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ON THE CONVOLUTION PRODUCT OF

THE DISTRIBUTIONAL FAMILIES RELATED

TO THE DIAMOND OPERATOR

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

In this paper, we introduce a distributional family Kα,β which is related
to the Diamond operator ♦k iterated k-times. At �rst we study the properties
of Kα,β and then we give a sense to the convolution product of Kα,β∗Kα�,β � .

1. Introduction.

A. Kananthai [4] has �rst introduced the Diamond operator ♦k iterated
k-times which is de�ned by

(1) ♦k =

�

(

p�

i=1

∂2

∂x 2i
)2 − (

p+q�

j=p+1

∂2

∂x 2j
)2

�k

where p+q = n is the dimension of the n-dimensional Euclidean space R
n and

k is a nonnegative integer. Actually (1) can be rewrite in the following form

(2) ♦k = �
k�k = �k

�
k

where the operators �
k and �k are de�ned by

(3) �
k =

�
∂2

∂x 21
+

∂2

∂x 22
+ . . . +

∂2

∂x 2p
−

∂2

∂x 2p+1
−

∂2

∂x 2p+2
− . . . −

∂2

∂x 2p+q

�k
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and

(4) �k =

�
∂2

∂x 21
+

∂2

∂x 22
+ . . . +

∂2

∂x 2p+q

�k

, p + q = n

In this paper, the family Kα,β is de�ned by Kα,β(x ) = Re
α ∗ RH

β where Re
α is

elliptic kernel de�ned by (5) and RH
β is hyperbolic kernel de�ned by (8) and

the symbol ∗ designates as the convolution and x ∈ R
n . By A. Kananthai ([4]

, p. 33 , Theorem 3.1) (−1)k Kα,β(x ) is an elementary solution of the Diamond
operator ♦k de�ned by (1) for α = β = 2k.

We found the following properties K0,0(x ) = δ(x ) where δ is the
Dirac-delta distribution, K−2k,−2k(x ) = (−1)k♦kδ(x ), ♦k(Kα,β(x )) = (−1)k

Kα−2k,β−2k and ♦k(K2k,2k (x )) = (−1)kδ(x ).
Moreover, we found the convolutions product Kα,β ∗Kα�,β � = Bβ,β �RH

β+β � ∗

Re
α+α� if p is even, and Kα,β ∗ Kα�,β � =

�
RH

β+β � + Tβ+β �

�
∗ Re

α+α� if p is odd,

where

Bβ,β � =
cos(β

2
π )cos(β

�

2
π )

cos(β+β �

2
)π

and

Tβ,β � =
C(−β − β �2)4−1

C(−β

2
)C(−β �

2
)(2π i)−1

�
H+

β+β � − H−
β+β �

�
,

C(r) = �(r)�(1 − r) and H±
r = Hr (u ± io, n) = e∓ rπ

2 i e±
qπ

2 i a( r
2
)(u ± io)

r−n
2

and a( r
2
) = �( n−r

2
)[2rπ

n
2 �( r

2
)]−1.

2. Preliminaries.

De�nition 2.1. Let the function Re
α(x ) be de�ned by

(5) Re
α(x ) =

|x |α−n

Wn(α)

where x = (x1, x2, . . . , xn) ∈ R
n, α is a complex parameter, n is the dimension

of R
n and |x | = (x 21 + x 22 + . . . + x 2n )

1
2 and Wn(α) is de�ned by the formula

Wn(α) =
π

n
2 2α�(α

2
)

�( n−α

2
)

.
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The function Re
α(x ) is precisely the de�nition of elliptic kernel of Marcel

Riesz [2] and the following formula is valid

(6) Re
α(x ) ∗ Re

β(x ) = Re
α+β (x )

which hold for α > 0, β > 0 and α + β ≤ n see([2], p. 20).

De�nition 2.2. Let x = (x1, x2, ..., xn) be a point of R
n and write

(7) u = u(x ) = x 21 + x 22 + . . . + x 2p − x 2p+1 − x 2p+2 − . . . − x 2p+q

where p + q = n.
Denote by �+ the interior of the forward cone de�ned by �+ = {x ∈ R

n :
x1 > 0 and u > 0} and by �̄+ designates its closure.

Similarly, de�ne �− = {x ∈ R
n : x1 < 0 and u > 0} and �̄− designates its

closure. For any complex number α, de�ne

(8) RH
α (u) =

�
u

α−n
2

Kn (α)
i f x ∈ �+

0 i f x /∈ �+

where Kn(α) is given by the formula

(9) Kn(α) =
π

n−1
2 �( 2+α−n

2
)�( 1−α

2
)�(α)

�( 2+α−p
2

)�( p−α

2
)

The function RH
α was introduced by Y. Nozaki ([3], p. 72). RH

α , which is
an ordinary function if Re(α) ≥ n, is a distribution of α and is a distribution of
α if Re(α) < n. Let supp r Hα (u). Suppose

(10) suppRH
α (u) ⊂ �̄+

We shall call RH
α the Marcel Riesz�s ultra-hyperbolic kernel. By putting p = 1

in (8) and (9) and remembering the Legendre�s duplication formula of �(z),

(11) �(2z) = 22z−1π− 1
2 �(z)�(z +

1

2
)

see([5], Vol I, p. 5) the formula (8) reduces to

(12) Mα =

�
u α−n

2

Hn(α)
i f x ∈ �+

0 i f x /∈ �+

Here u = u(x ) = x 21 − x 22 − . . . − x 2n and

(13) Hn(α) = 2α−1π
n−2
2 �(

α

2
)�(

α − n + 2

2
)

Mα is precisely the hyperbolic kernel of Marcel Riesz ([2], p. 31).



42 MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

Lemma 2.1. The function Re
α(x ) has the following properties

(i) Re
0(x ) = δ(x )

(ii) Re
−2k(x ) = (−1)k�kδ(x )

(iii) �k Re
α(x ) = (−1)k Re

α−2k(x )

where �k is the Laplace operator iterated k-times de�ned by (4).

The proofs of Lemma 2.3 is given by S.E Trione [5].

Lemma 2.2. (The convolutions of RH
α (u))

(i) RH
α ∗ RH

β =
cos α π

2
cos β π

2

cos(
α+β

2 )π
RH

α+β where RH
α is de�ned by (8) and (9) with p is

an even.

(ii) RH
α ∗ RH

β = RH
α+β + Tα,β for p is an odd, where

(14) Tα,β = Tα,β(u ± io, n) =

2π i
4
C(−α−β

2
)

C(−α
2
)C(−β

2
)
[H+

α+β − H−
α+β]

C(r) = �(r)�(1− r)

H±
r = Hr (u ± io, n) = e∓r π

2
i e±q π

2
i a( r

2
)(u ± io)

r−n
2

a( r
2
) = �( n−r

2
)[2rπ

n
2 �( r

2
)]−1

(u± io)λ = lim�→0(u+ i�|x |2)λ see([6], p. 275) u = u(x ) is de�ned by (7) and
|x | = (x 21 + x 22 + ... + x 2n )

1
2 .

In particular RH
α ∗ RH

−2k = RH
α−2k and RH

α ∗ RH
2k = RH

α+2k .

The proofs of this Lemma is given by M. Aguirre Tellez ([1], p. 121�123).

Lemma 2.3.

(i) RH
−2k = �

kδ

(ii) �
k RH

α = RH
α−2k

(iii) �
k RH

2k = RH
0 = δ

where �
k is de�ned by (3).

Proof. See ([1], p. 123).



ON THE CONVOLUTION PRODUCT OF. . . 43

3. The family of distributions Kα,β(x).

Let Kα,β(x ) be a distributional family de�ned by

(15) Kα,β(x ) = Re
α ∗ RH

β

where the functions Re
α and R

H
β are de�ned by (5) and (8) respectively. We now

show that Kα,β exists an is in the space O
�
c of rapidly decreasing distributions.

We know from [1], p. 119, formulae (I,2,2) that the Fourier�s transform of
RH

α (u) is given by the following formulae

(16) {RH
α (u)}

∧ =
1

2
[ fα (Q + i0) + fα (Q − i0)]

if p is odd and

(17) {RH
α (u)}

∧ =
1

2i

cos απ
2

sin απ
2

[ fα (Q + i0)+ fα (Q − i0)]

if p is even. Where

(18) fα (Q ± i0) = e± απ i
2 (Q ± i0)−

α
2

and from [7] page 44 and [6], page 194, the Fourier transform of Re
α(x ) is given

by the following formula

(19) {Re
α(x )}

∧ = |y|−α = (|y|2)
−α

2

Now using the properties

(20) (Q ± i0)λ = Qλ
+ + e±λπ i Qλ

−

([6], page 276), where

(21) Qλ
+ =

�
Qλ if Q ≥ 0
0 if Q < 0

and

(22) Qλ
− =

�
(−Q)λ if Q ≤ 0
0 if Q > 0
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and

(23) Q = Q(y) = y21 + . . . + y2p − y2p+1 − . . . − y2p+q.

From [1] and [2], we have

(24) [ fα (Q + i0)+ fα (Q − i0)] = 2 cos
απ

2
Q− α

2 + 2Q
− α

2
−

if p is odd and

(25) [ fα (Q − i0)− fα (Q + i0)] = 2i sin
απ

2
Q

− α
2

−

if p is even . Therefore

(26) {RH
α (u)}

∧ = cos
απ

2
Q− α

2 + Q
− α

2
−

if p is odd and

(27) {RH
α (u)}

∧ = cos
απ

2
Q

− α
2

−

if p is even.
The formulae (26) and (27) using (21) and (22) can be rewrite

(28) {RH
α (u)}

∧ = cos
απ

2
(|y|2p)

− α
2 (1− ρ2)−

α
2 + (−1)−

α
2 (|y|2q)

− α
2 (1− s2)−

α
2

if p is odd and

(29) {RH
α (u)}

∧ = −cos
απ

2
(−1)−

α
2 (|y|2q)

− α
2 (1− s2)−

α
2

if p is even, where

(30) |y|2p = y21 + . . . + y2p

(31) |y|2q = y2p+1 + . . . + y2p+q

(32) ρ2 =
|y|2q

|y|2p
< 1
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(33) s2 =
|y|2p

|y|2q
< 1

Now using that
(1+ r2)∈ OM

([8], page 271) where

r2 = x 21 + . . . + x 2p + x 2p+1 + . . . + x 2p+q

from (28) and (29) we have

(34) {RH
α (u)}

∧ ∈ OM

where OM is the space of functions slow growth (slowly increasing, c.f. [8],
page 243). Similary from [4], we have

(35) {Re
α(u)}

∧ ∈ OM.

On the other hand, from [8] theorem XV, page 268 the Fourier�s transforms F
and F are reciprocal isomorphisms form OM and O �

c respectively. In addition
if

(36) T ∈ OM ⇒ F̄{T } ∈ O �
c

and if

(37) T ∈ O �
c ⇒ F̄{T } ∈ OM

where O �
c is the space of rapidly decreasing distributions and if

g = F{ f } ⇒ f = F̄{g} = F−1{g}

Now putting

(38) Hα,β = {RH
α (u)}

∧{Re
α(u)}

∧

and considering (34) and (35) we have

(39) Hα,β ∈ OM

Therefore considerring (36), (37), (38) and (39) we have

(40) F̄{Hα,β} = F−1{Hα,β} ∈ O �
c

Taking into account (38) and (40) we can de�ne the distribution families Kα,β

in the following from

(41) Kα,β = Kα,β(x ) = RH
α (u) ∗ Re

α(x ) = F−1{{RH
α (u)}

∧.{Re
α(x )}

∧}

From (40) the families Kα,β exists an is in O
�
c .
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Lemma 3.1. The following formulae are valid

(i) K0,0(x ) = δ(x )
(ii) K−2k,−2k(x ) = (−1)k♦kδ(x )
(iii) ♦k (Kα,β(x )) = (−1)k Kα−2k,β−2k (x )
(iv) ♦k (K2k,2k (x )) = (−1)kδ(x ).

Proof.
(i) By (14) K0,0(x ) = Re

0 ∗ RH
0 , and by Lemma 2.3(i) and Lemma 2.5(i) we

obtain K0,0(x ) = δ ∗ δ = δ

(ii) We have

♦k Kα,β(x ) = ♦k (Re
α ∗ RH

β )

= �
k�k(Re

α ∗ RH
β )

= �k Re
α ∗ �

k RH
β

= (−1)k Re
α−2k ∗ RH

β−2k by Lemma 2.3(iii) and Lemma 2.5(ii)

= (−1)k Kα−2k,β−2k(x )

putting α = β = 0 and (i) we obtain K−2k,−2k(x ) = (−1)k♦kδ(x ).
(iii) Similarly as (ii)
(iv) Putting α = β = 2k in (iii) we obtain

♦k (K2k,2k (x )) = (−1)k K0,0(x ) = (−1)kδ(x ) �

4. Main results.

Theorem 4.1. Let the families Kα,β(x ) and Kα�,β �(x ) be de�ned by (14) then
the convolution product Kα,β(x ) ∗ Kα,β �(x ) can be obtained by the following
formulae

(i) Kα,β(x ) ∗ Kα�,β �(x ) = Bβ,β � RH
β+β � ∗ Re

α+α� where RH
β and Re

α are de�ned
by (8) and (5) respectively which p is an even and

Bβ,β �

cos(β
2
π ) cos(β

�

2
π )

cos(β+β �

2
π )

(ii) Kα,β(x ) ∗ Kα�,β � (x ) = (RH
β+β � + Tβ,β �) ∗ Re

α+α� if p is an odd and Tβ,β � is
de�ned by (13)

(iii) Kα,β(x ) ∗ K−2k,−2k(x ) = (−1)k♦k Kα,β(x ).
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Proof.
(i) We have

Kα,β(x ) ∗ Kα�,β � (x ) = (Re
α ∗ RH

β ) ∗ (Re
α� ∗ RH

β � )

= (Re
α ∗ Re

α� ) ∗ (RH
β ∗ RH

β � )

= Re
α+α� ∗ (RH

β ∗ RH
β � )by (6)

= (RH
β ∗ RH

β � ) ∗ Re
α+α�

= Bβ,β � RH
β+β � ∗ Re

α+α�by Lemma 2.4(i) for p is even,

where Bβ,β � =
cos(

β

2 π) cos(
β �

2 π)

cos(
β+β �

2 π)
.

(ii) from(i), Kα,β(x )∗Kα�,β �(x ) = (RH
β ∗ RH

β � )∗ Re
α+α� = (RH

β+β � +Tβ,β �)∗ Re
α+α�

by Lemma 2.2(ii) for p is odd and Tβ,β � is de�ned by (14)
(iii) we have Kα,β(x ) ∗ K−2k,−2k(x ) = Bβ,−2k R

H
β−2k ∗ Re

α−2k for p is even.
Since

Bβ,−2k =
cos(β

2
π ) cos(−2k)π

2

cos(β−2k
2

π )
= 1,

we have Kα,β(x ) ∗ K−2k,−2k(x ) = RH
β−2k ∗ Re

α−2k = Kα−2k,β−2k(x ). Now

for p is odd, we have Kα,β(x ) ∗ K−2k,−2k(x ) = (RH
β−2k + Tβ,−2k) ∗ Re

α−2k .

By (14) Tβ,−2k =
2π i
4 C(−

β+2k
2 )

C(− β

2 )C(
2k
2 )
[H+

β−2k − H−
β−2k] where C(r) = �(r)�(1 − r),

H±
r = e∓ rπ

2 i e±
qπ

2 i a( r
2
)(u ± io)

r−n
2 and a( r

2
) = �( n−r

2
)[2rπ

n
2 �( r

2
)]−1 . Applying

the formula �(z)�(1 − z) = π

sin2π
to C(−β+2k

2
),C(−β

2
) and C(k) and also the

formulae H±
β−2k and a(

β−2k
2
) we obtain Tβ,−2k = 0 and T−2k,β = 0. It follows

that Kα,β(x ) ∗ K−2k,−2k(x ) = RH
β−2k ∗ Re

α−2k = Kα−2k,β−2k(x ) for p is odd.

Now ♦k Kα,β(x ) = (−1)k Kα−2k,β−2k(x ) by Lemma 3.1(iii).
Thus Kα,β(x ) ∗ K−2k,−2k(x ) = (−1)k♦k Kα,β(x ). That completes the

proofs. �

REFERENCES

[1] M.A. Aquirre Tellez - S.E. Trione, The distributional convolution products of
Marcel Riesz�s ultra-hyperbolic kernel, Revista de la Union Matematica Ar-
gentina, 39 (1995), pp. 115�124.

[2] M. Riesz, Integrale de Riemann-Liouville et le probleme de Cauchy, Acta. Math.,
81 (1949), pp. 1�223.



48 MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

[3] Y. Nozaki, On Riemann-Liouville integral of ultra-hyperbolic type, Kodai Math-
ematical seminar Report, 6 - 2 (1964), pp. 69�87.

[4] A. Kananthai, On the solutions of the n-Dimensional Diamond operator, Applied
Mathematics and Computation, 88 (1997), pp. 27�37.

[5] S.E. Trione, La Integral de Riemann-Liouville, Courses and Seminarr de Matem-
atica, Fasciculo 29, Facultad de Ciencias Exactas, Buenos Aires, Agentina.

[6] I.M. Gelfand - G.E. Shilov, Generalized Functions, Vol I. Academic Press, New
York 1964.

[7] N.S. Landkof, Foundations of modern potencial Theory, Springer-Verlag New
York Heidelberg Berlin 1972.

[8] L. Scwartz, Theorie des distributions, Hermann, Paris 1966.

Manuel A. Aguirre Tellez,
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