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THE CONDITIONS FOR BLOW-UP AND GLOBAL EXISTENCE
OF SOLUTIONS FOR A DEGENERATE AND SINGULAR
PARABOLIC EQUATION WITH A NON-LOCAL SOURCE

N. SUKWONG - W. SAWANGTONG - P. SAWANGTONG

In this paper, we consider the degenerate and singular porous medium

equation with a non-local source: vτ =
(

ξ
β (vm)

ξ

)
ξ

+
∫ a

0
F (vm)dξ . The

conditions on the local and global existence of solutions are investigated.
In the case of blow-up, the blow-up set is shown. Moreover the uniform
blow-up profile of the blow-up solution is given.

1. Introduction

In this article, we find the conditions for the existence of global solution or
blow-up solutions for the degenerate parabolic equation with a non-local source
term as follows:

vτ =
(

ξ
β (vm)

ξ

)
ξ

+
∫ a

0
F (vm)dξ ,(ξ ,τ) ∈ (0,a)× (0,∞) ,

v(0,τ) = v(a,τ) = 0,τ > 0,

v(ξ ,0) = v0 (ξ ) ,ξ ∈ [0,a] ,

 (1)
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where β ,m and a are constants with a > 0, β ∈ [0,1) and m > 1, and F and
v0 are determined functions. Throughout this paper, we assume that F(0) = 0,
F(s)> 0, F ′(s)> 0 for s > 0 and the function v0 satisfies the following:
(H1) v0 ∈C2+α(0,a)∩C[0,a] with 0 < α < 1,
(H2) v0 > 0 on (0, l),v0(0) = v0(a) = 0, and v0ξ (0)> 0 and v0ξ (a)< 0,

(H3)
(

ξ
β (vm

0 (ξ ))ξ

)
ξ

+
∫ a

0
F(vm

0 (ξ ))dξ > 0 for ξ ∈ (0,a),

(H4) (compatibility condition) lim
ξ→0+

(
ξ

β (vm
0 (ξ ))ξ

)
ξ

=−
∫ a

0
F(vm

0 (ξ ))dξ

and lim
ξ→a−

(
ξ

β (vm
0 (ξ ))ξ

)
ξ

=−
∫ a

0
F(vm

0 (ξ ))dξ ,

(H5)
(

ξ β (vm
0 )ξ

)
ξ

≤ 0 for ξ ∈ (0,a).

We note that sinceβ ∈ [0,1), the coefficients of term vξ ,vξ ξ may tend to 0 or ∞

as ξ converges to 0+, this implies that (1) is degenerate and singular. First of
all, we introduce the definition of blow-up.

Definition 1.1. The solution v of (1) is said to blow up in a finite time at the
point ξb if there are a time τb(> 0) and a sequence {(ξn,τn)} in (0,a)× (0,∞)
such that (ξn,τn)→ (ξb,τb) as n→ ∞ and lim

n→∞
v(ξn,τn) = ∞. The point ξb and

time τb are called a blow-up point and blow-up time, respectively. Furthermore,
we call the set of all blow-up points to be the blow-up set. If the blow-up set
contains every point of [0,a], we say that the solution v of (1) is global blow-up.

In the past several decades, many research papers study the global existence
or the blow-up property for solutions of various degenerate parabolic equations
with a non-local source. (see [1, 4, 5, 8, 9, 11, 15–17] and reference there in).
On the other hand, there are a few research papers of degenerate porous medium
equations due to blow-up phenomena.

In 2001, W. Deng, Z. Duan and C. Xie [18] established the conditions
to guarantee the occurrence for blow-up in a finite time for a porous medium
problem with a non-local source:

vτ = (vm)ξ ξ +a
∫ l

−l
vqdξ ,ξ ∈ (−l, l),τ > 0,

v(−l,τ) = v(l,τ) = 0,τ > 0,

v(ξ ,0) = v0(ξ )≥ 0,ξ ∈ [−l, l],

 (2)

where l > 0, a > 0, q > m > 1 and v0 is a specified function. In addition, they
showed that the solution v of (2) blows up in a finite time.
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In 2003,Q. Liu, Y. Chen and C. Xie [14] consider the non-local degenerate
parabolic problem:

vτ = ξ
α (vm)

ξ ξ
+a

∫ l

0
vpdξ − kvq,ξ ∈ (0, l),τ > 0,

v(0,τ) = v(l,τ) = 0,τ > 0,

v(ξ ,0) = v0(ξ ),ξ ∈ (0, l),

 (3)

where l > 0, 0 <α < 2, p≥ q >m > 1, and v0 is a given function. They showed
that the existence of a unique positive classical solution v of (3) and constructed
conditions to blow-up in a finite time.

This paper is organized as follows. In section 2, we prove that the local
existence and uniqueness of the solution v of (1). In section 3, we construct
the condition on global existence for solutions of (1) and the condition which
ensure the occurrence for blow-up in a finite time. The blow-up set and uniform
blow up profile of the blow-up solution v of (1) are shown in last section.

2. Local existence

Since the (1) is degenerate and singular, the theory of partial differential equa-
tions in parabolic type can not apply directly. To investigate the local existence
of the solution u of (1), we need to transform the (1) into the equivalent problem
by letting u = vm,τ = t

maβ−2 and ξ = ax. The problem associating to (1) is:

ut = ur
[(

xβ ux

)
x
+a3−β

∫ 1

0
F (u)dx

]
,(x, t) ∈ (0,1)× (0,∞) ,

u(0, t) = u(1, t) = 0, t > 0,

u(x,0) = u0 (x) ,x ∈ [0,1] ,

 (4)

where 0 < r = m−1
m < 1,u0 = vm

0 and the function u0 has the following proper-
ties:
(A1) u0 ∈C2+α(0,1)∩C[0,1] with 0 < α < 1,
(A2) u0 > 0 on (0,1),u0(0) = u0(1) = 0, and u0x(0)≥ 0 and u0x(1)≤ 0,

(A3)
(

xβ (u0(x))x

)
x
+a3−β

∫ 1

0
F(u0(x))dx > 0 for x ∈ (0,1),

(A4) lim
x→0+

(
xβ (u0x(x))x

)
x
= −a3−β

∫ 1

0
F(u0(x))dx and lim

x→1−

(
xβ (u0(x))x

)
x
=

−a3−β

∫ 1

0
F(u0(x))dx,

(A5)
(
xβ (u0x)

)
x ≤ 0 for x ∈ (0,1).
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To obtain the existence result of (4), we need to use the following lemma
2.1 in [13] that is the important tool and is used frequently from now on.

Lemma 2.1. Let bi is bounded and continuous, and bi ≥ 0 on [0,1]× [0,T ] for
i = 1,2,3,4 and d ≥ 0 on [0,1]× [0,T ] with 0 < T ≤ ∞. Suppose that w ∈
C2,1 ((0,1)× (0,T ))∩C ([0,1]× [0,T ]) satisfies

w−d (x, t)
(

xβ wx

)
x
≥ b1wx +b2w+b3

∫ 1

0
b4w(x, t)dx,

(x, t) ∈ (0,1)× (0,T ] ,

w(0, t)≥ 0,w(1, t)≥ 0, t ∈ (0,T ],

w(x,0)≥ 0,x ∈ [0,1].


(5)

Then, w≥ 0 on [0,1]× [0,T ] .

To prove the existence of solutions for (4), we next consider the following
auxiliary problem:

θt = (θ +δ )r
[(

xβ
θx

)
x
+a3−β

∫ 1

0
F(θ(x, t))dx

]
,(x, t) ∈ (0,1)× (0,∞),

θ(0, t;δ ) = θ(1, t;δ ) = 0, t > 0,

θ(x,0;δ ) = u0(x),x ∈ [0,1],


(6)

where δ is any positive constant and δ < 1. Let ε be any positive constant with
ε < δ . We next introduce a cut-off function, ρ . We refer to the Dunford and
Schwartz book [12], there exists a non-decreasing function ρ such that ρ = 0 if
x≤ 0 and ρ = 1 if x≥ 1. We construct the functions ρε and u0ε by

ρε(x) =


0, x≤ ε,

ρ

( x
ε
−1
)
, ε < x < 2ε

1, x≥ 2ε,

and u0(x;ε) = ρε(x)u0(x). Then, we have that

∂

∂ε
u0(x;ε) =


0, x≤ ε,

− x
ε2 ρ

′
( x

ε
−1
)

u0(x), ε < x < 2ε,

0, x≥ 2ε.

It follows form the non-decreasing property of ρ that

∂

∂ε
u0(x;ε)≤ 0 and lim

ε→0
u0(x;ε) = u0.
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We next consider the regularized problem of (6):

θ̃t =
(
θ̃ +δ

)r
[(

xβ
θ̃x

)
x
+a3−β

∫ 1

ε

F
(
θ̃(x, t)

)
dx
]
,(x, t) ∈ (ε,1)× (0,∞),

θ̃(0, t;δ ,ε) = θ̃(1, t;δ ,ε) = 0, t > 0,

θ̃(x,0) = u0(x;ε),x ∈ [ε,1].


(7)

We note that by F(0) = 0, the zero function is a lower solution of (7). This
implies that θ̃ ≥ 0 for any ε > 0. The next lemma show that the solution θ̃ of
the (7) is non-decreasing with respect to t.

Lemma 2.2. If
(

xβ d
dx

u0(x;ε)

)
x
+a3−β

∫ 1

ε

F (u0(x;ε))dx > 0

for any x ∈ (ε,1). Then, θ̃t ≥ 0 on [ε,1]× [0,∞].

Proof. Let φ = θ̃t on [ε,1]× [0,∞]. Then, we have that for any (x, t) ∈ (ε,1)×
(0,∞),

φt =
(
θ̃ +δ

)r
(

xβ
φx

)
x
+ r
(
θ̃ +δ

)r−1
(θ̃t)

2

+
(
θ̃ +δ

)r a3−β

∫ 1

ε

F ′
(
θ̃(x, t)

)
φ(x, t)dx.

It follows from (7) that the function φ satisfies:

φt =
(
θ̃ +δ

)r
(

xβ
φx

)
x
≥ (θ̃ +δ )ra3−β

∫ 1

ε

F ′
(
θ̃(x, t)

)
φ(x, t)dx,

(x, t) ∈ (ε,1)× (0,∞),

φ(ε, t) = θ̃t(ε, t) = 0,φ(1, t) = θ̃t(1, t) = 0, t > 0,

φ(x,0) = (u0(x;ε)+δ )r
[(

xβ d
dx

u0(x;ε)

)
x
+a3−β

∫ 1

ε

F (u0(x;ε))dx
]
> 0,

x ∈ [ε,1].

Lemma 2.1 implies that θ̃t ≥ 0 for any (x, t) ∈ [ε,1]× [0,∞).

We next show the boundedness property of θ̃ on some time interval.

Lemma 2.3. There exist a time t1 and a function k ∈C1 [0, t1] such that (7) has
a unique classical solution θ̃ on [ε,1]× [0, t1] for all ε > 0 and 0≤ θ̃ ≤ k.

Proof. Consider the ordinary differential equation:

k′(t) = a3−β F(k(t))(k(t)+1)r, t > 0

k(0) = max
x∈[0,1]

u0(x).

 (8)
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By the theory of ordinary differential equation, there exists a positive constant
t1 such that (8) has a unique positive solution k on [0, t1]. In the following,
we show that for all ε > 0, k(t) ≥ θ̃(x, t) for any (x, t) ∈ [ε,1]× [0, t1]. Set
φ(x, t) = k(t)− θ̃(x, t) for (x, t) ∈ [ε,1]× [0, t1]. We then obtain that for any
(x, t) ∈ (ε,1)× (0, t1],

φt ≥ (k(t)+δ )ra3−β

∫ 1

ε

F(k(t))dx

−(θ̃ +δ )r
[(

xβ θ̃x
)

x +a3−β
∫ 1

ε
F(θ̃(x, t))dx

]
= (k(t)+δ )r

(
xβ

φx

)
x
+ rη

r−1
1

θ̃t

(θε +δ )r φ

+(k(t)+δ )ra3−β
∫ 1

ε
F ′(η2)dx,

where η1 and η2 are some constants between k and θ̃ . Therefore,

φt ≥ (k(t)+δ )r
(

xβ
φx

)
x
+ rη

r−1
1

θ̃t

(θ̃ +δ )r
φ +(k(t)+δ )ra3−β

∫ 1

ε

F
′
(η2)dx for

(x, t) ∈ (ε,1)× (0, t1].
Next, we consider on the parabolic boundary and then we have that
φ(ε, t) = k(t)> 0,φ(1, t) = k(t)> 0, t ∈ (0, t1] and
φ(x,0) = k(0)− θ̃(x,0) = max

x∈[0,1]
u0(x)−u0(x;ε)≥ 0,x ∈ [ε,1].

Lemma 2.1 implies that φ ≥ 0, that is θ̃ ≤ k for any [ε,1]× [0, t1]. Based on the
proof of Theorem A.1. in [18], we can conclude that (7) has a unique classical
solution θ̃ on [ε,1]× [0, t1] . The proof of this lemma is completed.

We next show that the function θ̃ has the monotonicity property.

Lemma 2.4. Assume that θ̃1 and θ̃2 are solutions of (7) with 0 < ε1 < ε2 < 1.
Then θ̃1 ≥ θ̃2 on [ε2,1]× [0, t1].

Proof. Set φ(x, t) = θ̃1− θ̃2 on [ε2,1]× [0, t1]. For any (x, t) ∈ (ε2,1)× (0, t1],
we have that

φt = (θ̃1 +δ )r
[(

xβ (θ̃1)x

)
x
+a3−β

∫ 1

ε2

F
(
θ̃1(x, t)

)
dt
]

−(θ̃2 +δ )r
[(

xβ (θ̃2)x

)
x
+a3−β

∫ 1

ε2

F
(
θ̃2(x, t)

)
dt
]

=
(
θ̃1 +δ

)r
(

xβ
φx

)
x
+ rη

r−1
3

(
θ̃2 +δ

)−r
(θ̃2)tφ

+a3−β
(
θ̃1 +δ

)r
∫ 1

ε2

F ′ (η4)φ(x, t)dx
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where η3 and η4 are some constants between θ̃1 and θ̃2.

By a fact that
∂

∂ε
u0(x;ε)≤ 0, the function φ satisfies

φt −
(
θ̃1 +δ

)r
(

xβ
φx

)
x
≥

rη
r−1
3 (θ̃2)t(

θ̃2 +δ
)r φ +a3−β

(
θ̃1 +δ

)r
∫ 1

ε2

F
′
(η4)φdx,

(x, t) ∈ (ε2,1)× (0, t1] ,

φ (ε2, t) = θ̃1 (ε2, t;δ ,ε1)≥ 0,φ(1, t) = 0, t ∈ (0, t1] ,

φ(x,0) = u0(x;ε1)−u0(x;ε2)≥ 0,x ∈ [ε2,1] .

By Lemma 2.1, θ̃1 ≥ θ̃2 on [ε2,1]× [0, t1].

Lemma 2.3 and Lemma 2.4 ensure that lim
ε→0

θ̃(x, t) exists and then we con-

struct the function θ which is a good candidate for the solution for (6) by

θ(x, t) =

{
lim
ε→0

θ̃(x, t), (x, t) ∈ (ε,1]× [0, t1]

0, (x, t) ∈ {0}× [0, t1] .
(9)

By modifying the proofs of Theorem 2.3 in [10] and Lemma 10 and Theo-
rem 12 in [6], we obtain the existence result for (6).

Theorem 2.5. The function θ defined by (9) is a unique classical solution of
(6), on [0,1]× [0, t1].

In order to prove the existence of solutions for (4). By using the same tech-
nique as in Lemma 2.2 and Lemma 2.3, we can show that the solution θ of
(6) satisfies that θt ≥ 0 for all δ and u0(x) ≤ θ(x, t) ≤ k(t) for any (x, t) ∈
[0,1]× [0, t1] where the function k is given in Lemma 2.3. The next lemma
deals with an additional property of θ .

Lemma 2.6. Assume that θ1 and θ2 are solutions of (6) with 0 < δ1 < δ2 < 1.
Then, vδ2 ≥ vδ1 on [0,1]× [0, t1].

Proof. Set φ = θ2−θ1 on [0,1]× [0, t1]. From (6), we have that for any (x, t) ∈
(0,1)× [0, t1],

φt ≥ (θ2 +δ2)
r
[(

xβ (θ2)x

)
x
+a3−β

∫ 1

0
F (θ2(x, t))dx

]
−(θ1 +δ2)

r
[(

xβ (θ1)x

)
x
+a3−β

∫ 1

0
F (θ2(x, t))dx

]
= (θ2 +δ2)

r
(

xβ
φx

)
x
+ rη

r−1
5 (θ1 +δ1)

−r (θ1)tφ

+a3−β (θ2 +δ2)
r
∫ 1

0
F ′ (η6)φdx,
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where η5 and η6 are some constants between θ1 and θ2. Then, the function φ

satisfies

φt − ((θ2)t +δ2)
r
(

xβ
φx

)
x
≥

rη
r−1
5 (θ1)t

(θ1 +δ1)
r φ +a3−β (θ2 +δ2)

r
∫ 1

0
F ′ (η6)φdx for

(x, t) ∈ (0,1)× (0, t1] .
On the parabolic boundary, we obtain that φ(0, t) = 0,φ(1, t) = 0, t ∈ (0, t1] and
φ(x,0) = 0,x ∈ [0,1]. By Lemma 2.1, θ2 ≥ θ1 on [0,1]× [0, t1].

It follows from Lemma 2.6 that we define the function u by

u(x, t) = lim
δ→0

θ(x, t),(x, t) ∈ (0,1)× (0, t1] . (10)

By modifying Lemma 2.7 in [18], and Lemma 10 and Theorem 12 in [6], we
obtain the existence theorem for the equivalent problem (4).

Theorem 2.7. The function u given by (10) is a unique non-negative classical
solution of the equivalent problem (4) on [0.1]× [0, t1] for some positive constant
t1.

Note that by the transformation techniques, u = vm,τ = t
maβ−2 and ξ = ax,

and Theorem 2.7, we obtain the existence result of (1).

Corollary 2.8. There exists a time t̃1 > 0 such that (1) admits a unique non-
negative classical solution on [0,a]× [0, t̃1] for some positive constant t̃1.

3. Blow-up and non-blow-up conditions

First, we give the sufficient condition for blow-up in a finite time for the solution
u of (1). Let us consider the following boundary value problem:

−
(

xβ
Φ
′(x)
)′

= λΦ(x),x ∈ (0,1),

Φ(0) = Φ(1) = 0.

 (11)

The boundary value problem (11) is solvable by [19]. Let the first eigen-
value and its corresponding eigenfunction denote by λ1 > 0 and Φ1 respectively.
Without loss of generality, we assume that max

x∈[0,1]
Φ1(x) = 1. The next theorem

shows the condition that guarantees for the occurrence of blow-up in a finite
time depending on the value of the constant a.
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Theorem 3.1. Assume that there exists a positive constant c1 such that F(s)≥
c1sq for s > 0 and q > 1. If

a > max


 λ1

c1

∫ 1

0
Φ1(x)dx


q

3−β

,

 1∫ 1

0
uq

0(x)dx


1

3−β

 ,

then the solution u of (4) blows up in a finite time.

Proof. Let Π(t) =
∫ 1

0 u1−r(x, t)Φ1(x)dx. We obtain that

1
1− r

Π
′(t) =

∫ 1

0

(
xβ ux

)
x
Φ1(x)dx+a3−β

∫ 1

0
F(u(x, t))dx

∫ 1

0
Φ1(x)dx

= −λ1

∫ 1

0
u(x, t)Φ1(x)dx+a3−β

∫ 1

0
F(u(x, t))dx

∫ 1

0
Φ1(x)dx.

From∫ 1

0
u(x, t)Φ1(x)dx ≤ 1

a(3−β )/q

(∫ 1

0
a3−β uq(x, t)dx

)(∫ 1

0
Φ

q
q−1

1 (x)dx
)1− 1

q

≤ 1
a(3−β )/q

(∫ 1

0
a3−β uq(x, t)dx

) 1
q

,

we obtain that

1
1− r

Π
′(t)≥ −λ1

a(3−β )/q

(∫ 1

0
a3−β uq(x, t)dx

) 1
q

+a3−β

∫ 1

0
c1uq(x, t)dx

∫ 1

0
Φ1(x)dx.

From ut ≥ 0 and a3−β

∫ 1

0
uq

0(x)dx≥ 1, this implies that a3−β

∫ 1

0
uq(x)dx≥ 1.

It follows that
(∫ 1

0
a3−β uq(x, t)dx

) 1
q

≤ a3−β

∫ 1

0
uq(x, t)dx with q > 1. Then

1
1− r

Π
′(t) ≥ − λ1a3−β

a(3−β )/q

∫ 1

0
uq(x, t)dx+a3−β c1

∫ 1

0
uq(x, t)dx

∫ 1

0
Φ1dx

= a3−β

∫ 1

0
uq(x, t)dx

[
−λ1

a(3−β )/q
+ c1

∫ 1

0
Φ1(x)dx

]
.

By the definition of the constant a, we get that
−λ1

a(3−β )/q
+ c1

∫ 1

0
Φ1(x)dx ≥ η7

where η7 is a positive constant. Then,

1
1− r

Π
′(t)≥ η7a3−β

∫ 1

0
uq(x, t)dx.
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Since∫ 1

0
u1−r(x, t)Φ1(x)dx≤

(∫ 1

0
uq(x, t)dx

) 1−r
q
(∫ 1

0
Φ

q
q+r−1

1 (x)dx
) q+r−1

q

,

we obtain that∫ 1

0
uq(x, t)dx≥

(∫ 1

0
u1−r(x, t)Φ1(x)dx

) q
1−r /(∫ 1

0
Φ

q
q+r−1

1 (x)dx
) q+r−1

1−r

.

We then obtain that

1
1− r

Π
′(t) ≥ η7a3−β

(∫ 1

0
u1−r(x, t)Φ1(x)dx

) q
1−r /(∫ 1

0
Φ

q
q+r−1

1 (x)dx
) q+r−1

1−r

≥ η7a3−β
Π

q
1−r (t),

or (
Π

1−q/(1−r)(t)
)′
≤ η7a3−β (1− r−q). (12)

Integrating (12) over (0, t), we have that

Π
1−q/(1−r)(t)−Π

1−q/(1−r)(0)≤ η7a3−β (1− r−q)t.

or

Π
q

1−r−1(t)≥ Π
q

1−r−1(0)

1−η7a3−β (q+ r−1)Π
q

1−r−1(0)t
.

We see that Π
q

1−r−1(t) exists for t ∈ [0,Tb) but Π
q

1−r−1(t) is unbounded as t
converges to Tb where

Tb =
Π

1− q
1−r (0)

η7a3−β (q+ r−1)
=

1
η7a3−β (q+ r−1)

(∫ 1

0
u1−r

0 (x)Φ1(x)dx
)−(q+r−1)

1−r

(13)
is called the blow-up time. Therefore, Π blows up in a finite time. This implies
that the solution u of the equivalent problem (4) blows up in a finite time. Then,
the proof of this theorem is completed.

By Theorem 3.1 and the transformation technique, we can obtain the fol-
lowing result.

Corollary 3.2. The solution v of (1) blows up in finite time if the constant a is
sufficiently large.

Next, we will show that under some conditions, the solution u of (4) can
exist globally. To obtain the desired results, we need the following comparison
theorem.
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Lemma 3.3. Let u and u0 be the solution and the initial function of (4), respec-
tively. Assume that a non-negative function ϕ ∈C2,1((0,1)× (0.T ))∩C([0,1]×
[0,T ]) satisfies

ϕt ≥ (≤)ϕr
[(

xβ
ϕx

)
x
+a3−β

∫ 1

0
F(ϕ(x, t))dx

]
,(x, t) ∈ (0,1)× (0,T ],

ϕ(0, t)≥ (=)0,ϕ(1, t)≥ (=)0, t ∈ (0,T ],

ϕ(x,0)≥ (≤)u0(x),x ∈ [0,1].

Then, ϕ ≥ (≤)u on [0,1]× [0,T ].

Proof. We first consider in the case ” ≥ ”. Let z(x, t) = ϕ(x, t)− u(x, t) on
[0,1]× [0,T ]. By Lemma 2.1 and property (A2), u > 0 in (0,1)× (0,T ]. For
any (x, t) ∈ (0,1)× (0,T ], we have

zt = ϕ
r
(

xβ zx

)
x
+ rη

r−1
8 u−rutz+a3−β

ϕ
r
∫ 1

0
F ′ (η9)z(x, t)dx,

where η8 and η9 are some constants between ϕ and u. Hence, z satisfies:

zt −ϕ
r
(

xβ zx

)
x
= rη

r−1
8 u−rutz+a3−β

ϕ
r
∫ 1

0
F ′ (η9)z(x, t)dx,

(x, t) ∈ (0,1)× (0,T ],

z(0, t)≥ 0,z(1, t)≥ 0, t ∈ (0,T ],

z(x,0)≥ 0,x ∈ [0,1].

Lemma 2.1 yields that ϕ ≥ u on [0,1]× [0,T ]. Similarly, we can get the result
in the case ”≤ ”. The proof of this lemma is completed.

Let us consider the boundary value problem:

−
(

xβ
Λ
′(x)
)′

= 1,x ∈ (0,1) and Λ(0) = Λ(1) = 0.

The solution Λ of the above boundary value problem is given by
Λ(x) = 1

2−β
x1−β (1− x) for x ∈ (0,1). The next theorem deals with the non-

blow-up result.

Theorem 3.4. The solution u of the equivalent (4) exists globally if the value of
the constant a is small enough.
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Proof. Let z(x, t) = c2Λ(x) on [0,1]× [0,∞) where c2 is a positive constant and

c2Λ≥ u0. Choose a≤
(

c2

F(c2 maxx∈[0,1] Λ(x))

) 1
3−β

. Then,

zt − zr
[(

xβ zx

)
x
+a3−β

∫ 1

0
F(z(x, t))dx

]
≥ cr

2Λ
r(x)

[
c2−a3−β

∫ 1

0
F(c2 max

x∈[0,1]
Λ(x))dx

]
≥ 0

for any (x, t) ∈ (0,1)× (0,∞). Moreover, z(0, t) = z(1, t) = 0 for t > 0 and
z(x,0) = c2Λ(x) ≥ u0(x) for x ∈ [0,1]. By Lemma 3.3, z ≥ u on [0,1]× [0,∞].
We can conclude that the solution u of the equivalent problem (4) exists globally.

By the transformation technique and Theorem 3.4 that we obtain the follow-
ing result.

Corollary 3.5. The solution v of (1) does not blow up if a is small enough.

4. Blow-up set and the uniform blow-up profile

In this section, we show that the set of blow-up points and the blow-up profile
for the blow-up solution v of (1) at the blow-up time Tb. From the hypothesises
(H1)− (H5), we know that there are a sufficiently small positive constant ε1
and a non-negative function ϕ0ε(x) such that
(H1*) ϕ0ε ∈C2+α(ε,1− ε)∩C[ε,1− ε] with α ∈ (0,1) and ε ∈ (0,ε1],
(H2*) ϕ0ε(ε) = 0 and ϕ0ε(1− ε) = 0,
(H3*) ϕ0ε(x)< u0(x) for x∈ (ε,2ε)∪(1−2ε,1−ε) and ϕ0ε(x) = u0(x) for x∈
(2ε,1−2ε),
(H4*)

(
xβ (ϕ0ε)x

)
x ≤ 0 for x ∈ (ε,1− ε),

(H5*) ϕ0ε is non-increasing with respect to ε ∈ (0,ε1],

lim
x→ε+

(
xβ (ϕ0ε)x

)
x
=−a3−β

∫ 1−ε

ε

F(ϕ0ε(x))dx

and lim
x→(1−ε)−

(
xβ (ϕ0ε)x

)
x
=−a3−β

∫ 1−ε

ε

F(ω0ε(ξ ))dξ

(H6*)
(

xβ (ϕ0ε)x

)
x
+a3−β

∫ 1−ε

ε

F(ϕ0ε(x))dx≥ 0 for ε ∈ (0,ε1]

and x ∈ (ε,1− ε).
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Clearly, lim
ε→0

ϕ0ε = u0. In following, we consider the following regularized

problem:

ϕεt = (ϕε +δ )r
[(

xβ (ϕε)x

)
x
+a3−β

∫ 1−ε

ε

F (ϕε(x, t))dx
]
,

(x, t) ∈ (ε,1− ε)× (0,∞),

ϕε(ε, t) = ϕε(1− ε, t) = 0, t > 0,

ϕε(x,0) = ϕ0ε(x),x ∈ [ε,1− ε].


(14)

As discussed before, we obtain that the regularized problem (14) has a unique
positive solution ϕε and

lim
δ→0,ε→0

ϕε = u

where u is the solution of the equivalent problem (4). In order to find the blow-
up set and the blow-up profile of the blow-up solution v of (1) when time t near
the blow-up time Tb, we need the following lemma.

Lemma 4.1. Before blow-up occurs,
(
xβ ux

)
x ≤ 0 for (x, t) ∈ (0,1)× [0,Tb).

Proof. It follows from (H6∗) that ϕεt ≥ 0 on [0,1]× [0,Tb).
Let z(x, t) =

(
xβ (ϕε)x

)
x on [0,1]× [0,Tb).

We obtain that for any (x, t) ∈ (ε,1− ε)× (0,Tb),

zt − (ϕε +δ )r(xβ zx)x−2r(ϕε +δ )r−1xβ ϕεxzx− r(ϕε +δ )−1ϕεtz
= r(r−1)(ϕε +δ )−2xβ ϕεt(ϕεx)

2

or

zt − (ϕε +δ )r(xβ zx)x−2r(ϕε +δ )r−1xβ
ϕεxzx− r(ϕε +δ )−1

ϕεtz≤ 0.

On the boundary conditions, we obtain that by (H5∗),

z(ε, t) =
(

xβ
ϕx

)
x
|x=ε =−a3−β

∫ 1−ε

ε

F(ϕε(x, t))dx < 0

and

z(1− ε, t) =
(

xβ
ϕx

)
x
|x=1−ε =−a3−β

∫ 1−ε

ε

F(ϕε(x, t))dx < 0.

For the initial data, it follows from (H4∗) that z(x,0) ≤ 0 for x ∈ [ε,1− ε]. By
lemma 2.1, we get that z≤ 0 on [ε,1− ε]× [0,Tb). Since ε and δ are arbitrary,
and lim

δ→0,ε→0
ϕε = u, we have that

(
xβ ux

)
x ≤ 0 for (x, t) ∈ (0,1)× (0,Tb]. The

proof of Lemma 4.1 is complete.
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It follows from Lemma 4.1 that we obtain the following corollary which is
used in the part of showing the blow-up set of the blow-up solution v of (1).

Corollary 4.2. Before blow-up occurs, (ξ β vm
ξ
)ξ ≤ 0 for (ξ ,τ)∈ (0,a)× [0,Tb).

The next theorem states about the set of all blow-up points of the blow-up
solution v of (1).

Theorem 4.3. Assume that the solution v of (1) blows up in a finite time Tb
and there exits a positive constant c1 such that F(s)≥ c1sq for s > 0 and q > 1.
Then, the set of all blow-up points is the whole interval [0,a].

Proof. Let ε be any positive constant. Construct functions ψ and Ψ by ψ(τ) =∫ a

0
F (vm(ξ ,τ))dξ and Ψ(τ) =

∫
τ

0
ψ(s)ds. We let c3 = inf

ξ∈(ε,a−ε)
µ(ξ ) where µ

is a positive solution of the following boundary value problem:

− d
dξ

(
ξ

β d
dx

µ
m(ξ )

)
= 1,ξ ∈ (0,a),

µ(0) = µ(a) = 0.

From Corollary 4.2, we have that for τ ∈ (0,Tb),∫ a

0
vm(ξ ,τ)dx =−

∫ a

0
vm(ξ ,τ)

d
dξ

(
ξ

β d
dξ

µ
m(ξ )

)
dξ

≥−cm
3

∫ a−ε

0

(
ξ

β vm
ξ

)
ξ

dξ .

We then obtain

0≤ lim
τ→Tb

−cm
3
∫ a−ε

ε

(
ξ β vm

ξ

)
ξ

ψ(τ)
dξ ≤ lim

τ→Tb

∫ a
0 vm(ξ ,τ)dξ

c1
∫ a

0 vmq(ξ ,τ)dξ
= 0.

This means that lim
τ→Tb

∫ a−ε

ε

(
ξ β vm

ξ

)
ξ

ψ(τ)
dξ = 0. As ε → 0, we obtain that

lim
τ→Tb

(
ξ β vm

ξ

)
ξ

ψ(τ)
= 0 for ξ ∈ (0,a). (15)

By integrating the first equation in (1) both sides with respect to τ from 0 to τ ,
we get that

v(ξ ,τ)− v0(ξ ) =
∫

τ

0

(
ξ

β vm
ξ
(ξ ,s)

)
ξ

ds+Ψ(τ). (16)
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From an assumption that v blow up at the finite time Tb, this implies that
lim

τ→Tb
v(ξb,τ) = ∞ for some ξb ∈ (0,a) and then we obtain that

lim
t→Tb

v(ξb,τ)− lim
τ→Tb

v0(ξb) = lim
τ→Tb

∫
τ

0

(
ξ

β vm
ξ
(ξb,s)

)
ξ

ds+ lim
τ→Tb

Ψ(τ).

We therefore have that
lim

τ→Tb
Ψ(τ) = ∞. (17)

By (15), we have that

lim
τ→Tb

∫
τ

0

(
ξ β vm

ξ
(ξ ,s)

)
ξ

ds

Ψ(τ)
= 0 for ξ ∈ (0,a). (18)

Let ξ ∗ be a fixed point in (0,a). We have that by (16),

lim
τ→Tb

v(ξ ∗,τ)
Ψ(τ)

− lim
τ→Tb

v0(ξ
∗)

Ψ(τ)
= lim

τ→Tb

∫
τ

0

(
(ξ ∗)β vm

ξ
(ξ ∗,s)

)
ξ

ds

Ψ(τ)
+1.

(17) and (18) yield that

lim
τ→Tb

v(ξ ∗,τ)
Ψ(τ)

= 1, (19)

which means that the solution v of (1) blows up at the point ξ ∗. By the ar-
bitrariness of ξ ∗, we can conclude that the solution v of (1) blows up every-
where in (0,a). For ξ ∗ ∈ {0,a}, we can always find a sequence {(ξn,τn)} in
(0,a)× (0,Tb) such that (ξn,τn)→ (ξ ∗,Tb) and lim

n→∞
v(ξn,τn) = ∞. Therefore,

the blow-up set is [0,a]. The proof of Theorem 4.3 is completed.

The last theorem shows the blow-up profile of the blow-up solution v of (1)
when τ approaches to the blow-up time Tb.

Theorem 4.4. If f (s) = sq with q > 1. Then, v(ξ ,τ)∼ [a(mq−1)(Tb− τ)]
−1

mq−1

for any ξ ∈ (0,a) as τ → Tb.

Proof. (19) tells us that for any ξ ∈ (0,a),

v(ξ ,τ)∼Ψ(τ) as τ → Tb. (20)

Then, by (20), we obtain that

Ψ
′(τ) =

∫ a

0
vmq(ξ ,τ)dξ ∼ aΨ

mq(τ) as τ → Tb. (21)

Integrating (21) over (τ,Tb), we have that by (17),

Ψ(t)∼ [a(mq−1)(Tb− τ)]
−1

mq−1 as τ → Tb. (22)

Then, we conclude that as τ approaches to the blow-up time Tb,
v(ξ ,τ)∼ [a(mq−1)(Tb− τ)]

−1
mq−1 for any ξ ∈ (0,a).
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5. Conclusion

In this article, we consider the degenerate and singular porous medium problem
with a non-local source term. We prove that the such problem has a local classi-
cal solution before blow-up occur. The conditions for blow-up and non-blow-up
of solutions of the problem depend on the value of constant a. In the blow-up
case, we prove that the solution of the problem blows up completely. Finally,
the uniform blow-up profile of the blow-up solution near the blow-up time is
shown.
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