, 3} and i �= j .

Lemma 3.10. Let X be a smooth cubic 4-fold containing a plane P with
discriminant curve (C, θ ), where C is a nodal reduced plane sextic and θ is
a theta-characteristic on C such that h0(C, θ ) = 1. Then

rkNS2(X ) ≥ #Sθ + 2.

Moreover, NS2(X ) contains 2(#Sθ) + 1 distinct classes represented by planes.

Proof. By Proposition 3.8, we know that X contains M := #Sθ couples of
planes

(P1,1, P1,2), . . . , (PM,1, PM,2).
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Let h2, P and Q be the classes in NS2(X ) corresponding, respectively, to the
hyperplane section, the plane P and the general quadric in the �ber of πP,C . We
recall that, in NS2(X ), h2 = Q + P .

If �·� is the cup product, we have Q · P = Q · (h2 − Q) = 2 −4 = −2 and

Pi, j · P =
1

2
(Q2 · P) = −1,

for i ∈ {1, . . . , 12} and j ∈ {1, 2}. Hence, since P · P = 3, the class of Pi, j is
distinct from the one of P , for any i ∈ {1, . . . , M} and j ∈ {1, 2}. Moreover,

Pi,1 · Pi,2 =
1

2

�
Q2 − P2

i,1 − P2
i,2

�
= −1

and the classes of Pi,1 and Pi,2 are distinct in NS2(X ), because Pi, j · Pi, j = 3.
On the other hand, by Proposition 3.8, Pi,k · Pj,h = 1, for i distinct from j and
k, h ∈ {1, 2}. Thus the classes of Pi,k and of Pj,h are not the same in NS2(X )
when k �= h and i, j ∈ {1, . . . , M}. Summarizing, we have proved that P ,
P1,1, . . . , PM,1 and P1,2, . . . , PM,2 are 2(#Sθ ) + 1 distinct classes in NS2(X ).

Let us consider the sublattice N ⊆ NS2(X ) de�ned by:

N := �P, P1,2, Pi,1 : i ∈ {1, . . . , M}�.

Clearly rkNS2(X ) ≥ rkN . Consider the matrix A = (ai j ) representing the
intersection form in N . Using the previous calculations, we see that the
coef�cients of A are de�ned as follows (keeping the planes ordered as in the
de�nition of N ):

ai j =

�
3 if i = j ;
−1 if i = 1, j > 1 or j = 1, i > 1 or i = 2, j = 3 or i = 3, j = 2;
1 otherwise.

By an easy calculation we see that the determinant of A is different from 0.
Hence A has maximal rank and the #Sθ + 2 planes generating N are linearly
independent. �

Remark 3.11. The estimate in Lemma 3.10 does not depend on the choice of
the discriminant curve (C, θ ). Indeed, by Remark 2.9, two discriminant curves
(C, θ ) and (C �, θ �) of (X, P) are isomorphic.
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. For simplicity, we assume from the beginning homoge-
neous coordinates x1, x2, x3, u1, u2, u3 in P

5 satisfying (a)�(c) in De�nition 2.7.
Let q := (a : b : c : 0 : 0 : 0)∈ �(C) and let P3

q be the projective space of
dimension 3 containing q and the plane P . Depending on the fact that a �= 0 or
a = 0, such a 3-dimensional space can be described by the equations

bx1 − ax2 = cx1 − ax3 = 0 or x1 = cx2 − bx3 = 0.

In these two cases, the Jacobian matrix Lq of the equations describing Fq =

Qp ∪ P (see Equation (3)) is either

(5)

�
b −a 0 0 0 0
c 0 −a 0 0 0

Fx1
Fx2

Fx3
Fu1

Fu2
Fu3

�

or

�
1 0 0 0 0 0
0 c −b 0 0 0

Fx1
Fx2

Fx3
Fu1

Fu2
Fu3

�

,

where F is the equation of X as in item (a) of De�nition 2.7 while Fxi
and

Fuj
are the partial derivatives of F with respect to the variables xi and uj

(i, j ∈ {1, 2, 3}).
From (5) it easily follows that the singular points of X are contained in the

union of the singular points of Fq when q varies in �(C). Since Sing(Fq) =
Sing(Qq) ∪ (P ∩ Qq),

Sing(X ) ⊆

�
�

p∈C

Sing(Qp)

�

∪

�
�

p∈�(C)

(Qp ∩ P)

�

.

By Lemma 3.2, if x ∈ Sing(X ) − P then πP,C (x ) ∈ Sing(C). Moreover,
by Lemma 3.3(i) and Lemma 3.5(i), if x ∈ Sing(X ) − P then πP,C (x ) ∈

Sing(C) − S̃θ . Furthermore, Proposition 3.4 shows that if p ∈ Sing(C) − S̃θ

then Sing(Qp) ⊆ Sing(X ). Hence

Sing(X ) ⊆

�
�

p∈(Sing(C)−S̃θ)

Sing(Qp)

�

∪

�
�

p∈�(C)

(Qp ∩ P)

�

.

Let x ∈ Sing(X ) ∩ P . Then the matrix Lq(x ) has rank 2, for every q ∈ �(C).
This means that x is contained in P ∩ Qq , for every q ∈ �(C). Thus
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x ∈ B(X, P, C). The converse is also true. Indeed, let y ∈ B(X, P, C). It is
easy to see that if e1 = (1 : 0 : 0), e2 = (0 : 1 : 0) and e3 = (0 : 0 : 1)
in P , then Fxi

(y) = Gi(y), for i ∈ {1, 2, 3}, where Gi is the equation of the
conic Ci = Qei

∩ P . Since y ∈ B(X, P, C) ⊂ P , Fxi
(y) = Fuj

(y) = 0, for
i, j ∈ {1, 2, 3}. Hence y ∈ Sing(X ) and

Sing(X ) =

�
�

p∈(Sing(C)−S̃θ )

Sing(Qp)

�

∪ B(X, P, C).

We showed in the proof of Lemma 3.3 that SC = Sing(C) − S̃θ while Lemma
3.3 proves that Sing(Qq) �⊆ P , when q ∈ Sing(C) − S̃θ . This implies that

Sing(X ) =

�
�

p∈SC

Sing(Qp)

�
�

B(X, P, C).

If o ∈ X is a singular point with multiplicity ≥ 3, then o ∈ P . Indeed, if o /∈ P ,
then we can suppose, without loss of generality, that o = (a : b : c : 0 : 0 : 0)
(as in the proof of Lemma 3.2). By simple calculations, for i, j ∈ {1, 2, 3},
Fuiuj

(x ) = li j (x ) = 0 where Fuiuj
(x ) is the second partial derivative of F with

respect to ui and uj and li j (x ) is the (i, j )-linear coef�cient in M(X, P, C)
evaluated in x . Moreover, if p := πP,C (o), then f (p) = q1(p) = q2(p) =

q3(p) = 0 (Lemma 3.2) and M(X, P, C)(p) would have rank 0. This is absurd.
If o∈ P , then, for any p ∈ �(C), Qp is singular in o because Fp has multiplicity
greater or equal to 3 in o. In particular, we would get the absurd conclusion that
detMX ≡ 0. Therefore, each singular point of X has multiplicity at most 2.

In Proposition 3.8 we proved that P �⊂ Qp , for all p ∈ �(C). Moreover,
the conics Cq := Qq ∩ P in W (X, P, C) can not coincide when q varies in
�(C) because, otherwise, B(X, P, C) = Cq and P − Cq ⊆ Sing(X ). This
would contradict the previous description of the singular locus of X . Hence
B(X, P, C) is not a conic.

If B(X, P, C) contains a line l then all the conics in W (X, P, C) are
reducible. On the other hand, the smooth part of C contains at least one point
q such that Cq = Qq ∩ P is a smooth conic (this easily follows, as in the
smooth case, since the rank of the matrix M(X, P, C) calculated in this point is
3. Lemma 3.3 gives directly this result for the points in S̃θ ). Hence B(X, P, C)
contains a �nite number of points. Obviously, such a number is at most 4.

Let us suppose

B(X, P, C) = {p1, p2, p3, p4}.
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Given a triple {pi1 , pi2 , pi3 }, they are in general position. Indeed, if l =

�pi1 , pi2 , pi3� is a line, then each conic in W (X, P, C) would pass through pi1 ,
pi2 and pi3 and it would contain l . Then l ⊆ B(X, P, C) which contradicts the
fact that B(X, P, C) is zero-dimensional.

Let us de�ne the following six lines in P :

ri j := �pi, pj �,

where i, j ∈ {1, 2, 3, 4}, i �= j . The geometric picture is summarized by the
following diagram:

................................................................................................................................................................................................................................................................................................................................................................................................................................................
.........
..........

..........
.........
.........
..........

.........
.........
..........

.........
.........
..........

..........
.........
.........
..........

.........
.........
..........

.........
.........
..........

.........
.........
..........

..........
.........
.........
..........

.........
.........
..........

.........
.........
..........

..........
.........
.........
..........

.........
.........
..........

.........
.........
.

r34

r12

r13

r24r14 r23

p4

p1

p3

p2

Let D ⊂ �(C) be the plane cubic de�ned in Section 2. The multiplicity
of intersection of the points in the set D ∩ C can be at most 2 (see [8]). Hence
D∩C contains at least nine points and Cp := Qp∩P is reducible for p ∈ D∩C .

If q1, q2 ∈ D ∩ Sθ , Proposition 3.8(i) shows that Cq1
and Cq2

are distinct
because Qq1

∩ Qq2
consists of a �nite number of points. If q1, q2 ∈ D ∩ C but

q1, q2 /∈ Sθ , then, by the same argument as in the proof of Step 2 of Proposition
3.4 (see the proof of the injectivity of the map ϕ),

Sing(Qq1
) �= Sing(Qq2

).

Since Sing(Qqi
) = Sing(Cqi

), Cq1
and Cq2

are distinct. Thus W (X, P, C) must
contain at least �ve reducible distinct conics. This gives a contradiction because
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W (X, P, C) contains only three reducible conics, given by:

V1 := r13 ∪ r24;

V2 := r12 ∪ r34;

V3 := r14 ∪ r23.

Hence B(X, P, C) contains at most 3 points and the inequalities about the
number of points in Sing(X ) stated in Theorem 3.1 hold true.

Furthermore, since B(X, P, C) is �nite, Sing(X ) is zero-dimensional and
X is irreducible because the set Sing(X ) is �nite. The last part of Theorem 3.1
is exactly Lemma 3.10. �

We will discuss later (see Examples 4.5 (i) and 4.5 (ii)) the cases of
cubic 4-folds whose singularities coincide with the singular points of Qq for

q ∈ Sing(C) − S̃θ or with extra points in P .

4. Smoothness and rationality.

It is clear that, given a nodal plane sextic there are many associated cubic
4-folds. The �rst result in this paragraph describes some suf�cient conditions
on the geometry of a plane sextic C such that all the associated cubic 4-folds
are singular. We also give some explicit examples which clarify the numerical
bounds given in Theorem 3.1.

In the second part of this section, we consider the case of smooth cubic
4-folds and we introduce a family of smooth rational cubic 4-folds whose
discriminant curve is reduced but reducible.

Roughly speaking, Theorem 3.1 proves that the number of singular points
of a cubic 4-folds X containing a plane P depends on the number of nodes
of a discriminant curve (C, θ ) of (X, P) which are not in Sθ . Thus a cubic
4-folds X containing a plane P such that each node of a discriminant curve
C gives rise to a singular point of X realizes the maximal number of singular
points compatible with the geometry of the curve C . This is summarized by the
following de�nition:

De�nition 4.1. Let X be an irreducible cubic 4-fold containing a plane P . We
say that X realizes the maximal number of singular points if any discriminant
curve (C, θ ) satis�es the following conditions:

(i) C is a reduced nodal plane sextic and #Sing(C) > 0;
(ii) h0(C, θ ) = 1 and #Sθ = 0.
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We say that a reducible plane curve C has general irreducible components
if, for each irreducible component C � and for each theta-characteristic θ over
C � , if θ is odd (resp. even) then h0(C, θ ) = 1 (resp. h0(C, θ ) = 0).

Proposition 4.2. (i) Let C be a reduced nodal plane sextic in P
5 with general

irreducible components and such that either

(a) C is irreducible with 10 nodes or

(b) C is reducible and it does not contain neither a smooth cubic nor a quartic
with n nodes nor a quinticwith m nodes, where 0 ≤ n ≤ 2 and 0 ≤ m ≤ 5.

Then there exists at least one singular cubic 4-fold X containing a plane
P whose discriminant curve is C. Moreover, all the cubic 4-folds containing a
plane associated to C are singular.

(ii) Let X be a cubic 4-fold containing a plane P realizing the maximal
number of singular points. Let C be any discriminant curve of (X, P) with
general irreducible components. Then either C is nodal and irreducible or C is
the union of three smooth conics or of a smooth conic and a quartic (possibly
nodal).

Proof. Let θ be a theta-characteristic on C such that h0(C, θ ) = 1 and let X
be a cubic 4-fold containing a plane P associated to (C, θ ). If p ∈ S̃θ − Sθ ,
using Lemma 3.3(i) and the same techniques as in the proof of Steps 2 and
3 of Proposition 3.4, one can prove that Sing(Qp) ⊆ Sing(X ). In particular,
by Theorem 3.1, Sing(Qp) ⊂ B(X, P, C). Analogously, if x ∈ Sing(X ) ∩

B(X, P, X ), then πP,C (x ) ∈ S̃θ − Sθ . Hence all the cubic 4-folds containing a
plane associated to a curve C satisfying the hypotheses of item (i) are singular
if C does not have a theta-characteristic θ such that

(6) #Sing(C) = #Sθ and h0(C, θ ) = 1.

Consider the following fact (see [9] or [5] for the proof and [5] for the de�nitions
and the techniques involving the dual graphs):

FACT. Let C̃ be a stable spin curve whose stable model is C . Let ZC̃ :=

C̃ − (∪i∈I Ei ), where {Ei : i ∈ I} is the set of the irreducible components in
C̃ , and let �ZC̃

be the dual graph of the curve ZC̃ (the vertices of �ZC̃
are the

irreducible components of ZC̃ and its edges are the nodes of C̃ ). If �ZC̃
is even

(i.e. to each vertex converges an even number of edges) then the number M of

distinct theta-characteristics over C is such that M ≥ 2
b1(�Z

C̃
)
, where b1(�ZC̃

) is
the �rst Betti number of �ZC̃

.
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From this and from the easy remark that the push-forward via the contraction
map preserves the parity of the theta-characteristic, we get two very easy
consequences (see Section 4 in [9] for a brief discussion):

(a.1) if 2
b1(�Z

C̃
)
> 1 then C has an odd theta-characteristic coming from a line

bundle on C̃ as in De�nition 2.2;

(b.1) if �ZC̃
has m disjoint components Y1, . . . , Ym , an odd theta-characteristic

for C coming from C̃ is given by the choice of an odd theta-characteristic
for an odd number of curves Ci corresponding to the graphs Yi .

If θ satis�es (6), then, by De�nitions 2.1 and 2.2, there exists a stable spin
curve (C̃, L) whose stable model is C and such that Sing(C) is the image via
the contraction map ν : C̃ → C of all the exceptional components of C̃ and
θ = ν∗L . In this case, by (b.1), there would be an irreducible component C1 of
C̃ such that h0(C1, L|C1

) = 1. This is impossible, since when C satis�es the
hypotheses of Proposition 4.2(i), the irreducible components of such a curve C̃
have genus 0.

By the remarks at the beginning of this proof and by (b.1), a plane sextic
C as in item (i) is the discriminant curve of at least one (singular) cubic 4-fold
X containing a plane P if there are a set S ⊂ Sing(C) with S �= Sing(C) and a
stable spin curve (C̃, L) such that:

(a.2) ν(C̃ ) = C;

(b.2) S is the image via ν of all the exceptional components of C̃ ;

(c.2) the curve ZC̃ := C̃ − (∪i∈I Ei ) has an irreducible component of arithmetic
genus one, where {Ei : i ∈ I} is the set of the irreducible components in
C̃ .

Furthermore, a curve C as in item (i) can only be:

(a.3) the union of two singular cubics C1 and C2;

(b.3) the union of a line and of a quintic with 6 nodes;

(c.3) the union of two lines and of a quartic with 3 nodes;

(d.3) an irreducible sextic with 10 nodes.

In the �rst case we put S = Sing(C1) ∪ (C1 ∩ C2). In case (b.3) we de�ne S as
the union of 5 of the 6 nodes of the quintic and of the 5 intersection points of the
line and the quintic. In the third case, S is the set of all the intersection points
and of 2 of the 3 nodes. In case (d.3), we observe that the curve C blown up in
9 of the 10 nodes has genus 1. In all of these cases, due to (a.1)�(b.1), a curve
C̃ satisfying (a.2)�(c.2) always exists.
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For item (ii), observe that if (X, P) realizes that maximal number of
singular points then there exists a discriminant curve (C, θ ) such that θ 2 = ωC .
Consider the following cases:

CASE 1: C is irreducible with m nodes (m < 11);

CASE 2: C is reducible and it is either the union of 3 smooth conics or the
union of a smooth conic and of a quartic with n nodes. In these cases the dual
graphs correspond respectively to the diagrams:
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..

................................................................................................................................................................................................

4

4

4c1

c3

c2

..............................................................................
..........

........
.......
.......
.......
.......
........
.........

...........
........................................................................8c q

n

where c1, c2, c3, c are conics, q is a quartic and the bold number above the edges
stands for the number of edges connecting two vertices. The circle in the second
graph means the possible existence in q of n nodes.

In both cases, to each vertex of the dual graph of C converges an even
number of edges. Moreover, the dual graph of C has �rst Betti number
greater than zero. (a.1) (with C̃ = C) implies that there exists an odd theta-
characteristic θ on C such that θ 2 = ωC . If C is reducible but it is not as in
Cases 1 and 2, then the dual graph of C is not even. Indeed, C would contain
at least a line and such a line would intersect the union of the other irreducible
components of C in an odd number of points. By the results in [9] and [5], there
are no sheaves L on C such that (C, L) is a stable spin curve with stable model
C . �

The following corollary is a trivial consequence of the techniques described
in the previous proof.

Corollary 4.3. Let X be a cubic 4-fold containing a plane P associated to the
pair (C, θ ), where C is a reduced nodal plane sextic with general irreducible
components and θ is an odd theta-characteristic with h0(C, θ ) = 1. Then
X is smooth if and only if not all the irreducible components of the total
normalization C̃ of C are rational.
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Remark 4.4. Assume that a cubic 4-fold X containing a plane P is associated
to a reduced nodal plane sextic C . Let X contain ten couples of planes

(P1,1, P1,2), . . . , (P10,1, P10,2)

which corresponds to ten different �bers of πP,C . By Proposition 3.8 and
Theorem 3.1, Pi, j ∩ Pk,h consists of one point (for i �= k). Then C has one
of the following con�gurations:

(a) 6 lines; (e) 3 lines and 1 cubic with 1 node;
(b) 3 conics; (f) 1 line and a quintic with 5 or 6 nodes;
(c) 2 conics and 2 lines; (g) 1 smooth cubic and 1 cubic with 1 node;
(d) 1 conic and 4 lines; (h) 1 quartic with 1 or 2 nodes and 2 lines.

Moreover, if X is smooth then its discriminant curve is of type (f) (and it has 5
nodes), (g) or (h) (where the quartic has just 1 node). Indeed, due to Proposition
3.8, Theorem 3.1 and Proposition 4.2, we just need to prove that (a)�(h) are
the only curves which admit a theta-characteristic θ such that h0(θ ) = 1 and
#Sθ = 10. Since X contains ten couples of planes, C cannot be

(a.1) an irreducible sextic with m nodes (m < 10);
(b.1) two smooth cubics;
(c.1) a line and a quintic with m nodes (m < 5);
(d.1) a smooth quadric and a conic,

because C must have at least ten nodes. We can exclude the case of an
irreducible sextic with ten nodes since the total normalization of such a curve is
a smooth rational curve.

Looking at the dual graph of the remaining possible con�gurations for
nodal plane sextics, the only ones which are even (i.e. each vertex has an
even number of edges), once we take away ten of their edges, are those that
correspond to sextics as in (a)�(h).

In particular, we get examples of cubic 4-folds containing 10 planes
meeting each other in one point and whose discriminant curve is nodal (see
also Example 4.5(ii)). Theorem 3.1 implies that some of them can be smooth.
Observe that cubic 4-folds of this type are closely related to the problem of
describing the moduli space of Enriques surfaces (for a more precise discussion
see [10]).

Now we would like to analyze some explicit examples of singular cubic
4-folds containing a plane. These will show that the bounds for the number of
points in Sing(X ) given by Theorem 3.1 are optimal.
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Example 4.5. Let C be a reducible nodal plane sextic in P5 and let x1, x2, x3,

u1, u2, u3 be homogeneous coordinates in P5 such that the equations of �(C)
are u1 = u2 = u3 = 0.

(i) Assume moreover that the equation of C in �(C) is the determinant of
the following matrix:

M1 :=






0 x1 x2 0
x1 0 x3 0
x2 x3 0 0
0 0 0 f




 ,

where the polynomial f de�nes a degree 3 plane curve C1 meeting the cubic C2 ,
whose equation is x1x2x3 = 0, in nine distinct points p1, . . . , p9 not coinciding
with the nodes of C2 . In this case S̃θ = {p1, . . . , p9}.

Let X the cubic 4-fold whose equation is 2x1u1u2 + 2x2u1u3 + 2x3u2u3 +

f = 0. X contains the plane P with equations x1 = x2 = x3 = 0 and C is a
discriminant curve of (X, P) (by De�nition 2.7). It is very easy to verify that

B(X, P, C) = {(0 : 0 : 0 : 1 : 0 : 0), (0 : 0 : 0 : 0 : 1 : 0),
(0 : 0 : 0 : 0 : 0 : 1)} ⊆ P.

Moreover, Proposition 4.2 and Theorem 3.1 imply that #Sing(X ) =

#B(X, P, C) + #Sing(C1) = 3 + #Sing(C1) = #SC + 3.
(ii) Consider the case when C is a plane curve which is the union of six

lines l1, . . . , l6 in general position in �(C) ⊂ P5. Assume that the equation of
C in �(C) is the determinant of the matrix

M2 :=






l1 0 0 0
0 l2 0 0
0 0 l3 0
0 0 0 l4l5l6




 .

Once more, consider the cubic 4-fold X whose equation is l1u
2
1 + l2u

2
2 + l3u

2
3 +

l4l5l6 = 0 and containing the plane P with equations x1 = x2 = x3 = 0. As in
the previous case, (X, P) is associated to C while the base locus B(X, P, C) is
empty. Let θ be the odd theta-characteristic on C given by the matrix M2. The
set S̃θ contains 12 of the 15 nodes of C . By Theorem 3.1,

Sing(X ) = Sing(Qp1
) ∪ Sing(Qp2

) ∪ Sing(Qp3
),

where Sing(C) = S̃θ ∪ {p1, p2, p3} and p1 = l4 ∩ l5, p2 = l4 ∩ l6 , p3 = l5 ∩ l6 .
Hence #Sing(X ) = #SC .
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Example 4.6. Let C be a plane sextic in P5 which is the union of a general quar-
tic C1 and of two lines in general position or of a general quintic C2 and a line
in general position. We choose homogeneous coordinates x1, x2, x3, u1, u2, u3

in P5 such that the equations of �(C) are u1 = u2 = u3 = 0. Since the curves
C1 and C2 are supposed to be general, there are two theta-characteristics θ1 and
θ2 such that

h0(C1, θ1) = 1 and h0(C2, θ2) = 1.

By Corollary 4.2 in [1], we get the following two matrices whose determinants
are the equations of C1 and C2:

M1 :=

�
l11 q1

q1 f

�

M2 :=

�
l11 l12 q1

l12 l22 q2

q1 q2 f

�

.

In these two cases, the sextic C has equation in �(C) described by the determi-
nant of the following two matrices:

N1 :=

�
l1 0 0
0 l2 0
0 0 M1

�

N2 :=

�
l1 0
0 M2

�

,

where l1 and l2 are the equations of the lines. The corresponding cubic 4-folds
are singular if C1 and C2 have at least one node.

More explicitly, the matrix corresponding to a sextic which is union of the
Fermat�s quartic x 4

1 + x 4
2 + x 4

3 = 0 and of the two lines x1 = 0 and x1 + x2 = 0
is given by:

M :=






−x1 0 0 0
0 x1 + x2 0 0
0 0 −(x1 − ωx2) x 2

3

0 0 x 2
3 (x1 + ωx2)(x

2
1 + ix 2

2 )




 ,

where i, ω ∈ C are such that i2 = −1 and ω2 = −i .

The following theorem proves, in particular, that there is a smooth rational
cubic 4-fold X containing a plane P associated to a reducible nodal plane sextic.
We write Mat(3) for the algebra of 3 × 3 matrices with complex coef�cients.

Proposition 4.7. Given 3 lines in P5 meeting in three distinct points, there
exists a family of smooth rational cubic 4-folds X containing a plane such
that a discriminant curve of the pair (X, P) is a reduced nodal plane sextic
containing these three lines. This family is parametrized by points in a non-
empty open subset of Mat(3). Moreover, the group NS2(X ) contains 25 distinct
classes corresponding to planes in X and rkNS2(X ) ≥ 14.

In particular, there exists a smooth rational cubic 4-fold containing a plane
associated to reduced nodal plane sextic.
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Proof. Let l1, l2, l3 ⊂ P5 be three lines meeting each other in three distinct
points. Fix homogeneous coordinates x1, x2, x3, u1, u2, u3 in P5 such that the
equations of l1, l2 and l3 are

l1 : u1 = u2 = u3 = x1 = 0 ; l2 : u1 = u2 = u3 = x2 = 0 ;

l3 : u1 = u2 = u3 = x3 = 0 .

The lines l1, l2 and l3 are contained in the plane � whose equations are
u1 = u2 = u3 = 0.

If P is the plane described by the equations x1 = x2 = x3 = 0, given a
matrix A := (ai j ) ∈ Mat(3), the equations of a plane PA such that P ∩ PA = ∅

can be obtained as the zero-locus of

u1 − a11x1 − a12x2 − a13x3 = 0
u1 − a21x1 − a22x2 − a23x3 = 0
u1 − a31x1 − a32x2 − a33x3 = 0 .

Let C �
A be the plane cubic in � de�ned by the polynomial

fA :=

3�

i=1

(ai1x1 + ai2x2 + ai3x3)
2xi .

If we require that C �
A is smooth and that C �

A ∩ (l1 ∪ l2 ∪ l3) �= {(1 : 0 : 0), (0 :
1 : 0), (0 : 0 : 1)}, we impose that A belongs to an open subset U ⊆ Mat(3).
Given A ∈U , we get a nodal reduced plane sextic CA := C �

A ∪ l1 ∪ l2 ∪ l3. By
Proposition 2.6, the matrix

MA :=






x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 − fA






determines a theta-characteristic θA on CA such that h0(CA , θA) = 1. Consider
the cubic 4-fold X A whose equation is

FA := x1u
2
1 + x2u

2
2 + x3u

2
3 − fA .

Obviously P, PA ⊂ X A and (X A, P) is associated to (CA , θA). As it was
shown in [14] and [15], the planes PA gives a section for the projection
πP,CA

: X A − − → �(CA ) and X A is rational. It is very easy to see that
S̃θA

= Sing(CA ) and that B(X A, P, CA) = ∅. Hence Theorem 3.1 implies that
X A is smooth.
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To show that the open subset U is non-empty, let C � be the Fermat plane
cubic in � whose equation in � is f = x 3

1 + x 3
2 + x 3

3 . Clearly, the three lines l1 ,
l2 and l3 meet the cubic in nine points distinct from the three intersection points
(1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1). By simple calculations we see that the
plane P � described by the equations

u1 − x1 = u2 − x2 = u3 − x3 = 0

is contained in the cubic 4-fold X whose equation in P
5 is x1u

2
1 +x2u

2
2 +x3u

2
3 −

f = 0. Moreover, P ∩ P � = ∅. Hence X is rational. This implies that the
matrix Id ∈ Mat(3) is in U .

Given A ∈ U , we have the equalities SθA
= Sing(CA ) and #SθA

= 12.
Theorem 3.1 gives the desired estimate about the number of distinct planes in
NS2(X A) and the rank of NS2(X A). �
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