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MEAN-CONVEX SETS AND MINIMAL BARRIERS

EMANUELE SPADARO

A mean-convex set is locally a barrier for minimal surfaces but can fail
to be a global barrier. In this note we suggest how to extend to general
dimensions the results of a previous unpublished manuscript [25] on the
characterization of the global barriers for minimal surfaces.

0. Introduction

In this note we continue the analysis on the relation between mean-convexity
and the maximum principle for minimal surfaces started in an unpublished
manuscript [25]. In particular, we show how to extend to arbitrary dimensions
the results proven therein and, for the sake of completeness, we also report some
of the results contained in the previous note [25].

Let Ω ⊂ Mn be an open subset with smooth boundary ∂Ω. We say that Ω

has mean-convex boundary, and we shortly call Ω mean-convex, if the mean-
curvature vector ~H∂Ω is a nonpositive multiple of the outward-pointing unit nor-
mal ν∂Ω to Ω at every point of ∂Ω:

~H∂Ω ·ν∂Ω ≤ 0.

Mean-convex sets are locally barriers for minimal surfaces, because they are
locally parametrized by supersolutions of the minimal surface equation, and
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can be used as barriers for the existence of minimal surfaces (see, e.g., the work
by Meeks and Yau [19]).

However, a mean-convex set Ω may fail to be a global barrier. There are
simple examples for this phenomenon due to topological obstructions, but there
are also instances of the failure of this global barrier principle also under the
most restrictive topological assumptions (see the counterexample in § 1).

This arises the question: how can we characterize global barrier for mini-
mal hypersurfaces? We say that a set Θ⊂ Rn is global barrier if:

Σ minimal hypersurface, ∂Σ⊂Θ =⇒ Σ⊂Θ,

where the notion of “minimal hypersurface” has to been suitably specified (sta-
tionary submanifolds with small singular sets, see § 1). In this paper we address
this issue by looking at the minimal barrier containing a set Ω, here called the
mean-convex hull of Ω:

Ω
mc :=

⋂
Ω⊂Θ∈A

Θ, (0.1)

whereA denotes the family of global barriers in Rn. Clearly, by the convex hull
property for minimal surfaces, the closed convex hull Ωco is a global barrier
containing Ω, hence the intersection in (0.1) is non-trivial. Nevertheless, Ωco

may not be the smallest one (see the examples in § 1). On the contrary, a mean-
convex set does not need to coincide with its mean-convex hull.

Similar notions of mean-convex hull have been introduced for minimal hy-
persurfaces spanning a fixed extreme boundary, see e.g. [7]. The main result of
the paper is to prove a partial regularity result for Ωmc.

Theorem 0.1. Let Ω⊂Rn be a bounded closed set with ∂Ω∈C1,1. Then, ∂Ωmc

is C1,1 regular up to a (n−8)-dimensional singular set Σ. Moreover, ∂Ωmc \Ω

is a stable current with boundary in Ω which is regular in a neighborhood of its
boundary.

A straightforward consequence of the theorem is the following.

Corollary 0.2. If n≤ 7, then Ωmc is C1,1 regular; if n = 3 and Ω is connected,
Ωmc is a homology ball.

Heuristics of the proof: mean-curvature flow with obstacles

The main idea in the proof of Theorem 0.1introduced in [25] is to use an evolu-
tion approach trying to characterize the mean-convex hull in terms of the asymp-
totic evolution of a mean-curvature flow (MCF) with an obstacle. The rough
idea is to show that

Ω
mc = lim

t→+∞
Ft ,
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where Ft are sets containing Ω evolving according to the following equation for
the normal velocity~vFt :

~vFt (x) =

{
~H∂Ft (x) if x ∈ ∂Ft \Ω,

max
{
~H∂Ft ·~νFt ,0

}
~νFt if x ∈ ∂Ft ∩Ω,

(0.2)

where~νFt denotes the outward-pointing unit normal to ∂Ft .
In this paper, we suggest how to extend the results of [25] to higher dimen-

sions, by making a different use of the stability estimate by Schoen and Simon
[23] in combination with the regularity results for the classical obstacle problem
for the area functional (see, e.g., [6]).

Since the appearance of the first version of this note, there has been various
contributions to the definition of MCF with obstacles (see, e.g., [2, 17, 18, 22]),
although a detailed analysis of the free boundary regularity has not been yet
addressed. Moreover, in the same years several papers have appeared on the
notion of minimal hull for minimal surfaces (e.g., [1, 12] and the reference
therein) which seem to be closely related to the notion of mean-convex hull
used here. Further investigations about this relation are of great interest.

1. Mean-convex sets and barriers

Throughout this section, Ω denotes a bounded closed set in Rn with C2 boundary
∂Ω. We let ν be the external unit normal to ∂Ω and ~H∂Ω the mean curvature
vector of ∂Ω. In contrast with the examples we are going to discuss, we recall
the following result (here the term disk refers to a smooth 2-dimensional surface
with boundary, having the topology of the planar disk D = {(x,y) ∈ R2 : x2 +
y2 ≤ 1}).

Theorem 1.1 (Meeks & Yau [19]). Let Ω ⊆ R3 be a bounded mean-convex
set and Γ ⊆ ∂Ω a closed curve, null-homotopic in Ω. Then, there exists an
embedded minimal disk Σ⊆Ω such that ∂Σ = Γ.

1.1. Mean-convex 6= global barrier

In general, a mean-convex set does not need to be a global barrier. We describe
here a counterexample in the most restrictive hypotheses of Ω a mean-convex
set homeomorphic to the 3-dimensional ball and Γ a simple Jordan curve in ∂Ω.
Our starting point is the well-known example of a Jordan curve bounding at
least two different minimal disks (see, for example, [21, § 389]).

Let us fix cylindrical coordinates in R3:

(x,y,z) = (ρ cosθ ,ρ sinθ ,z) with (θ ,ρ,z) ∈ [0,2π)× [0,+∞)×R.
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Figure 1: Curve bounding at least two minimal disks (approximate solutions
drawn).

For θ0 > 0 a parameter to be fixed momentarily, let Ωθ0 be the following closed
set (see Figure 2 for two views of this domain):

Ωθ0 :=
{
(θ ,ρ,z) : θ0 ≤ θ ≤ 2π, |z| ≤ L, acosh(z/a)≤ ρ ≤ 1

}
,

where L > h := 0.6 and 0 < a < 1 are fixed in such a way that acosh(L/a)< 1.
Note that such a choice of parameters is possible, for example L = 0.62 and
a = 0.5. Let Γ⊆ ∂Ω be the curve given by (see Figure 1 left):

Γθ0 :=
{
(θ ,1,z) : (θ ,z) ∈ ∂

(
[2θ0,2π]× [−h,h]

)}
.

Figure 2: Two views of the mean-convex domain Ωθ0 (on the left part the trans-
parency shows the interior section).

It is well-known that the area minimizing surface with boundary two axial
unitary circles on parallel planes distant 2h is the union of the two disks

D+ :=
{
(θ ,ρ,h) : θ ∈ [0,2π), ρ ∈ [0,1]

}
, (1.1)

D− :=
{
(θ ,ρ,−h) : θ ∈ [0,2π), ρ ∈ [0,1]

}
(1.2)

(see, for example, [21, § 389] and [24]).
By compactness of integral currents, the minimizers Σθ0 of the area with

boundary Γθ0 converge as θ0→ 0 to a current Σ with boundary the two circles
∂D+, ∂D−, and

M(Σ)≤ liminf
θ0→0

M(Σθ ), (1.3)
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(here M stands for the mass of a current, that is the analog of the volume mea-
sure in Geometric Measure Theory). It is a consequence of the Bridge Principle
for minimal surfaces [27, Theorem 2.2] that Σ = D+∪D−. Indeed, if this is not
the case, then being the two disks the absolute minimizers,

M(D+∪D−)< M(Σ)
(1.3)
≤ liminf

θ0→0
M(Σθ ). (1.4)

By the Bridge Principle, for every ε > 0 there exists θε > 0 and an integer
rectifiable current Tε such that ∂Tε = Γθε

and

M(Tε)≤M(D+∪D−)+ ε,

which together with (1.4) contrasts the minimizing property of Σθε
for ε suffi-

ciently small.
By a simple consequence of the regularity theory for minimal surfaces, this

convergence is smooth away from the points

(θ ,ρ,z) = (0,1,±h),

and Σθ0 is contained in a neighborhood of

D+∪D−∪
{
(0,1,z) : |z| ≤ h

}
,

for θ0 sufficiently small. In particular, for θ0 small enough, the minimizing disk
with boundary Γθ0 resembles the surface in Figure 1 on the right, and therefore is
not contained in Ωθ0 . Both Ωθ0 and Γθ0 are not smooth, but piecewise smooth.
Nevertheless, since all the angles between the faces of Ωθ0 are less than π , it
is not difficult (though boring) to modify the above example and reduce to a
smooth mean-convex domain and a smooth Jordan curve.

1.2. Mean-convex hull 6= convex hull

It follows directly from the definition that in the plane the mean-convex hull
(0.1) coincides with the convex hull. Nevertheless, a simple example shows that
the two notions do not need to coincide in dimension n ≥ 3. Consider the set
contained between a vertical catenoid and two horizontal parallel planes, i.e.

Ω =
{
(x,y,z) : |z| ≤ 1, x2 + y2 ≤ cosh(z)2

}
⊂ R3,

(the fact that Ω is not smooth is not essential, for the example can be modified
accordingly). Clearly,

Ω
co = {x2 + y2 ≤ cosh(1)2}.
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Nevertheless, it is not difficult to show that Ω = Ωmc. To see this, let Σ

be a minimal hypersurface with ∂Σ ⊂ Ω. By the convex hull property, every
minimal surface with boundary in Ω is contained in Ωco, hence, in particular,
Σ⊆ {|z| ≤ 1}. On the other hand, consider the foliation by rescaled catenoids:

{|z| ≤ 1}\Ω =
⋃

λ≥1

Catλ ,

where
Catλ :=

{
(x,y,z) : |z| ≤ 1, x2 + y2 = λ

2 cosh(z/λ )2
}
.

Figure 3: Catenoids’ foliation.

Let λmax the maximum λ such that Σ∩Catλ 6= /0 and assume λmax > 1,
i.e. Σ is not contained in Ω. By the strong maximum principle, it follows that
Σ≡ Catλmax , thus contradicting ∂Σ⊂Ω and implying that Σ⊂Ω, i.e. Ω = Ωmc.

2. Mean curvature flow with obstacle

For the proof of Theorem 0.1, we need to develop a theory of weak mean cur-
vature flow of Caccioppoli sets with obstacle, following closely the approach of
Almgren, Taylor and Wang [3] and Luckhaus and Sturzenhecker [16].

We start recalling the few notions of Geometric Measure Theory which are
needed in the sequel (more details on Caccioppoli sets can be found in the mono-
graph [11]).

2.1. Caccioppoli sets

A measurable set E ⊂ Rn is said to be a Caccioppoli set if there exist sets E j ⊂
Rn with smooth boundary ∂E j ∈C1 such that χE j → χE in L1(Rn) and

liminf
j→+∞

Hn−1(∂E j)<+∞.

Here, as usual, Hn−1 denotes the (n− 1)-dimensional Hausdorff measure and
χE the characteristic function of the set E, namely

χE(x) =

{
1 if x ∈ E,
0 if x /∈ E.
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Note that, according to the above definition, a Caccioppoli set is defined up
to a set of Lebesgue measure zero, for χE ∈ L1 identifies an equivalent class
of measurable functions. Nevertheless, we will always assume to have fixed a
pointwise representative of E which satisfies the following condition:

x ∈ ∂E ⇐⇒ 0 < |Br(x)∩E|< ωn rn ∀ r > 0,

where |A| denotes the Lebesgue measure of a measurable set A⊆ Rn.
The measure of the boundary of E in a open set O ⊂ Rn, also called the

perimeter of E in O, is then given by the minimum limit of the measure in O of
the boundaries of the approximating sets, i.e.

Per(E,O) := inf
{

liminf
j→+∞

Hn−1(∂E j ∩O) : χE j → χE in L1(O), ∂E j ∈C1
}
.

We will often write Per(E) for Per(E,Rn). Moreover, it turns out that,
in case ∂E ∈ C1, then Per(E,O) = Hn−1(∂E ∩O), thus justifying the term
“perimeter”. An easy consequence of the definition is the inequality:

Per(E ∪F,O)+Per(E ∩F,O)≤ Per(E,O)+Per(F,O). (2.1)

Finally, we will use often the following two properties of Caccioppoli sets.

1. Lower semicontinuity:

Per(E,O)≤ liminf
j→+∞

Per(E j,O), ∀ χE j → χE in L1(O).

2. Compactness: given E j ⊆ BR ⊂ Rn with sup j Per(E j)<+∞, there exists
E ⊂ Rn and a subsequence (E jk)k∈N such that

χE jk
→ χE in L1(Rn), as k→+∞.

2.2. Discrete in time approximate flow with obstacle

In what follows Ω⊂Rn is a closed bounded set with C1,1 boundary and E0⊆Rn

is the initial bounded closed set of the evolution such that

|∂E0|= 0 and Ω⊂ E0.

We define the approximate flow of time step h > 0 in the following way: we set
E(h)

0 := E0 and, given E(h)
i for some i ∈ N, we let E(h)

i+1 be a minimizer of the

functional F(·,h,E(h)
i ) given by

F(E,h,E(h)
i ) := Per(E)+

∫
EME(h)

i

dist
(
x,∂E(h)

i

)
h

dx,
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where the minimum is taken among all the sets E containing Ω a.e.,

F(E(h)
i+i,h,E

(h)
i ) = min

{
F

E(h)
i
(E) : E ⊃Ω a.e.

}
.

It is clear that, thanks to the compactness and the semicontinuity properties
(1) and (2) in § 2.1, this minimum problem is well-posed in the class of sets of
finite perimeter and admits minimizers – note that the L1 convergence implies
the convergence almost everywhere for subsequences, thus preserving the con-
straint E ⊃Ω in the limit. Notice, however, that uniqueness in general fails. The
approximate flow is, hence, defined as:

E(h)
t := E(h)

btc ∀ t ≥ 0,

where btc ∈ N is the integer part of t, namely btc ≤ t < btc+1.

2.3. Regularity of approximate flows

It follows from the regularity theory in geometric measure theory that the sets
E(h)

t have C1,1 boundaries up to a singular set of dimension at most n−8. To see
this, first we note that the functional F(·,h,E(h)

i ) can be written in the following
way:

F(E,h,E(h)
i ) = Per(E)+

∫
Rn

ui,h(x) χE(x) dx+
∫
Rn

ui,h(x) χ
E(h)

i
(x) dx, (2.2)

where we set ui,h := h−1di and di the signed distance from ∂E(h)
i :

di(x) :=

{
dist
(
x,∂E(h)

i

)
if x /∈ E(h)

i ,

−dist
(
x,∂E(h)

i

)
if x ∈ E(h)

i .
(2.3)

The last term in (2.2) is a constant not depending on E. Therefore, it turns out
that E(h)

i+1 is also a minimizer of the functional G(·,h,E(h)
i ):

G(E,h,E(h)
i ) := Per(E)+

∫
Rn

ui,h(x)χE(x)dx. (2.4)

Note that
G
(

E ∩ (E(h)
i )co,h,E(h)

i

)
≤ G

(
E,h,E(h)

i

)
,

with equality only if E ⊆ (E(h)
i )co. Hence, it follows by a simple induction

argument that
E(h)

t ⊂ (E0)
co ∀ t ≥ 0. (2.5)
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In turns, this implies that the sets E(h)
i are uniform Λ-minimizers of the

perimeter for Λ = σ h−1, where σ > 0 is a given constant independent of h.
Namely, there exists R > 0 such that for all i ∈N, x ∈Rn and 0 < r < R, it holds

Per(E(h)
i ,Br(x))≤ Per(F,Br(x))+σ h−1 rn ∀ FME(h)

i b Br(x). (2.6)

From the regularity theory of Λ-minimizers (see, e.g., [26]), it follows that
∂E(h)

i ∈ C1,1 up to a closed set of dimension at most n− 8 and the following
density estimates hold (see [26, Proposition 3.4]):

ωn−1

n
−σ h−1 r ≤

min
{
|E(h)

i ∩Br(x)|, |E(h)
i \Br(x)|

}
rn ∀ x ∈ Rn, (2.7)

ωn−1− (n−1)σ h−1 r ≤
Per(E(h)

i ,Br(x))
rn−1 ∀ x ∈ ∂E(h)

i . (2.8)

2.4. Uniform distance estimate

The main analytical estimate exploited in the proof of Theorem 0.1 is the fol-
lowing on the distance between two successive boundaries of the approximate
flow.

Proposition 2.1. There exists a dimensional constant γ(n)> 0, such that

dist
(
∂E(h)

i+1,∂E(h)
i

)
≤ γ(n)

√
h ∀ i ∈ N, ∀ h > 0. (2.9)

The proof of Proposition 2.1 follows by a simple adaptation of the argu-
ments in [16]. For readers’ convenience, we give here a detailed proof.

We premise the following density estimate for one-sided minimizers of the
perimeter. The estimate can be easily deduce from the original arguments by De
Giorgi exploited for minimizers [8] (see also [11]).

Lemma 2.2. There exists a dimensional constant θ = θ(n)> 0 with this prop-
erty. Let E ⊂ BR ⊂ Rn be a Caccioppoli set such that 0 ∈ ∂E and

Per(E,BR)≤ Per(F,BR) ∀ E ⊆ F, F \E b BR. (2.10)

Then,
θ rn ≤ |Br \E| ∀ 0 < r < R. (2.11)

Proof. For r < R, set Fr := E ∪Br. Note that, for almost every r > 0, it holds

Per(Fr) =Hn−1(∂Br \E)+Per(E,Rn \Br(x)),

Per(Br \E) =Hn−1(∂Br \E)+Per(E,Br),

Per(E) = Per(E,Br)+Per(E,Rn \Br).



362 EMANUELE SPADARO

Indeed, if E were smooth, these formulas follow for all the r such that Br and E
have transversal intersections. Otherwise one can argue by approximation.

Using now (2.10), we deduce that, for almost every r > 0,

Per(Fr) =Hn−1(∂Br \E)+Per(E,Rn \Br(x))

≥ Per(E)

= Per(E,Br)+Per(E,Rn \Br)

= Per(Br \E)−Hn−1(∂Br \E)+Per(E,Rn \Br(x)). (2.12)

By the isoperimetric inequality [11, Corollary 1.29], there exists a dimensional
constant C > 0, such that

C |Br \E|
n−1

n ≤ Per(Br \E)
(2.12)
≤ 2Hn−1(∂Br \E). (2.13)

Setting f (r) := |Br \E|, by the coarea formula it holds

Hn−1(∂Br \E) = f ′(r) for a.e. r > 0.

Hence, (2.13) reads as
f (r)

n−1
n ≤ 2C−1 f ′(r).

Integrating (2.13) we get the desired (2.11) for a dimensional constant θ > 0.

Using Lemma 2.2, we can give a proof of the uniform bound in Proposi-
tion (2.1).

Proof of Proposition 2.1. We claim that (2.9) holds for

γ := 2
√

nωn

θ
+1, (2.14)

where θ is the constant in (2.11).
Set for simplicity of notation L1 := E(h)

i+1 and L0 := E(h)
i and assume by con-

tradiction that there exists a point x ∈ ∂L1 \L0 such that

dist(x,L0)> γ
√

h.

Let r := γ
√

h/2 and note that, since Br(x)∩ L0 = /0, L1 satisfies a one-sided
minimizing property in Br(x). Indeed, let F be such that

F ⊂ L1 and |L1 \F | ⊂⊂ Br(x).
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From G(L1,h,L0)≤G(F,h,L0) and ui,h|Br(x) > 0 (notation as in (2.2)), it follows
that

Per(L1,Br(x))≤ Per(F,Br(x)).

This implies that we can apply Lemma 2.2 to Br(x)\L1 and, hence, the density
estimate (2.11) gives:

|L1∩Br(x)| ≥ θ

(
γ
√

h
2

)n

. (2.15)

On the other hand, set L3 := L1 \Br(x). By the minimizing property

G(L1,h,L0)≤ G(L3,h,L0)

and ui,h|Br(x) ≥ γ/(2
√

h), we get easily the following reversed bound:

γ |L1∩Br(x)|
2
√

h
≤ nωn

(
γ
√

h
2

)n−1

. (2.16)

Clearly, (2.15) and (2.16) imply γ ≤ 2
√

nωn/θ , which contradicts (2.14).
Similarly, in the case there exists x ∈ ∂L1∩L0 with dist(x,∂L0)> γ

√
h, we

argue in the same way, noticing that L1 turns out to be one-sided minimizing in
a neighborhood of x.

2.5. Weak flow with obstacle

Though it is not needed to the proof of Theorem 0.1, we note that Proposition 2.1
also leads to the existence of a limit flow with obstacle. Indeed, from the very
definition of discrete flow, it follows easily that

Per(E(h)
t )≤ Per(E0) for every h, t ≥ 0.

Hence, recalling (2.5) and the compactness (2) § 2.1, by a diagonal argument
we find a subsequence h (not relabelled) and sets Et such that

E(h)
t → Et as h→ 0 ∀ 0≤ t ∈Q.

Moreover, using Proposition 2.1, one can show that for the whole discrete flow
a uniform Hölder continuity in time in the L1 topology holds (see [25]).

Proposition 2.3. There exists a constant C > 0 such that

|E(h)
t ME(h)

s | ≤C |s− t|
1
2 ∀ h > 0, ∀ t,s≥ h > 0. (2.17)

Clearly, this allows us to pass into the limit for every t ≥ 0 and find a limit
flow Et satisfying the continuity estimate:

|EtMEs| ≤C |s− t|
1
2 ∀ t,s > 0.
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3. Monotone flows with obstacle

Since we are interested in the asymptotics of the evolution with obstacle, we
can restrict ourself to the case of “nested” flows, i.e. flows satisfying Et ⊆ Es for
every 0≤ s≤ t. For the smooth flow the right condition to look at is the mean-
convexity of the initial set. In the context of Caccioppoli sets there are different
ways to generalize this notion, such as the local pseudo-convexity introduced in
[20] or the minimizing hulls (also called subsolutions) considered in [4, 5, 13].
For our purposes, the latter suffices.

Definition 3.1. A set E ⊆ Rn is a Minimizing Hull in O ⊆ Rn open if

Per(E,O)≤ Per(F,O) ∀ E ⊆ F such that F \E bO. (3.1)

We often do not specify the open set when O = Rn. It is easy to verify that
a minimizing hull E with smooth boundary is mean-convex, while the reverse
implication is in general false. Simple consequences of Definition 3.1 are the
following two properties.

(1) If E ⊆ Rn is a minimizing hull and F ⊆ Rn, then

Per(E ∩F)≤ Per(F). (3.2)

Indeed, from the minimizing hull property Per(E) ≤ Per(E ∪ F) and
from (2.1), we have

Per(E ∩F)≤ Per(E)+Per(F)−Per(E ∪F)≤ Per(F).

(2) If {Ek}k∈N is a sequence of minimizing hulls and χEk → χE in L1, then E
is a minimizing hull. Indeed, given E ⊂ F such that F \E b Rn, by the
minimizing hull property of Ek we have

Per(Ek)≤ Per(Ek∪F). (3.3)

On the other hand, Ek∩F → E ∩F = E and, by semicontinuity (1) § 2.1,

Per(E)≤ liminf
k→+∞

Per(Ek∩F)

(2.1)
≤ liminf

k→+∞

[
Per(Ek)+Per(F)−Per(Ek∪F)

]
(3.3)
≤ Per(F).
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3.1. Maximal solutions

Given a minimizing hull as initial set E0, it is possible to define uniquely a
maximal approximate flow. The main observation in this regard is contained in
the following lemma.

Lemma 3.2. Let E0 ⊂ Rn be a bounded closed minimizing hull such that

Ω⊆ E0 and |∂E0|= 0.

Then, the following holds:

(i) any minimizer E ⊃Ω of G(·,h,E0) is a minimizing hull and E ⊆ E0;

(ii) if E ′ is any other minimizer, then E ∪E ′ and E ∩E ′ are minimizers of
G(·,h,E0) as well.

Proof. Let u0,h = h−1d0 ∈ L∞(Rn), with d0 the rescaled signed distance from
∂E0 in (2.3), and for simplicity let us write G(·) for G(·,h,E0). We start proving
that E ⊆ E0. Indeed, note that

G(E)≤ G(E ∩E0) = Per(E ∩E0)+
∫
Rn

u0,h χE∩E0

(3.2)
≤ Per(E)+

∫
Rn

u0,h χE −
∫
Rn

u0,h χE\E0

= G(E)−
∫
Rn

u0,h χE\E0 .

Since u0,h > 0 in Rn \E0, this implies E ⊆ E0 a.e.
Next we show that E is a minimizing hull. Let E ⊆ F and F \E bRn. From

the minimizing property of E we infer the following:

G(E) = Per(E)+
∫
Rn

u0,h χE

≤ G(F ∩E0)

= Per(F ∩E0)+
∫
Rn

u0,h χF∩E0

(3.2)
≤ Per(F)+

∫
Rn

u0,h χF∩E0 . (3.4)

From E ⊆ E0 and (3.4) we have that

Per(E)≤ Per(F)+
∫
Rn

u0,h χ(F\E)∩E0 ≤ Per(F),

where we used u0,h|E0 ≤ 0. This shows that E is a minimizing hull.
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Finally, let E ′ be another minimizer of G. From the minimizing property of
E, we get

G(E)≤ G(E ∩E ′) = Per(E ∩E ′)+
∫
Rn

uh χE∩E ′ , (3.5)

G(E)≤ G(E ∪E ′) = Per(E ∪E ′)+
∫
Rn

uh χE∪E ′ . (3.6)

Summing the two inequalities, we get

2G(E)≤ Per(E ∩E ′)+Per(E ∪E ′)+
∫
Rn

uh χE∩E ′+
∫
Rn

uh χE∪E ′

(2.1)
≤ Per(E)+Per(E ′)+

∫
Rn

uh χE +
∫
Rn

uh χE ′

= G(E)+G(E ′).

Since E ′ is a minimizer, i.e. G(E) = G(E ′), we deduce that (3.5) and (3.6) are
equalities, thus concluding that E∩E ′ and E∪E ′ are both minimizers of G.

A simple first corollary of Lemma 3.2 is the existence of a maximal mini-
mizer for G.

Corollary 3.3. Let E0 be a bounded closed minimizing hull such that

Ω⊆ E0 and |∂E0|= 0.

Then, there exist a maximal minimizer Emax of G in the following sense: if E is
any other minimizer of G, then E ⊆ Emax.

Proof. We define Emax as a minimizer which maximize the volume, i.e.

|Emax|= max
{
|E| : E minimizer of G

}
, (3.7)

If E is any other minimizer of G, from Lemma 3.2 we deduce that E ∪Emax is
also a minimizer. Hence, since

|Emax| ≤ |E ∪Emax|,

from (3.7) we infer that E ⊆ Emax.

From now on, we will call the flow constructed from these special solutions
the maximal approximate flows. Similarly, we deduce the following proposition
from Lemma 3.2.
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Proposition 3.4. Let E0 ⊆ Rn be a minimizing hull with

Ω⊂ E0 and |∂E0|= 0,

and, for every h > 0, let E(h)
max,t denote the maximal flows. Then, the following

holds:

(i) E(h)
max,t ⊆ E(h)

max,s for every 0≤ s≤ t;

(ii) E(h)
max,t is a minimizing hull for every t ≥ 0.

Proof. The proof follows readily from the previous Lemma 3.2, noticing that,
by the regularity of the minimizers, it holds |∂E(h)

i |= 0.

3.2. Monotonicity

In the proof of Theorem 0.1 we need also the following refined monotonicity
property. The proof exploits the same arguments used above.

Lemma 3.5. Let E0 and F0 be two closed bounded minimizing hulls such that

Ω⊆ E0 ⊆ F0 and |∂E0|= |∂F0|= 0.

Then, the maximal minimizers Emax of G(·,h,E0) and Fmax of G(·,h,F0) satisfy

Emax ⊆ Fmax (3.8)

Proof. For simplicity, set u0 := h−1d∂E0 and u1 := h−1d∂F0 , where d∂E0 and
d∂F0 are the signed distances from ∂E0 and ∂F0 respectively, as defined in (2.3).
Using the minimizing properties, we get:

Per(Emax)+
∫
Rn

u0 χEmax ≤ Per(Emax∩Fmax)+
∫
Rn

u0 χEmax∩Fmax , (3.9)

Per(Fmax)+
∫
Rn

u1 χFmax ≤ Per(Emax∪Fmax)+
∫
Rn

u1 χEmax∪Fmax . (3.10)

Summing these two inequalities, and using (2.1), we get∫
Rn

u0 χEmax +
∫
Rn

u1 χFmax ≤
∫
Rn

u0 χEmax∩Fmax +
∫
Rn

u1 χEmax∪Fmax ,

which in turn implies ∫
Rn
(u0−u1)χEmax\Fmax ≤ 0. (3.11)

Since u0 ≥ u1 in E0 and Emax ⊆ E0 by Lemma 3.2, we infer that (3.11) is an
inequality. This implies that also (3.9) and (3.10) are equalities, i.e. Emax ∪
Fmax is a minimizer of G(·,h1,F0). By maximality of the solution, we conclude
(3.8).
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4. Asymptotic evolutions

In this section we study the properties of the approximate asymptotic evolutions
(well defined thanks to Proposition 3.4 (i)):

E(h)
max,∞ :=

⋂
t≥0

E(h)
max,t .

We prove that every E(h)
max,∞ is stationary under the approximate mean-curvature

flow with obstacle.

Proposition 4.1. For every 0 < h′ ≤ h, E(h)
max,∞ is the maximal minimizer of

G(·,h′,E(h)
max,∞). In particular, E(h)

max,∞ ⊆ E(h′)
max,∞.

Proof. We start proving that E(h)
max,∞ is a minimizer of G(·,h,E(h)

max,∞). We pro-
ceed by contradiction. Assume there exists F ⊂ E(h)

max,∞ such that

G
(
F,h,E(h)

max,∞
)
< G

(
E(h)

max,∞,h,E
(h)
max,∞

)
. (4.1)

Note that, by the semicontinuity of the perimeter (1) § 2.1 and the locally uni-
form convergence di → d∞, where d∞ is the signed distance to ∂E(h)

max,∞ as in
(2.3), we have

G
(
F,h,E(h)

max,∞
)
= lim

i→+∞
G
(
F,h,E(h)

max,i

)
, (4.2)

G
(
E(h)

max,∞,h,E
(h)
max,∞

)
≤ liminf

i→∞
G
(
E(h)

max,i+1,h,E
(h)
max,i

)
. (4.3)

From (4.1), (4.2) and (4.3), we infer that, for i big enough,

G
(
F,h,E(h)

max,i

)
< G

(
E(h)

max,i+1,h,E
(h)
max,i

)
,

thus contrasting with the minimizer property of E(h)
max,i+1.

Now, note that

G
(
E(h)

max,∞,h,E
(h)
max,∞

)
≤ G

(
F,h,E(h)

max,∞
)
, ∀ F ⊆ E(h)

max,∞

implies that, for all h′ ≤ h, (recall that d(·,∂E(h)
max,∞)≤ 0 on ∂E(h)

max,∞)

Per
(
E(h)

max,∞
)
≤ Per(F)−

∫
E(h)

max,∞\F
h−1d(x,∂E(h)

max,∞)

≤ Per(F)−
∫

E(h)
max,∞\F

h′−1d(x,∂E(h)
max,∞),
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which, in turns, leads to the minimizing property for G(·,h′,E(h)
max,∞):

G
(
E(h)

max,∞,h′,E
(h)
max,∞

)
≤ G

(
F,h′,E(h)

max,∞
)
.

Finally, since E(h)
max,∞⊆E0, the last assertion follows by induction from Lemma 3.5.

In particular, recalling the regularity theory for almost minimizers of the
perimeter (see the details in [25]), it follows from Proposition 4.1 that E(h)

max,∞ is
C1,1 regular up to a singular set Σh of dimension at most n−8. Moreover, by the
monotonicity property proven in Proposition 4.1, the asymptotic approximate
evolutions E(h)

max,∞ have a L1-limit as h→ 0,

E(h)
max,∞ ↑ Emax,∞ :=

⋃
h>0

E(h)
max,∞.

The regularity of Emax,∞ is shown in the following proposition.

Proposition 4.2. Let Emax,∞ be the asymptotic evolution defined above. Then,
∂Emax,∞ = M, where M is a (n−1)-dimensional submanifold of Rn of class C1,1

and M \M has Hausdorff dimension at most n− 8. Moreover, there exists a
neighborhood U of Ω where ∂Emax,∞ is regular, i.e. ∂Emax,∞∩U = M∩U.

Proof. We start noticing that

(i) since each E(h)
max,∞ is a minimizing hull, Emax,∞ is also a minimizing hull

by (2) of § 3;

(ii) by the minimizing hull property, for all h,r > 0 and for every p ∈ Rn, we
have

max
{

Per(Emax,∞,Br(p)),Per(E(h)
max,∞,Br(p))

}
≤ nωn rn−1; (4.4)

(iii) Mh := ∂E(h)
∞ \ (Σh ∪Ω) is a stable minimal surface in Rn: this follows

from the Euler–Lagrange equation for G(·,h,E(h)
max,∞), i.e.

HMh(·) = h−1d(·,∂E(h)
max,∞),

and the one-sided area minimizing property of Mh.

By the Schoen-Simon compactness result [23, Theorem 2], we have that, up to
passing to a subsequence (not relabelled), the varifold |Mh| naturally associated
to Mh converges to a varifold V supported on a stable minimal hypersurface M
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withHα(M \ (M∪Ω)) = 0 for all α > n−8. Therefore, since E(h)
max,∞ converges

in L1 to Emax,∞, we also conclude that

∂Emax,∞ \Ω⊂ spt(|V |) = M̄ \Ω,

where |V | is the weight of the varifold V . In other words, in the complement of
Ω the boundary of Emax,∞ is contained in the union of a stable minimal hyper-
surface and a closed singular set Σ = M \ (M ∪Ω) of Hausdorff dimension at
most n−8.

Finally, let x0 ∈ ∂Ω∩∂Emax,∞. Then, by the uniform bound on the perime-
ters (4.4), the translated and rescaled sets

Fr := r−1 (Emax,∞− x0
)
.

locally converge up to extracting a subsequence (here and in the sequel not
relabelled) to a minimizing hull F (recall (2) § 3). By the C1,1-regularity of ∂Ω,
the rescaled obstacles

Ωr := r−1(
Ω− x0

)
converge locally to a closed half space H. Since F is a minimizing hull, H ⊆
F and 0 ∈ ∂F ∩ ∂Ω, by a simple maximum principle we infer that F = H.
Indeed, if this is not the case, there exist R > 0 and a smooth, not constantly
zero function f : ∂BR ⊂ H → H⊥ such that graph( f ) ⊂ F . By the classical
maximum principle for minimal surfaces, the solution u to the minimal surface
equation with boundary f is positive in the whole BR and graph(u) ⊂ F by
the minimizing hull property. Deforming the boundary value f continuously to
zero, we find a family of solutions to the minimal surface equation foliating a
neighborhood of 0 in Rn \H, thus contradicting 0 ∈ ∂F .

This implies that every point x0 ∈ ∂Ω∩ ∂Emax,∞ is a point of the reduced
boundary. Moreover, by a simple variant of this argument, considering blowup
centers x0 in a neighborhood of ∂Ω we also infer that every point in a neighbor-
hood of ∂Ω is a regular point, uniformly if we assume an upper bound for the
norm of the second fundamental form of ∂Ω. Therefore, invoking the regularity
of the classical obstacle problem for minimal surfaces (see, e.g., the account
given in [9, 10]), we conclude that ∂Emax,∞ is of class C1,1 in a neighborhood of
∂Ω.

As a straightforward consequence of the above proposition (alternatively,
see [25] for the proof) is the following.

Corollary 4.3. Let Ω ⊂ Rn, n ≤ 7, be a closed C1,1 set and E0 ⊃ Ω a closed
minimizing hull with |∂E0|= 0. Then, there exists a dimensional constant c0 > 0
such that ∂Emax,∞ ∈C1,1 with uniform estimate

‖A∂Emax,∞
‖L∞ ≤ c0 ‖A∂Ω‖L∞ .
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5. Mean-convex hull

Now we are ready for the proof of Theorem 0.1. Here we make precise the
notion of minimal hypersurface Σ used in the definition of global barriers in the
Introduction, that are locally boundary of stationary Caccioppoli sets E with
Hn−2(Sing(E)) = 0, where Sing(E) are the points in the measure theoretic
boundary of E which are not in the reduced boundary.

We divide the proof of Theorem 0.1 in several steps.

5.1. Step 1

Consider the closed ε-neighbourhood of the obstacle Ω:

Ωε :=
{

x : dist(x,Ω)≤ ε
}
.

Note that Ωε ↓Ω, i.e.

Ωε1 ⊆Ωε2 ∀ 0≤ ε1 ≤ ε2 and
⋂
ε>0

Ωε = Ω0.

Moreover, by the C1,1 regularity of ∂Ω there exists ε0 > 0 such that ∂Ωε ∈C1,1.
Let now E0 be a closed convex set such that Ωε b int(E0) for every ε < ε0 and let
Eε

max,∞ be the asymptotic limit of the maximal flows starting at E0 with respect
to the obstacle Ωε . Set

E(Ω) :=
⋂
ε>0

Eε
max,∞.

We will show that Ωmc = E(Ω).

5.2. Step 2

The main ingredient for the proof of Theorem 0.1 is contained in the following
proposition.

Proposition 5.1. Let Ω and E0 be as in Step 1. Then, every minimal hypersur-
face Σ with ∂Σ⊆Ω is contained in E(Ω).

Proof. Let E(h),ε
max,t denote the approximate maximal flows starting at E0 with

respect to the obstacle Ωε . We show that, for every minimal hypersurface Σ

with ∂Σ⊂Ω, it holds Σ⊂ E(h),ε
max,∞ for every ε > 0 and h < ε2/(4γ2), where γ is

the constant in Proposition 2.1. This implies that

Σ⊂
⋃
h>0

E(h),ε
max,∞ = Eε

max,∞ ∀ ε > 0,
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thus proving the proposition.
The proof of the claim is by contradiction. Assume there exists i ∈ N such

that
Σ⊂ E(h)

max,i and Σ\E(h)
max,i+1 6= /0. (5.1)

Note that here we used the convex hull property for minimal surfaces which
implies Σ ⊂ E0. Set for simplicity of notation L := E(h)

max,i and consider the
closed set of points of minimum distance between ∂L and Σ̄:

W :=
{

x ∈ Σ̄ : dist(x,∂L) = dist
(
Σ,∂L

)}
.

From Proposition 2.1 and (5.1), we deduce that

dist(Σ,∂L)≤ γ
√

h.

Hence, since 2γ
√

h < ε and ∂Σ⊂Ω is distant at least ε from Ωε , the minimum
distance is reached in the interior of Σ, i.e. W ⊂ Σ. Let x0 ∈W be a boundary
point of W ⊂ Σ for the induced topology, i.e.

Br(x0)∩ (Σ\W ) 6= /0 ∀ r > 0, (5.2)

and let y0 ∈ ∂L be such that dist(Σ,W ) = |x0− y0|. Consider

Σ
′ = Σ+ y0− x0.

We have that Σ′⊂ L and Σ′∩∂L 6= /0. We can apply the strict maximum principle
(see, e.g., [14]) and conclude that Σ′ ≡ ∂L in a neighborhood of x0, against
(5.2).

5.3. Step 3

E(Ω) satisfies the regularity conclusion of Theorem 0.1, thanks to Proposition
4.1. Moreover, we show that E(Ω) is actually a global barrier.

Proposition 5.2. Let Ω and E0 be as in Step 1. Then, E(Ω) is a global bar-
rier,i.e.

Σ minimal hypersurface, ∂Σ⊂ E(Ω) =⇒ Σ⊂ E(Ω).

Proof. By Proposition 5.1, it is enough to show that

E(E(Ω)) = E(Ω). (5.3)

To this aim, set for simplicity E1 := E(Ω), E2 := E(E(Ω)) and M := ∂E2\E1.
We claim that

∂M ⊂Ω. (5.4)



MEAN-CONVEX SETS AND MINIMAL BARRIERS 373

Assume, indeed, there exists x0 ∈ ∂M \Ω. Then, in particular, since ∂M ⊂
∂E1, we have that x ∈ ∂E1 \Ω. Then, in a neighborhood of x we have two
stable currents Σ1 := Br(x0)∩∂E2 and Σ2 := Br(x0)∩∂E1 which disconnect the
ball and one lies on one side of the other. Therefore, we can apply the strong
maximum principle by Ilmanen [14, Theorem A (iii)] to infer that

Br(x0)∩∂E2 = Br(x0)∩∂E1.

This contradicts x0 ∈ ∂M = ∂E2 \E1.
The conclusion of the proof is now straightforward. Since by Proposi-

tion 5.1 E(Ω) is a barrier for minimal hypersurfaces with boundary in Ω, from
(5.4) it follows that ∂E(E(Ω))⊂ E(Ω), which together with the obvious inclu-
sion E(Ω)⊆ E(E(Ω)) gives (5.3).

5.4. Step 4

The proof of Theorem 0.1 now follows straightforwardly. By the previous steps,
we deduce that E(Ω) is a global barrier containing Ω and satisfying the regular-
ity conclusion of the theorem.

We need only to show that E(Ω) is the least possible barrier. To this aim,
note that, since ∂E(Ω) \Ω is a minimal surface with boundary in Ω, then nec-
essarily

∂E(Ω)⊂Ω
mc. (5.5)

The conclusion then follows noting that (5.5) implies E(Ω) ⊂ Ωmc, because
E(Ω) can be realized as the union of minimal hypersurfaces with boundary on
∂E(Ω) (which then necessarily are contained in Ωmc), e.g.

E(Ω)\=
⋃
t∈R

(
E(Ω)∩

{
x : xn = t

})
.
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