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TOEPLITZ MATRIX AND PRODUCT NYSTROM METHODS

FOR SOLVING THE SINGULAR INTEGRAL EQUATION

M.A. ABDOU - KHAMIS I. MOHAMED - A.S. ISMAL

The Toeplitz matrix and the product Nystrom methods are applied to an
integral equation of the second kind. We consider two cases: logarithmic
kernel and Hilbert kernel. The two methods are applied to two integral
equations with known exact solutions. The error in each case is calculated.

1. Introduction.

Singular integral equations arise in many problems of mathematical phy-
sics, such as the theory of elasticity, viscoelasticity, hydrodynamics, biological
problems, population genetics and others.

Over the past thirty years substantial progress has been made in developing
innovative approximate analytical and purely numerical solution techniques to
a large class of singular integral equations. The solution of these problems may
be obtained analytically, using the theory developed by Muskhelishvili [12].
The books authored by Green [9], Hochstadt [10], and Tricomi [13] contain
different methods to solve certain integral equations analytically. The books
authored by Golberg [6] and [7] contain extensive literature surveys on both
approximate analytical and purely numerical techniques. The interested reader
should consult the �ne expositions by Atkinson [4], Delves and Mohamed [5]
and Linz [11] for numerical solution.
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In the present work, we consider a Fredholm singular integral equation of
the second kind. We consider two types of kernels, logarithmic kernel with a
�nite power and Hilbert form kernel. The continuity and boundedness of the
integral operator are discussed in section 1. In section 2 we apply the Toeplitz
matrix method to integral equations. Also, the product Nystrom method is
applied to the same integral equations in section 3.

Consider the integral equation

(1.1) φ(x )− λ

� b

a

k(x , y)φ(y)dy = f (x ),

here f (x ) is a given function belongs to the class C[a, b] of all continuous
functions. The kernel k(x , y) is a known function and has singular term
while φ(x ) represents the unknown function to be found and λ is a numerical
parameter.

In order to guarantee the existence of a solution of Eq. (1.1), we assume
throughout this work the following conditions:

1. The kernel k(x , y) satis�es the following relation

(1.2)

� � b

a

� b

a

k2(x , y) dxdy

�1
2

= C < ∞.

2. The unknown function φ(x )∈ L2[a, b] satis�es Hölder condition, i.e.

|φ(x1)− φ(x2)| ≤ A|x1 − x2|
α

where A is a positive constant, x1, x2 ∈ [a, b], and 0 < α ≤ 1.

Now, we prove the continuity and the boundedness of the integral operator

(1.3) Kφ(x ) = λ

� b

a

k(x , y)φ(y)dy

in L2[a, b].

Taking x1, x2 ∈ [a, b] gives

(1.4) | λ |

�
�
�
�

� b

a

k(x1, y)φ(y)dy −

� b

a

k(x2, y)φ(y)dy

�
�
�
�
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≤ |λ|

�� b

a

φ2(y)dy

�

g(x1, x2)

= | λ | �φ� g(x1, x2),

where � · � denotes the normality of φ(x ) and

(1.5) g2(x1, x2) =

� b

a

�

k(x1, y)− k(x2, y)

�2
dy.

The formula (1.5) shows that g(x1, x2) → 0 as x1 → x2, i.e. the integral
operator of Eq. (1.3) maps the set C[a, b] into itself.

From Eq. (1.3) and condition (1.2) we have

�Kφ� = |λ|

�� b

a

dx

�� b

a

k(x , y)φ(y)dy

�2� 1
2

≤ |λ|

�� b

a

dx

� b

a

φ2(y)dy

� b

a

k2(x , y)dy

�1
2

= |λ|C�φ�.

Then
�K� ≤ |λ|C, C is a constant.

Therefore, the integral operator (1.3) is bounded in L2[a, b], which implies the
operator K is continuous.

2. The Toeplitz matrix method.

In this section, we discuss the Toeplitz matrix method [1], [2], [3] to obtain
the numerical solution of integral equation of the second kind with singular
kernel. The idea of this method is to obtain a system of 2N + 1 linear algebraic
equations, where 2N + 1 is the number of discretization points used. The
coef�cients matrix is expressed as sum of two matrices, one of them is the
Toeplitz matrix and the other is a matrix with zero elements except the �rst
and last columns.

Consider the integral equation

(2.1) φ(x ) − λ

� a

−a

k(x , y)φ(y)dy = f (x ).
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The method assumes

(2.2)

� a

−a

k(x , y)φ(y)dy =

N−1�

n=−N

� nh+h

nh

k(x , y)φ(y)dy, h =
a

N
.

The integral in the right hand side of Eq. (2.2) can be written as

(2.3)

� nh+h

nh

k(x , y)φ(y)dy = An (x )φ(nh) + Bn(x )φ(nh + h) + R,

where An (x ) and Bn(x ) are two arbitrary functions to be determined and R is the
error term. Putting φ(y) = 1, y in Eq. (2.3) yield a set of two equations in terms
of the two functions An (x ) and Bn(x ). If R is assumed negligible we can clearly
solve this set of equations for An(x ) and Bn(x ). Let x = mh, −N ≤ m ≤ N
then we obtain

(2.4)

� a

−a

k(x , y)φ(y)dy =

N�

n=−N

Dmnφ(nh),

where

(2.5) Dmn =

� A−N (mh), n = −N,

An (mh) + Bn−1(mh), −N < n < N,

BN−1(mh), n = N.

Hence Eq. (2.1) becomes

(2.6) φ(mh) − λ

N�

n=−N

Dmnφ(nh) = f (mh), −N ≤ m ≤ N,

which represents a system of linear algebraic equations. The matrix Dmn may
be written as Dmn = Gmn − Emn , where

(2.7) Gmn = An (mh) + Bn−1(mh), −N ≤ m, n ≤ N,

which is a Toeplitz matrix of order 2N + 1 and

(2.8) Emn =

�
B−N−1(mh), n = −N,

0, −N < n < N,

AN (mh), n = N,
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which represents a matrix of order 2N + 1 whose elements are zeros except the
�rst and last columns.

However, the integral equation (2.1) is reduced to the following system of
linear algebraic equations

[I − λ(Gmn − Emn)]φ(mh) = f (mh),

or

[I − λ(G − E)]� = F.

Lemma 2.1. The formula (2.6), when N → ∞ is bounded and has a unique
solution.

Proof. Consider � is the metric space of real bounded sets, where the distance
function ρ can be de�ned as

(2.9) ρ(x1, x2) = sup
�

| x
(1)
� − x

(2)
� |

such that

(2.10) xi =

�

x
(i)
�

�∞

�=−∞

∈ �, i = 1, 2.

Consider an operator K on � such that y = K x where x , y ∈ �,

(2.11) y =

�

y�

�∞

�=−∞

, x =

�

x�

�∞

�=−∞

.

Let

(2.12) y� = c� + λ

∞�

n=−∞

K�,nxn

where

c =

�

c�

�∞

�=−∞

∈ �

under the condition

(2.13) sup | K�,n |< ∞.
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The operator K satis�es K : � → �. Hence we write the system (2.6), when
N → ∞ to take the form

(2.14) xm = fm + λ

∞�

n=−∞

Dm,nxn .

Assume

(2.15) Sm = λ

∞�

n=−∞

| Dm,n | .

Apply Cauchy-Minkoviski inequality, we get

(2.16) Sm ≤ λ |

∞�

n=−∞

D2
m,n |

1
2 .

Finally, we get

(2.17) λ ≤ 1

which represents the condition to have a unique solution, and the value of | xm |

satis�es the inequality

(2.18) | xm |≤
| fm |

1− λ
.

De�nition 2.1. The Toeplitz matrix method is said to be convergent of order r
in [−a, a] , if and only if for N suf�ciently large, there exist a constant D > 0
independent on N such that

(2.19) �φ(x )− φN (x )� ≤ DN−r .

The error term R can be given

(2.20) R = |φ − φN |

where R → 0 as N → ∞. So, the error estimate is determined from equation
(2.3) by letting φ(x ) = x 2 to get

(2.21) R =

�
�
�

nh+h�

nh

y2k(x , y)dy − (nh)2An(x )− (nh + h)2Bn(x )
�
�
� ≤ βh3.

where β is a constant.

In the present work, we apply this method to solve the integral equation
(2.1) taking into account a logarithmic kernel with a �nite power as well as a
Hilbert kernel which is often occurs in the theory of elasticity, contact problems,
and other sciences.
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Case 1.

We consider the integral equation

(2.22) φ(x )− λ

� 1

−1

�

ln | y − x |

�q

φ(y)dy = f (x ), q = 1, 2, . . . .

In this case we obtain

(2.23) An (x ) =
1

h(q + 1)

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(nh + h − x )2
�

ln | nh + h − x |

�q− j�

1−
1

2 j+1

�

−(nh − x )

�

ln | nh − x |

�q− j �

(nh + h − x )−
nh − x

2 j+1

��

,

and

(2.24) Bn(x ) =
1

h(q + 1)

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(nh + h − x )

�

ln | nh + h − x |

�q− j �

(x − nh)+
nh + h − x

2 j+1

�

+(nh − x )2
�

ln | nh − x |

�q− j�

1−
1

2 j+1

��

.

The elements of the Toeplitz matrix Gmn are given by

(2.25) Gm,n = An(mh) + Bn−1(mh)

=
h

q + 1

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

�

1−
1

2 j+1

�

×

�

(n − m + 1)2
�

ln | n − m + 1 | h

�q− j

− 2(n − m)2
�

ln | n − m | h

�q− j

+(n − m − 1)2
�

ln | n − m − 1 | h

�q− j�

,
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the elements of the �rst column of the matrix Emn are given by

(2.26) Em,−N = B−N−1(mh)

=
h

q + 1

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

− (m + N )

�

ln | m + N | h

�q− j�

m + N + 1−
m + N

2 j+1

�

+(m + N + 1)2
�

ln | m + N + 1 | h

�q− j�

1−
1

2 j+1

��

,

while the elements of the last column of the matrix Emn are given by

(2.27) Em,N = AN (mh)

=
h

q + 1

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(N − m + 1)2
�

ln | N − m + 1 | h

�q− j�

1−
1

2 j+1

�

−(N − m)

�

ln | N − m | h

�q− j�

N − m + 1−
N − m

2 j+1

��

,

where −N ≤ m, n ≤ N .

Case 2.

If we consider the integral equation (2.1) in the form

(2.28) φ(x )− λ

� π

−π

cot (
y − x

2
)φ(y)dy = f (x ),

with the condition φ(±π ) = 0, knowing that, (see [8] p. 192)

(2.29)

�

x p cot xdx =

∞�

j=0

(−1) j22 j B2 j

(p + 2 j )(2 j )!
x p + 2 j, [p ≥ 1, | x |< π ],
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where B2 j are Bernoulli numbers, then one obtains

(2.30) An (x ) =
1

h

�

2(nh+h−x )ln

�
�
�
� sin

nh+h−x

2

�
�
�
�−2(nh + h−x )ln

�
�
�
� sin

nh−x

2

�
�
�
�

−4

∞�

j=0

(−1) j B2 j

2(1+ 2 j )(2 j )!

�

(nh + h − x )1+2 j − (nh − x )1+2 j

��

,

and

(2.31) Bn(x ) =
1

h

�

−2(nh −x )ln

�
�
�
� sin

nh + h − x

2

�
�
�
�+2(nh −x )ln

�
�
�
�sin

nh − x

2

�
�
�
�

+4

∞�

j=0

(−1) j B2 j

2(1+ 2 j )(2 j )!

�

(nh + h − x )1+2 j − (nh − x )1+2 j

��

.

The elements of the Toeplitz matrix Gmn are given by

(2.32) Gm,n = 2(n − m + 1)ln

�
�
�
�sin

h(n − m + 1)

2

�
�
�
�

−4(n − m)ln

�
�
�
�sin

h(n − m)

2

�
�
�
� + 2(n − m − 1)ln

�
�
�
�sin

h(n − m − 1)

2

�
�
�
�

−4

∞�

j=0

(−1) j h2 j B2 j

2(1+ 2 j )(2 j )!

�

(n − m + 1)1+2 j − 2(n − m)1+2 j + (n − m − 1)1+2 j

�

( −N + 1 ≤ m, n ≤ N − 1 ).

The condition φ(±π ) = 0 reduces the matrix Emn to 2N − 1 zero matrix and
the Toeplitz matrix Gmn to 2N − 1 matrix.

3. The product Nystrom method.

In this section, we discus the product Nystrom method [5]. Consider the
integral equation

(3.1) φ(x )− λ

� b

a

p(x , y)k(x , y)φ(y)dy = f (x )
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where p and k are respectively �badly behaved� and �well behaved� functions
of their arguments, and f (x ) is a given function, while φ(x ) is the unknown
function.

Eq. (3.1) can be written in the form

(3.2) φ(xi )− λ

N�

j=0

wi j k(xi , yj )φ(yj ) = f (xi),

where xi = yi = a + ih, i = 0, 1, . . . , N with h = b−a
N
and N even. The

weights wi j are constructed by insisting that the rule in (3.2) be exact when
k(xi , y)φ(y) is a polynomial of degree ≤ r say. We illustrate the method by
approximating the integral term of formula (3.1) by a product integration form
of Simpson�s rule. It is obvious that the procedure can be easily extended to give
product integration formulas of higher order. Finally, the approximate solution
of Eq. (3.1) takes the form

(3.3) φN (xi ) = f (xi )+ λ

N�

j=0

wi j k(xi , yj )φ(yj ),

where wi j are determined completely in [5].
The formula (3.1) has a unique solution φ ∈ C[a, b] that may be expected

to have unbounded derivatives at the endpoints x = a, x = b. The method is
said to be convergent of order r in [a,b] if and only if for N suf�ciently large
there exists a constant C > 0 independent of N such that

(3.4) �φ(x )− φN (x )�∞ ≤ CN−r .

The uniform convergence of the approximate solution φN to the exact solution
can be examined if we write

(3.5) φ(x )− φN (x ) =

N�

j=0

wj (k, x )

�

φ(xj )− φN (xj )

�

+ tN (k, φ, x ),

where

wj (k, x ) =

� b

a

k(x , s)�N, j (s) ds,

�N, j (s) is the Lagrange interpolation polynomial and tN (k, φ, x ) is the local
truncation error de�ned by

(3.6) tN (k, φ, x ) =

� b

a

k(x , y)φ(y)dy −

N�

j=0

wj (k, x )φ(xj ).
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Hence, we have

(3.7) �φ − φN �∞ = �(I − AN )
−1� � tN �∞,

where AN is the linear operator de�ned by

(3.8) AN : C[a, b] → C[a, b],

AN g(x ) =

N�

j=0

wj (k, x )g(xj ), g ∈ C[a, b], x ∈ [a, b].

According to the product Nystrommethod [5] we approximate the integral term
in (3.1) when x = xi by a product integration form such as Simpson�s rule,
therefore we may write

(3.9)

� b

a

p(xi , y)k(xi , y)φ(y)dy =

N−2
2�

j=0

� y2 j+2

y2 j

p(xi , y)k(xi , y)φ(y)dy.

Now if we approximate the nonsingular part of the integrand over each interval
[y2 j , y2 j+2] by the second degree Lagrange interpolation polynomial which
interpolates it at the points y2 j , y2 j+1, y2 j+2 we obtain

(3.10)

� b

a

p(yi , y)k(yi , y)φ(y)dy ≈

N�

j=0

wi j k(yi , yj )φ(yj ),

where

(3.11) wi,0 = β1(yi ),

wi,2 j+1 = 2γj+1(yi ),

wi,2 j = αj (yi )+ βj+1(yi ),

wi,N = α N
2
(yi ),

such that

(3.12) αj (yi ) =
1

2h2

� y2 j

y2 j−2

p(yi , y)(y − y2 j−2)(y − y2 j−1)dy,
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βj (yi ) =
1

2h2

� y2 j

y2 j−2

p(yi , y)(y2 j−1 − y)(y2 j − y)dy,

γj (yi) =
1

2h2

� y2 j

y2 j−2

p(yi , y)(y − y2 j−2)(y2 j − y)dy.

Therefore, the integral equation (3.1) is reduced to the following system of linear
algebraic equations

φ(xi )− λ

N�

j=0

wi j k(yi, yj )φ(yj ) = f (xi ), i = 0, 1, . . . , N,

or
(I − λW )� = F.

This method is applied to solve the integral equation (3.1) taking into account a
logarithmic kernel with a �nite power as well as a Hilbert kernel.

Case 1.

Consider the integral equation (2.22), and introduce the change of variable
y = y2 j−2 + µh, 0 ≤ µ ≤ 2 in Eqs. (3.12), and if we de�ne

(3.13) ψi (z) =

� 2

0

µi

�

(ln | µ − z | h

�q

dµ, i = 0, 1, 2,

where z = i − 2 j + 2, then the weights wi j in Eqs. (3.11) becomes

(3.14) wi,0 =
h

2

�

2ψ0(z) − 3ψ1(z) + ψ2(z)

�

, z = i,

wi,2 j+1 = h

�

2ψ1(z) − ψ2(z)

�

, z = i − 2 j,

wi,2 j =
h

2

�

ψ2(z)−ψ1(z)+2ψ0 (z−2)−3ψ1(z−2)+ψ2 (z−2)

�

, z = i−2 j +2,

wi,N =
h

2

�

ψ2(z) − ψ1(z)

�

, z = i − N + 2.

The values of ψi (k), i = 0, 1, 2 are given by

(3.15) ψ0(z) =
1

q + 1

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)
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×

�

(2− z)

�

ln | 2− z | h

�q− j

+ z

�

ln | z | h

�q− j �

,

ψ1(z) =
1

q + 1

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(2− z)

�

ln | 2− z | h

�q− j �

z +
2− z

2 j+1

�

+ z2
�

ln | z | h

�q− j�

1−
1

2 j+1

��

,

ψ2(z) =
1

q + 1

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(2− z)

�

ln | 2− z | h

�q− j �

z2 +
2z(2 − z)

2 j+1
+
(2− z)2

3 j+1

�

+ z3
�

ln | z | h

�q− j�

1−
2

2 j+1
+

1

3 j+1

��

.

Thus we obtain

wi,0 =
h

2(q + 1)

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(2− z)

�

ln | 2− z | h

�q− j �

(2− z)(1− z)+
(2− z)(2z − 3)

2 j+1
+
(2− z)2

3 j+1

�

+ z

�

ln | z | h

�q− j �

(2− z)(1 − z) +
z(3 − 2z)

2 j+1
+

z2

3 j+1

��

,

wi,2 j+1 =
h

q + 1

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(2− z)

�

ln | 2− z | h

�q− j�

z(2 − z) +
2(2− z)(1 − z)

2 j+1
−
(2− z)2

3 j+1

�

+ z2
�

ln | z | h

�q− j�

2− z +
2z − 2

2 j+1
−

z

3 j+1

��

,
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wi,2 j =
h

2(q + 1)

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(2− z)

�

ln | 2− z | h

�q− j �

− 6(2− z) +
6(2− z)

2 j+1

�

−z2
�

ln :| z | h

�q− j �

1− z +
2z − 1

2 j+1
−

z

3 j+1

�

+ (4− z)

�

ln | 4− z | h

�q− j�

(z−4)(z −3)−
(4− z)(7 − 2z)

2 j+1
+
(4− z)2

3 j+1

��

,

and

wi,N =
h

2(q + 1)

q�

j=0

(−1) j (q + 1)q(q − 1) . . . (q − j + 1)

×

�

(2− z)

�

ln | 2− z | h

�q− j�

z2 − z +
(2− z)(2z − 1)

2 j+1
+
(2− z)2

3 j+1

�

−z2
�

ln | z | h

�q− j�

1− z +
2z − 1

2 j+1
−

z

3 j+1

��

,

where 0 ≤ i, j ≤ N .

Case 2.

Consider the integral equation (2.28) with Hilbert kernel subject to the
condition φ(±π = 0), and if we de�ne

(3.16) ψi (z) =

� 2

0

µicot
(µ − z)h

2
dµ, i = 0, 1, 2,

where z = i − 2 j + 2, then we have

ψ0(z) =
2

h
ln

�
�
�
� sin

h(2 − z)

2

�
�
�
� −

2

h
ln

�
�
�
� sin

zh

2

�
�
�
�,

and by using formula (2.29) we obtain

ψ1(z) =
2z

h
ln

�
�
�
� sin

h(2− z)

2

�
�
�
� −

2z

h
ln

�
�
�
� sin

zh

2

�
�
�
�
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+
2

h

∞�

j=0

(−1) j h2 j B2 j

(2 j )!

�
(2−z)1+2 j + z1+2 j

1+ 2 j

�

,

ψ2(z) =
2z2

h
ln

�
�
�
� sin

h(2−z)

2

�
�
�
� −

2z2

h
ln

�
�
�
� sin

zh

2

�
�
�
�

+
4

h

∞�

j=0

(−1) j h2 j B2 j

(2 j )!

�
z(2−z)1+2 j + z2+2 j

1+ 2 j
+
(2−z)2+2 j − z2+2 j

2(2+ 2 j )

�

.

Substitutingψi (z), i = 0, 1, 2, into (3.14) we obtain

wi,2 j+1 = 2z(2 − z)ln

�
�
�
� sin

h(2−z)

2

�
�
�
� − 2z(2 − z)ln

�
�
�
� sin

hz

2

�
�
�
�

+ 4

∞�

j=0

(−1) j h2 j B2 j

(2 j )!

�
(2−z)1+2 j (1−z) + z1+2 j (1−z)

1+ 2 j
−
(2−z)2+2 j −z2+2 j

2(2+ 2 j )

�

,

wi,2 j = 6(z−2)ln

�
�
�
� sin

h(2−z)

2

�
�
�
�+(z−3)(z−4)ln

�
�
�
� sin

h(4−z)

2

�
�
�
�−z(z−1)ln

�
�
�
� sin

hz

2

�
�
�
�

+

∞�

j=0

(−1) j h2 j B2 j

(2 j )!

�
6(2− z)1+2 j + z1+2 j (2z − 1)+ (4− z)1+2 j (2z − 7)

1+ 2 j

−
2z2+2 j − 2(4− z)2+2 j

2(2+ 2 j )

�

,

where 1 ≤ i, j ≤ N − 1.
The condition φ(±π ) = 0 reduces the matrix W to (N − 1) × (N − 1)

matrix, i.e. this condition avoids the calculations of wi,0 and wi,N .

Table 1 displays the exact solution φ(x ) = x , the approximate solution
φ(T )n and the error E (T ) of the integral equation (2.22) by using the Toeplitz
matrix method with N = 10, λ = 1, q = 5. Also it displays the values
of the approximate solution φ(N)n and the error E (N) at the same points for the
same integral equation but by using the product Nystrom method with N = 20,
λ = 1, q = 5.

Table 2 displays the values of the exact solution φ(x ) = sin x , the
approximate solution φ(T )n and the error E (T ) at the interior points of the integral
equation (2.28) by using the Toeplitz matrix method with N = 10, λ = 1. Also
it displays the values of the approximate solution φ(N)n and the error E (N) at the
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same points for the same integral equation but by using the product Nystrom
method with N = 20, λ = 1.

x φ = x φ
(T )
n φ

(N )
n E(T ) E(N )

−1.00 −1.00 −.10000E + 01 −.10000E + 01 .66613E − 15 .48850E − 13
−.90 −.90 −.90000E + 00 −.90000E + 00 .16653E − 14 .10880E − 13
−.80 −.80 −.80000E + 00 −.80000E + 00 .55511E − 15 .11435E − 13
−.70 −.70 −.70000E + 00 −.70000E + 00 .11102E − 14 .15543E − 14
−.60 −.60 −.60000E + 00 −.60000E + 00 .77716E − 15 .87708E − 14
−.50 −.50 −.50000E + 00 −.50000E + 00 .66613E − 15 .35527E − 14
−.40 −.40 −.40000E + 00 −.40000E + 00 .44409E − 15 .12768E − 14
−.30 −.30 −.30000E + 00 −.30000E + 00 .44409E − 15 .28311E − 14
−.20 −.20 −.20000E + 00 −.20000E + 00 .11102E − 15 .70777E − 14
−.10 −.10 −.10000E + 00 −.10000E + 00 .41633E − 16 .23176E − 14

.00 .00 .58966E − 16 .42828E − 15 .58966E − 16 .42828E − 15

.10 .10 .10000E + 00 .10000E + 00 .97145E − 16 .62728E − 14

.20 .20 .20000E + 00 .20000E + 00 .33307E − 15 .59119E − 14

.30 .30 .30000E + 00 .30000E + 00 .16653E − 15 .27756E − 15

.40 .40 .40000E + 00 .40000E + 00 .22204E − 15 .55511E − 15

.50 .50 .50000E + 00 .50000E + 00 .55511E − 15 .70499E − 14

.60 .60 .60000E + 00 .60000E + 00 .15543E − 14 .53291E − 14

.70 .70 .70000E + 00 .70000E + 00 .77716E − 15 .15210E − 13

.80 .80 .80000E + 00 .80000E + 00 .13323E − 14 .21427E − 13

.90 .90 .90000E + 00 .90000E + 00 .14433E − 14 .12434E − 13
1.00 1.00 .10000E + 01 .10000E + 01 .00000E + 00 .96145E − 13

Table 1: The results for the Eq. (2.22).

x φ = sin x φ
(T )
n φ

(N )
n E(T ) E(N )

−.28274E + 01 −.30902E + 00 −.30915E + 00 −.30850E + 00 .13788E − 03 .51658E − 03
−.25133E + 01 −.58779E + 00 −.59287E + 00 −.59109E + 00 .50892E − 02 .33080E − 02
−.21991E + 01 −.80902E + 00 −.81486E + 00 −.80572E + 00 .58451E − 02 .32985E − 02
−.18850E + 01 −.95106E + 00 −.95972E + 00 −.95617E + 00 .86654E − 02 .51090E − 02
−.15708E + 01 −.10000E + 01 −.10087E + 01 −.99678E + 00 .86809E − 02 .32193E − 02
−.12566E + 01 −.95106E + 00 −.96041E + 00 −.95418E + 00 .93543E − 02 .31247E − 02
−.94248E + 00 −.80902E + 00 −.81706E + 00 −.80761E + 00 .80461E − 02 .14113E − 02
−.62832E + 00 −.58779E + 00 −.59460E + 00 −.58628E + 00 .68143E − 02 .15008E − 02
−.31416E + 00 −.30902E + 00 −.31336E + 00 −.31012E + 00 .43430E − 02 .11065E − 02

.00000E + 00 .00000E + 00 −.19509E − 02 .66818E − 02 .19509E − 02 .66818E − 02

.31416E + 00 .30902E + 00 .30995E + 00 .30584E + 00 .92883E − 03 .31738E − 02

.62832E + 00 .58779E + 00 .59120E + 00 .59800E + 00 .34130E − 02 .10219E − 01

.94248E + 00 .80902E + 00 .81472E + 00 .80515E + 00 .57041E − 02 .38632E − 02

.12566E + 01 .95106E + 00 .95830E + 00 .96168E + 00 .72410E − 02 .10621E − 01

.15708E + 01 .10000E + 01 .10081E + 01 .99720E + 00 .81197E − 02 .28012E − 02

.18850E + 01 .95106E + 00 .95912E + 00 .95872E + 00 .80619E − 02 .76678E − 02

.21991E + 01 .80902E + 00 .81622E + 00 .80875E + 00 .72012E − 02 .26383E − 03

.25133E + 01 .58779E + 00 .59327E + 00 .59033E + 00 .54874E − 02 .25446E − 02

.28274E + 01 .30902E + 00 .31203E + 00 .31257E + 00 .30148E − 02 .35549E − 02

Table 2: The results for the Eq. (2.28).
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