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ON STABILITY OF SHOCK WAVES IN

A COMPRESSIBLE VISCOUS GAS

ALEXANDER M. BLOKHIN

On the example of the Navier-Stokes model, this paper discusses the
approach in which the surface of a strong discontinuity in a a compressible
viscous gas is considered as a shock wave. It is proved that this approach
contains essential lacks. This conclusion follows from existence of special
exponentially increasing solutions to the problem on shock wave stability.

1. Introduction.

In a moving continuum there often appear transitional zones where pa-
rameters which characterize such a continuum (density, pressure, temperature,
velocity, etc.) vary rapidly (have large gradients) with respect to spacial vari-
ables. If dissipative mechanisms are neglected in a mathematical model of the
continuum motion, then these thin zones are usually considered as surfaces of
strong discontinuities. In this case the �ow parameters change step-wise with
jumps, generally speaking, on a propagating surface of some strong discontinu-
ity (e.g., on a shock wave). We note that motions of perfect continua (say, in
gas dynamics, magnetohydrodynamics, etc.) are described, as a rule, by hyper-
bolic systems of conservation laws for which the mathematical theory of strong
discontinuities has been well developed not only for one-dimensional (see, e.g.,
[14]) but for multidimensional �ows too (see, especially, [1]�[5], [12]).
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As far as motions of continua with dissipation (i.e., with viscosity, heat
conductivity, etc.) are concerned, we have observed above that there appear
zones of large gradients; consequently, the necessity in mathematical simulation
of such phenomena arises. In this paper we consider the motion of a viscous
gas within the framework of the known Navier-Stokes model of a compressible
liquid [9]. As known, exactly the Navier-Stokes equations are used for solution
of the problem on the shock wave front in a viscous heat-conducting gas (see
[14] for the description of the classical approach to solution of this problem).
In the problem on the structure we consider a thin transitional zone (the viscous
pro�le) where the gas �ow parameters vary continuously instead of the surface
of the strong shock.

They say that the strong shock in a perfect medium have the structure if
this discontinuous �ow is the limiting �ow in the medium with dissipation as
dissipation coef�cients tends to zero. We however note that problems on the
structure of shock waves for different model of continuummechanics have been
studied on the 1-D level as yet. By this reason, the approach connected with
structures can not be considered in full measure as the alternative to the discon-
tinuous approach for multi-D shock fronts in perfect media. Moreover, only the
structural approach has a satisfactory theoretical justi�cation for continua with
dissipations (although on the 1-D level too, see, e.g., [11]).

The following facts indirectly con�rm the validity of this structural ap-
proach for �viscous� conservation laws. Hyperbolic conservation laws which
simulate motions of perfect media have the property that their solutions stay
single-valued and continuous only for a short time even if the initial data are
smooth. Then the so-called gradient catastrophe is observed (see, e.g., [14]), and
one has to consider strong discontinuities. It seems that solutions of �viscous�
conservation laws do not possess such a property. Numerous results in articles
[6]�[8], [16] on the global existence theorems for the Navier-Stokes equations
indirectly prove this assumption. In this connection, of special interest is the
article [6] where the theorem on global existence and uniqueness of the gener-
alized solution to the initial problem for the 1-D system of the Navier-Stokes
equations written in the Lagrangian coordinates with discontinuous initial data.
It has been shown that under certain restrictions on initial data discontinuities of
the shock wave type do not appear in solutions to the Navier-Stokes equations.

At the same time, it should be noted that the discontinuous approach
has been used in a large number of works on shock waves in a viscous gas.
For example, in the article [19], while studying the stability of planar shock
waves in order to estimate the in�uence of small viscosity on perturbations
of planar gas dynamic shock waves, it has been assumed that the width of
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the transitional zone is negligibly small. By this reason, the problem on
perturbations propagation is reduced, as well as for an inviscid gas, to a linear
initial-boundary value problem with boundary conditions on the shock wave.
Another typical example is the article [18] where the 2-D steady viscous �ow
around immovable blunt bodies has been studied numerically. Here the bow
compression shock has been treated as a strong discontinuity surface on which
the corresponding jump conditions (modi�ed Rankine-Hugoniot conditions)
have been ful�lled. Clearly, the bow compression shock has been introduced in
order to bound essentially the calculation domain where solutions to the Navier-
Stokes equations have been sought. Steady �ow regimes have been found by the
stabilization method, i.e. steady-state solutions to the Navier-Stokes equations
have been found as a limit as t → ∞ (see [3] on the stabilizationmethod in gas
dynamics).

In the present article, on the example of the Navier-Stokesmodel for a com-
pressible liquid, we will show inadmissibility of the discontinuous approach.
We can make this conclusion even at the linear level. We begin with study-
ing the initial boundary value problem (IBVP) obtained by linearization of the
Navier-Stokes equations and jump conditions with respect to a piecewise con-
stant solution. This piecewise constant solution describes the following �ow
regime for a viscous gas: the supersonic steady viscous �ow (at x > 0) is sepa-
rated from the subsonic �ow by a planar shock wave (with the equation x = 0).
We show that the shock is unstable independently on the character of linearized
boundary conditions on x = 0. This directly follows from the fact that the num-
ber of independent parameters which determine an arbitrary small perturbation
of the shock front is greater than the number of the linearized boundary condi-
tions. So, the shock wave in a viscous gas which is treated as a surface of the
strong discontinuity is similar to nonevolutionary (undercompressive) disconti-
nuities in perfect media ([8], [10]).

In order to prove the linear instability we construct exponentially increas-
ing in time particular solutions which, from the mathematical point of view, are
the Hadamard examples (see, e.g., [3, 17]) and prove ill-posedness of the lin-
ear IBVP. The discovered instability indirectly justi�es that steady-state �ows
around blunt bodies in a viscous gas with a bow compression shock can not be
calculated with the stabilization method. From the physical point of view, this
means that the above described stationary regime of a viscous gas with a shock
wave does not practically realize.
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2. Compressible Navier-Stokes equations and modi�ed Rankine-Hugoniot
conditions.

Since the mathematical model of a viscous gas is widely known we de-
scribe it schematically. Following [19], we suppose that the heat coef�cient
equals zero. The mentioned model is the Navier-Stokes equations for a com-
pressible liquid:

(2.1)
∂ρ

∂ t
+ div (ρu) = 0,

∂

∂ t
(ρui) +

3�

k=1

∂

∂xk
(ρuiuk + Pik ) = 0, (i = 1, 2, 3),

∂

∂ t

�
ρ(e0 +

1

2
|u|2)

�
+ div

�
ρ(e0 +

1

2
|u|2 + pV )u − ξ

�
= 0.

Here ρ denotes the density; u = (u1, u2, u3), the velocity of the gas; Pik =
pδik − σik are the components of the stress tensor; p is the pressure; δik ,

the Kronecker delta; σik = η
�

∂ui
∂ xk

+ ∂uk
∂ xi

− 2
3
δik div u

�
+ ζ δik div u are the

components of the viscous stress tensor; ξ = (ξ1, ξ2, ξ3), ξi =
3�

k=1

σik uk ,

(i = 1, 2, 3); e0 is the internal energy, V = 1/ρ ; η and ζ are the �rst and
second viscosity coef�cients (they are usually assumed to be functions of ρ and
s), s is the internal entropy. To make the system (1.1) closed we complete it
with the Gibbs relation

Tds = de0 + pdV ,

where T is the temperature, and the state equation

e0 = e0(ρ, s).

Then the thermodynamical parameters T and p are de�ned as follows

T =
∂e0

∂s
, p = ρ2

∂e0

∂ρ
,

and we can regard (1.1) as a system for the components of the vector (p, s, u).
Reasoning in the usual way (see, e.g., [13], [15]), we derive the following

jump conditions (the modi�ed Rankine-Hugoniot conditions) from the system
(1.1) of viscous conservation laws

(2.2) [ρ(un − Dn)] = [ j ] = 0,
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[un] j + [P] = 0,

[uk,1] j =
� 3�

i,k=1

σikτi nk

�
,

[e0 +
1

2
|u|2] j + [p un −

3�

i,k=1

σikniuk ] = 0.

Here the equation f (t, x2, x3) − x1 = 0 represents the surface of propagating
strong discontinuity, [g] = g−g∞ denotes the jump of values of a discontinuous
function g, g∞ = g| f (t ,x2,x3)−x1→+0 is the value on left side of the shock; un =
(u, n), uk = (u, k), u1 = (u, l), n = (n1, n2, n3) = 1�

1+ f 2x2+ f 2x3

(−1, fx2 , fx3 )

is the unit normal to the discontinuity front, Dn = − ft�
1+ f 2x2+ f 2x3

is the

projection of the strong discontinuity velocity onto n; k = (τ1, τ2, τ3) =
( fx2 , 1, 0) and l = (τ1, τ2, τ3) = ( fx3 , 0, 1) are the vectors, orthogonal to the
vector n; j = ρ(un − Dn) is the mass transfer �ux across the discontinuity

surface, P = p −
3�

i,k=1

σiknink .

In the case of the shock wave ([ρ] �= 0, j �= 0), (2.2) easily reduces to a
system which is similar to the Rankine-Hugoniot relations in gas dynamics (see
[13]):

(2.2�) [ j ] = 0,

[un]
2 + [P][V ] = 0,

[uk,l] =
1

j

� 3�

i,k=1

σikτi nk

�
,

[e0]+
P + P∞

2
[V ] =

=
1

2 j 2

� 3�

i=1

� 3�

k=1

σiknk

�2
−

� 3�

i,k=1

σik nink

�2�
.
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3. Formulation of the linear IBVP.

Now we formulate the linear IBVP mentioned in Section 1. With this
purpose we consider solutions to the system (2.1) which describe steady-state
�ows in a viscous gas with a strong shock. Obviously, we can take, for
example, the following piecewise constant solution which, on the other hand,
is the approximate solution to the system (2.1) with small viscosity and heat
conductivity:

(3.1) u = (û1, 0, 0), ρ = ρ̂, s = ŝ for x1 > 0,

u = (û1∞, 0, 0), ρ = ρ̂∞, s = ŝ∞ for x1 < 0,

where the constants û1, ρ̂ , ŝ, û1∞ , ρ̂∞ , and ŝ∞ satisfy the jump conditions (2.2�)
on the plane x1 = 0:

(3.2) �j = ρ̂û1 = ρ̂∞û1∞,

(û1 − û1∞)
2 + ( p̂ − p̂∞)(�V − �V∞) = 0,

(ê0 − ê0∞) +
( p̂ + p̂∞)

2
(�V − �V∞) = 0.

The constants û1∞ , ρ̂∞ , and ŝ∞ are parameters of the coming �ow of a viscous
and heat conducting gas, moreover,

(3.3) û1∞ > ĉ∞ > 0, ρ̂∞ > 0,

p̂∞ = ρ̂2∞
∂e0

∂ρ
(ρ̂∞, ŝ∞), �V∞ = 1/ρ̂∞, ê0∞ = e0(ρ̂∞, ŝ∞); ĉ∞ =

=

�
∂

∂ρ

�
ρ2

∂e0

∂ρ

�
(ρ̂∞, ŝ∞)

is the sound speed in the coming �ow (see [13]); the constants û1, ρ̂, and ŝ are
parameters behind the shock wave,

(3.4) 0 < û1 < ĉ, ρ̂ > 0,

p̂ = ρ̂2
∂e0

∂ρ
(ρ̂, ŝ), �V = 1/ρ̂, ê0 = e0(ρ̂, ŝ), ĉ =

�
∂

∂ρ

�
ρ2

∂e0

∂ρ

�
(ρ̂, ŝ)

is the sound speed behind the shock wave. Additionally, we suppose that the
state equation e0 = e0(ρ, s) satis�es the requirements for the so-called normal
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gas (see, e.g., [13]). As known, in this case (see, e.g., [13, 14]) inequalities
(3.3), (3.4), and the following compressibility conditions

(3.5) p̂ > p̂∞, ρ̂ > ρ̂∞, û1∞ > û1, ŝ > ŝ∞

are valid.
Thus, from the physical point of view, existence of such a piecewise

constant solution means that we have a planar shock wave which separates the
supersonic coming steady viscous �ow (the Mach number ahead of the shock
wave, M∞ = û1∞/ĉ∞ > 1; see (3.3)) and the subsonic �ow behind the shock
wave (the Mach number behind the shock wave, M = û1/ĉ < 1; see (3.4)).
It is natural to raise the issue if such a �ow regime realizes physically. For an
inviscid gas this issue has been studied in detail in [3]. Below we show that in
a viscous heat conducting gas such a regime is unstable with respect to small
perturbations.

After linearization of the system (2.1) and the jump conditions (2.2) with
respect to the piecewise constant solution (3.1), (3.2) we obtain the linear IBVP
in the dimensionless form. Its one-dimensional variant looks as follows

(3.6) Lp + ux = 0,

Lu +
1

M2
px = r uxx ,

Ls = 0

for x > 0;

(3.7) L∞ p∞ + (u∞)x = 0,

L∞u∞ +
1

M2
∞

(p∞)x = r∞(u∞)xx

for x < 0;

(3.8) u + dp − d̂rux = û
�
u∞ + d∞p∞ − d̂∞r∞(u∞)x

�
,

νp + �Ns − ν̂rux = û
�
ν∞ p∞ + ν̂r∞(u∞)x

�
,

Ft = µ{u + p − u∞ − p∞ − �Ns}
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for x = 0.

Here p, u, s are small perturbations of pressure, velocity and entropy at x > 0;
p∞ , u∞ are small perturbations of pressure and velocity at x < 0 (without the
loss of generality we can suppose that the perturbations of the entropy s∞ equal
zero at x < 0); p, u, s , p∞ , u∞ are related to the following characteristic
parameters: ρ̂ĉ2 is the pressure; û1, the velocity; ŝ, the entropy; ρ̂∞ĉ 2∞ , û1∞;
L = ∂

∂ t
+ ∂

∂ x
, L∞ = 1

û
∂
∂ t

+ ∂
∂ x
; the time t and the coordinate x are related to

the following characteristic values: l̂/û1 is the time, l̂ the length; r = 4
3R1

+ 1
R2
,

r∞ = 4
3R1∞

+ 1
R2∞
; R1,2,1∞,2∞ are the Reynolds numbers, where: R1 = ρ̂ û1l̂

�η ,

R2 = ρ̂ û1l̂

�ζ and so on;�η = η(ρ̂, ŝ),�ζ = ζ (ρ̂, ŝ); û = û1∞/û1, where û > 1 (see

(3.5)); d = 1+M 2

2M 2 + β2

2M 2
�L , β2 = 1 − M2, d̂ = 1+�L

2
, d∞ =

M 2
∞+1

2M 2
∞

+
β2∞
2M 2

∞

�L ,

β2∞ = M2
∞ −1, d̂∞ = 1−�L

2
, ν = β2

M 2
�L , ν̂ = �L , ν∞ =

β2∞
M 2

∞

�L , �N = − ŝ (e0)Vs (ρ̂,ŝ)

�V (e0)VV (ρ̂,ŝ)
,

µ = û
û−1
, �L = 1

1−�D ,
�D = 2�T ŝ

û2
1
(û−1)�N ; F(t) is a small perturbation of the

shock wave front. We note that the problem (3.6)�(3.8) does not contain the
characteristic length�l . However, we will see later that the obtained result does
not depend on the concrete value�l .

Following [19] and taking zero p∞ , u∞ , instead of (3.6)�(3.8), we consider
a simpler variant:

(3.9) Lp + ux = 0,

Lu +
1

M2
px = r uxx

for x > 0;

(3.10) u + dp = d̂ r ux for x = 0.

The function s is found from the problem

Ls = 0 at x > 0,

�N s = ν̂ r ux − ν p at x = 0;

and the function F(t) is determined from the relation

Ft = µ {u + p − �N s} at x = 0.
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The problems (3.6)�(3.8) and (3.9)�(3.10) reduce to simpler problems. Indeed,
rewriting the second equation in (3.6)

τu + ξ
� 1

M2
p + u − r ξu

�
= 0, τ =

∂

∂ t
, ξ =

∂

∂x
,

and introducing the potential ϕ = ϕ(t, x )

(3.11) u = ξϕ, p = M2r ξ2ϕ − M2Lϕ,

we obtain from (3.11) and the �rst equation in (3.6) that

(3.12)
�
M2L2 − ξ2 − M2r Lξ2

�
ϕ = 0 at x > 0.

In a similar way we introduce the potential ψ = ψ(t, x ) for the system (3.7):

(3.13) u∞ = ξψ, p∞ = r∞ M2
∞ξ2ψ − M2

∞L∞ψ

and

(3.14)
�
M2

∞L2∞ − ξ2 − M2
∞ r∞ L∞ξ2

�
ψ = 0 at x < 0.

Using (3.11), (3.13), we rewrite the �rst boundary condition in (3.8) as follows:

(3.15)
�
(1− �L) (M2r ξ2 + β2 ξ )− 2M2d τ

�
ϕ =

=
�
û(1+ �L) (M2

∞r∞ ξ2 − β2∞ ξ )− 2M2
∞d∞τ

�
ψ at x = 0.

Consequently, instead of the mixed problem (3.6)�(3.8) we obtain the problem
(3.12), (3.14), (3.15) (the function s is found from the equation Ls = 0 at x > 0
and the second boundary condition in (3.8)). The function F(t) is determined
from the third relation in (3.8).

The problem (3.9), (3.10) reduces to the following:

(3.12)
�
M2L2 − ξ2 − M2r Lξ2

�
ϕ = 0 at x > 0,

(3.16) τϕ = γ {M2r ξ2 + β2 ξ} ϕ at x = 0.

Here γ = 1−�L
2M 2d

.
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Concluding the paragraph, we place the two-dimensional variant of the
linear IBVP on stability of the shock wave in a viscous gas:

(3.17) Lp + ux + vy = 0,

Lu +
1

M2
px = r uxx +

1

R1
uyy + r1vxy ,

Lv +
1

M2
py =

1

R1
vxx + r vyy + r1uxy ,

Ls = 0 at x > 0;

(3.18) L∞ p∞ + (u∞)x + (v∞)y = 0,

L∞u∞ +
1

M2
∞

(p∞)x = r∞(u∞)xx +
1

R1∞
(u∞)yy + r1∞(v∞)xy ,

L∞v∞ +
1

M2
∞

(p∞)y =
1

R1∞
(v∞)xx + r∞(v∞)yy + r1∞(u∞)xy

at x < 0;

(3.19) u + dp − d̂ r ux − d̂ r2 vy =

= û
�
u∞ + d∞p∞ − d̂∞r∞(u∞)x − d̂∞r2∞(v∞)y

�
,

Fy =
1

û − 1

�
v −

1

R1
(uy + vx )− û v∞ +

û

R1∞
((u∞)y + (v∞)x )

�
,

Ft = µ (u + p − u∞ − p∞ − �N s),

νp + �Ns − ν̂ r ux − ν̂ r2 vy = û{ν∞ p∞ + ν̂ r∞(u∞)x + ν̂ r2∞(v∞)y}

at x = 0.

Here r1 = 1
3R1

+ 1
R2
, r2 = 1

R2
− 2

3R1
, r1∞ = 1

3R1∞
+ 1

R2∞
, r2∞ = 1

R2∞
− 2

3R1∞
.

The rest de�nitions have been given above.

We seek a special solution to (3.17)�(3.19). Now we obtain some relations
which simplify the seeking procedure. With this end we rewrite the �rst three
equations in the form:

(3.20) Lp + λ̄ = r �p,
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Lū +
1

M2
ξp =

1

R1
η�,

Lv̄ +
1

M2
ηp = −

1

R1
ξ�.

Here ū = u+r ξp, v̄ = v+r ηp, η = ∂
∂y
,� = ξ2+η2, � = ηu−ξv = ηū−ξ v̄ ,

λ̄ = ξ ū + ηv̄. It follows from (3.20) that

(3.21) L� =
1

R1
��,

Lλ̄ +
1

M2
�p = 0.

We analyze (3.20), (3.21) and conclude that if the functions ϕ = ϕ(t, x , y) and
� = �(t, x , y) satisfy the following equations

(3.22) {M2L2 − � − M2 r L �} ϕ = 0,

�
L −

1

R1
�

�
� = 0

at x > 0,

the functions p, u, and v,

(3.23) p = −M2Lϕ,

u = ξϕ + η� + M2 r L ξϕ,

v = ηϕ − ξ� + M2 r L ηϕ,

are the solution to (3.17); the function s can be found from the equation

Ls = 0 at x > 0

and the last boundary condition in (3.19). Similarly, let the functions ψ(t, x , y)
and �(t, x , y) satisfy the equations

(3.24) {M2
∞L2∞ − � − M2

∞ r∞ L∞ �} ψ = 0,

�
L∞ −

1

R1∞
�

�
� = 0

at x < 0.
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Then the functions

(3.25) p∞ = −M2
∞ L∞ψ,

u∞ = ξψ + η� + M2
∞ r∞ L∞ ξψ,

v∞ = ηψ − ξ� + M2
∞ r∞ L∞ ηψ

are the solution to (3.18). Boundary conditions for the systems (3.22), (3.24) are
obtained by substituting the presentation (3.23), (3.25) into the �rst relations in
(3.19); here F(t, y) is excluded by crossing differentiation from the second and
third boundary conditions.

4. Linear instability of the shock wave.

Here we prove that the �ow of a viscous gas with the shock front from
the previous section is unstable. To make the explanation more informative we
�rstly turn our attention to the problem (3.12), (3.16), the simplest case of the
linear IBVP on stability of a shock wave in a viscous gas. We look for solutions
of a special form:

(4.1) ϕ = ϕ̂ en(
S
r t+

�
r x) at x ≥ 0,

where ϕ̂ , S , and � are some constants such that

(4.2) Re S > 0,Re � < 0;

n is an integer number. Substituting (4.1) into (3.12) and taking ϕ̂ �= 0, we
obtain:

(4.3) (S + �)�2 = ε2

�

(S + �)2 −
� �

M

�2
�

, ε2 =
1

n
.

We �nd roots of the equation (4.3), assuming that n is large, the value S is
known and can be decomposed into the series:

S = S0 + ε S1 + . . . .

So, assuming that
� = �(0) + ε �(1) + . . . ,
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we successively �nd:

�1 = �
(0)
1 + ε �

(1)
1 + . . . , �2 = ε �

(1)
2 + . . . , �3 = ε �

(1)
3 + . . . .

Here �
(0)
1 = −S0, �

(1)
1 = −S1, �

(1)
2 = −

√
S0, �

(1)
3 =

√
S0. Therefore, if

S0 > 0, then �
(0)
1 < 0, �(1)

2 < 0, and (4.2) is valid for the roots �1,2, S , and a
suf�ciently large n.

Finally, we look for the solution to (3.12), (3.16) in the following form:

(4.4) ϕ =
�
ϕ̂1 e

n
�1
r x + ϕ̂2 e

n
�2
r x

�
en

S
r t .

Here the constants ϕ̂1,2 are determined by a single (!) relation:

�
γ (ε2β2�1 + M2�2

1)− ε2S
�

ϕ̂1 +
�
γ (ε2β2�2 + M2�2

2)− ε2S
�

ϕ̂2 = 0.

So, (3.12), (3.16) always have a nontrivial (4.4)-like solution; the constants
S , �1, and �2 satisfy (4.2). As known, existence of such a solution proves
instability of the �ow with a shock wave. From the mathematical point of
view, we have proved ill-posedness of (3.12), (3.16) since the consequence of
solutions

ϕn(t, x ) = e−
√
n+n S

r
t
�
ϕ̂1 e

n
�1
r
x + ϕ̂2 e

n
�2
r
x
�

is a Hadamard-type example (on the Hadamard example see [17]).
Nowwe turn to a more dif�cult problem (3.12), (3.14), (3.15). The solution

to (3.12) is again sought in the form (4.4). We write the solution to (3.14) in the
form:

(4.5) ψ = ψ̂ en(
S
r
t+��

r
x) for x ≤ 0.

Here ψ̂ , �� are constants,

(4.6) Re �� > 0.

To de�ne �� we obtain the algebraic equation

(4.7) (�S + ��)��2 = ε2

�

(�S + ��)2 −
� ��

M∞

�2
�

r

r∞
,�S =

S

û
.

The needed root �� is sought as the expansion into series

�� = ε ��(1) + . . . .
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Here ��(1) =
�

S0
û

r
r∞
. There are no other roots of (4.7) with the property (4.6).

Consequently, the problem (3.12), (3.14), (3.15) has the solution (4.4), (4.5);
moreover, we have a single relation to determine three constants ϕ̂1,2, and ψ̂

which has been derived from (3.15) by substituting (4.4), (4.5). Thus, we have
demonstrated instability of the viscous �ow with a shock wave in the 1-D case.

It is easy to show instability of the discontinuous viscous �ow in the case
of the planar symmetry using the one-dimensional examples of instability from
above. Indeed, for the system (3.22) we seek the function ϕ(t, x , y) in the form
(4.4) with the already known �1 and �2. The function �(t, x , y) is determined
as follows:

(4.8) � = �� en(
S
r t+

Q
r x) for x ≥ 0.

Here �̂ and Q are constants,

(4.9) Re Q < 0 .

To de�ne Q we obtain the algebraic equation

(4.10) Q2 = ε2R1r(S + Q).

The needed root Q , satisfying (4.9), is sought as the expansion into the series

Q = ε Q (1) + . . . .

Here Q (1) = −
√
R1r S0. For (3.24) the function ψ(t, x , y) is sought in the

form (4.5) with the already known ��, the function �(t, x , y) is determined as
follows:

(4.11) � = �� en(
S
r t+

G
r x) for x ≤ 0.

Here �� and G are constants,

(4.12) Re G > 0.

To determine G we use the following algebraic relation:

(4.13) G2 = ε2R1∞r(�S + G).

Accounting (4.12), we seek G as the expansion into the series:

G = ε G (1) + . . . .
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Here G (1) = −
�
R1∞ r S0

û
. Thus, we seek the solution to (3.22), (3.24) in the

form (4.4), (4.8), (4.5), (4.11); we have only two relations to determine the
constants ϕ̂1,2, ��, ψ̂ , and �� . Thus we can write down a nontrivial solution
to this system. Using this solution and (3.23), (3.25), we construct a solution
of the original linear IBVP (3.17)�(3.19). Existence of such a solution proves
instability of the discontinuous viscous�ow for the case of the planar symmetry.

In this connection, the result from [19] that small perturbations decrease
exponentially in time despite of the form of boundary conditions takes aback.
The reason of the wrong conclusion in [19] is that the problem (3.17)�(3.19)
has been substituted by a problem which has no relation to the issue.

In addition, we note that in each considered variant the function F(t) was
represented as follows:

F(t) = F0 e
n S

r t ,

where the constant F0 is determined easily from an appropriate boundary
condition (see (3.8) and (3.19)).

5. Concluding remarks.

The main conclusion of the present work is that, in the framework of the
Navier-Stokes mathematical model, the shock wave in a viscous gas can not
be considered as a surface of a strong discontinuity since instability of the
corresponding discontinuous �ow which has been stated above means that such
a �ow can not be realized physically. This instability also means that application
of the stabilization method in calculation of steady-state �ows around blunt
bodies in a viscous gas with a bow compression shock has no suf�cient ground.

The author is indebted to Yu. L. Trakhinin, for valuable advises, proposals,
and useful discussions, and E. V. Mishchenko for the help in preparation of this
work.
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