ON THE CONVOLUTION PRODUCT OF
 THE DISTRIBUTIONAL FAMILIES RELATED
 TO THE DIAMOND OPERATOR

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

In this paper, we introduce a distributional family $K_{\alpha, \beta}$ which is related to the Diamond operator \diamond^{k} iterated k-times. At first we study the properties of $K_{\alpha, \beta}$ and then we give a sense to the convolution product of $K_{\alpha, \beta *} K_{\alpha^{\prime}, \beta^{\prime}}$.

1. Introduction.

A. Kananthai [4] has first introduced the Diamond operator \diamond^{k} iterated k -times which is defined by

$$
\begin{equation*}
\diamond^{k}=\left(\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right)^{k} \tag{1}
\end{equation*}
$$

where $p+q=n$ is the dimension of the n-dimensional Euclidean space \mathbb{R}^{n} and k is a nonnegative integer. Actually (1) can be rewrite in the following form

$$
\begin{equation*}
\diamond^{k}=\square^{k} \Delta^{k}=\Delta^{k} \square^{k} \tag{2}
\end{equation*}
$$

where the operators \square^{k} and Δ^{k} are defined by

$$
\begin{equation*}
\square^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\frac{\partial^{2}}{\partial x_{p+2}^{2}}-\ldots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k} \tag{3}
\end{equation*}
$$

Entrato in redazione il 7 dicembre 2001
and

$$
\begin{equation*}
\Delta^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}, p+q=n \tag{4}
\end{equation*}
$$

In this paper, the family $K_{\alpha, \beta}$ is defined by $K_{\alpha, \beta}(x)=R_{\alpha}^{e} * R_{\beta}^{H}$ where R_{α}^{e} is elliptic kernel defined by (5) and R_{β}^{H} is hyperbolic kernel defined by (8) and the symbol $*$ designates as the convolution and $x \in \mathbb{R}^{n}$. By A. Kananthai ([4] , p. 33 , Theorem 3.1) $(-1)^{k} K_{\alpha, \beta}(x)$ is an elementary solution of the Diamond operator \diamond^{k} defined by (1) for $\alpha=\beta=2 k$.

We found the following properties $K_{0,0}(x)=\delta(x)$ where δ is the Dirac-delta distribution, $K_{-2 k,-2 k}(x)=(-1)^{k} \diamond^{k} \delta(x), \diamond^{k}\left(K_{\alpha, \beta}(x)\right)=(-1)^{k}$ $K_{\alpha-2 k, \beta-2 k}$ and $\diamond^{k}\left(K_{2 k, 2 k}(x)\right)=(-1)^{k} \delta(x)$.

Moreover, we found the convolutions product $K_{\alpha, \beta} * K_{\alpha^{\prime}, \beta^{\prime}}=B_{\beta, \beta^{\prime}} R_{\beta+\beta^{\prime}}^{H} *$ $R_{\alpha+\alpha^{\prime}}^{e}$ if p is even, and $K_{\alpha, \beta} * K_{\alpha^{\prime}, \beta^{\prime}}=\left(R_{\beta+\beta^{\prime}}^{H}+T_{\beta+\beta^{\prime}}\right) * R_{\alpha+\alpha^{\prime}}^{e}$ if p is odd, where

$$
B_{\beta, \beta^{\prime}}=\frac{\cos \left(\frac{\beta}{2} \pi\right) \cos \left(\frac{\beta^{\prime}}{2} \pi\right)}{\cos \left(\frac{\beta+\beta^{\prime}}{2}\right) \pi}
$$

and

$$
T_{\beta, \beta^{\prime}}=\frac{C\left(-\beta-\beta^{\prime} 2\right) 4^{-1}}{C\left(-\frac{\beta}{2}\right) C\left(-\frac{\beta^{\prime}}{2}\right)(2 \pi i)^{-1}}\left[H_{\beta+\beta^{\prime}}^{+}-H_{\beta+\beta^{\prime}}^{-}\right]
$$

$C(r)=\Gamma(r) \Gamma(1-r)$ and $H_{r}^{ \pm}=H_{r}(u \pm i o, n)=e^{\mp \frac{r \pi}{2} i} e^{ \pm \frac{q \pi}{2} i} a\left(\frac{r}{2}\right)(u \pm i o)^{\frac{r-n}{2}}$ and $a\left(\frac{r}{2}\right)=\Gamma\left(\frac{n-r}{2}\right)\left[2^{r} \pi^{\frac{n}{2}} \Gamma\left(\frac{r}{2}\right)\right]^{-1}$.

2. Preliminaries.

Definition 2.1. Let the function $R_{\alpha}^{e}(x)$ be defined by

$$
\begin{equation*}
R_{\alpha}^{e}(x)=\frac{|x|^{\alpha-n}}{W_{n}(\alpha)} \tag{5}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \alpha$ is a complex parameter, n is the dimension of \mathbb{R}^{n} and $|x|=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{\frac{1}{2}}$ and $W_{n}(\alpha)$ is defined by the formula

$$
W_{n}(\alpha)=\frac{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right)}
$$

The function $R_{\alpha}^{e}(x)$ is precisely the definition of elliptic kernel of Marcel Riesz [2] and the following formula is valid

$$
\begin{equation*}
R_{\alpha}^{e}(x) * R_{\beta}^{e}(x)=R_{\alpha+\beta}^{e}(x) \tag{6}
\end{equation*}
$$

which hold for $\alpha>0, \beta>0$ and $\alpha+\beta \leq n \operatorname{see}([2]$, p. 20).
Definition 2.2. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of \mathbb{R}^{n} and write

$$
\begin{equation*}
u=u(x)=x_{1}^{2}+x_{2}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-x_{p+2}^{2}-\ldots-x_{p+q}^{2} \tag{7}
\end{equation*}
$$

where $p+q=n$.
Denote by Γ_{+}the interior of the forward cone defined by $\Gamma_{+}=\left\{x \in \mathbb{R}^{n}\right.$: $x_{1}>0$ and $\left.u>0\right\}$ and by $\bar{\Gamma}_{+}$designates its closure.

Similarly, define $\Gamma_{-}=\left\{x \in \mathbb{R}^{n}: x_{1}<0\right.$ and $\left.u>0\right\}$ and $\bar{\Gamma}_{-}$designates its closure. For any complex number α, define

$$
R_{\alpha}^{H}(u)=\left\{\begin{array}{lll}
\frac{u^{\frac{\alpha-n}{2}}}{K_{n}(\alpha)} & \text { if } & x \in \Gamma_{+} \tag{8}\\
0 & \text { if } & x \notin \Gamma_{+}
\end{array}\right.
$$

where $K_{n}(\alpha)$ is given by the formula

$$
\begin{equation*}
K_{n}(\alpha)=\frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{2+\alpha-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)} \tag{9}
\end{equation*}
$$

The function R_{α}^{H} was introduced by Y. Nozaki ([3], p. 72). R_{α}^{H}, which is an ordinary function if $R_{e}(\alpha) \geq n$, is a distribution of α and is a distribution of α if $R_{e}(\alpha)<n$. Let supp $r_{\alpha}^{H}(u)$. Suppose

$$
\begin{equation*}
\operatorname{supp} R_{\alpha}^{H}(u) \subset \bar{\Gamma}_{+} \tag{10}
\end{equation*}
$$

We shall call R_{α}^{H} the Marcel Riesz's ultra-hyperbolic kernel. By putting $p=1$ in (8) and (9) and remembering the Legendre's duplication formula of $\Gamma(z)$,

$$
\begin{equation*}
\Gamma(2 z)=2^{2 z-1} \pi^{-\frac{1}{2}} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{11}
\end{equation*}
$$

see([5], Vol I, p. 5) the formula (8) reduces to

$$
M_{\alpha}=\left\{\begin{array}{lll}
\frac{u \frac{\alpha-n}{2}}{H_{n}(\alpha)} & \text { if } & x \in \Gamma_{+} \tag{12}\\
0 & \text { if } & x \notin \Gamma_{+}
\end{array}\right.
$$

Here $u=u(x)=x_{1}^{2}-x_{2}^{2}-\ldots-x_{n}^{2}$ and

$$
\begin{equation*}
H_{n}(\alpha)=2^{\alpha-1} \pi^{\frac{n-2}{2}} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha-n+2}{2}\right) \tag{13}
\end{equation*}
$$

M_{α} is precisely the hyperbolic kernel of Marcel Riesz ([2], p. 31).

Lemma 2.1. The function $R_{\alpha}^{e}(x)$ has the following properties
(i) $R_{0}^{e}(x)=\delta(x)$
(ii) $R_{-2 k}^{e}(x)=(-1)^{k} \Delta^{k} \delta(x)$
(iii) $\Delta^{k} R_{\alpha}^{e}(x)=(-1)^{k} R_{\alpha-2 k}^{e}(x)$
where Δ^{k} is the Laplace operator iterated k-times defined by (4).
The proofs of Lemma 2.3 is given by S.E Trione [5].
Lemma 2.2. (The convolutions of $\left.R_{\alpha}^{H}(u)\right)$
(i) $R_{\alpha}^{H} * R_{\beta}^{H}=\frac{\cos \alpha \frac{\pi}{2} \cos \beta \frac{\pi}{2}}{\cos \left(\frac{\alpha+\beta}{2}\right) \pi} R_{\alpha+\beta}^{H}$ where R_{α}^{H} is defined by (8) and (9) with p is an even.
(ii) $R_{\alpha}^{H} * R_{\beta}^{H}=R_{\alpha+\beta}^{H}+T_{\alpha, \beta}$ for p is an odd, where

$$
\begin{equation*}
T_{\alpha, \beta}=T_{\alpha, \beta}(u \pm i o, n)=\frac{\frac{2 \pi i}{4} C\left(-\frac{\alpha-\beta}{2}\right)}{C\left(-\frac{\alpha}{2}\right) C\left(-\frac{\beta}{2}\right)}\left[H_{\alpha+\beta}^{+}-H_{\alpha+\beta}^{-}\right] \tag{14}
\end{equation*}
$$

$C(r)=\Gamma(r) \Gamma(1-r)$
$H_{r}^{ \pm}=H_{r}(u \pm i o, n)=e^{\mp r \frac{\pi}{2} i} e^{ \pm q \frac{\pi}{2} i} a\left(\frac{r}{2}\right)(u \pm i o)^{\frac{r-n}{2}}$
$a\left(\frac{r}{2}\right)=\Gamma\left(\frac{n-r}{2}\right)\left[2^{r} \pi^{\frac{n}{2}} \Gamma\left(\frac{r}{2}\right)\right]^{-1}$
$(u \pm i o)^{\lambda}=\lim _{\epsilon \rightarrow 0}\left(u+i \epsilon|x|^{2}\right)^{\lambda}$ see([6], p. 275) $u=u(x)$ is defined by (7) and $|x|=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{\frac{1}{2}}$.

In particular $R_{\alpha}^{H} * R_{-2 k}^{H}=R_{\alpha-2 k}^{H}$ and $R_{\alpha}^{H} * R_{2 k}^{H}=R_{\alpha+2 k}^{H}$.
The proofs of this Lemma is given by M. Aguirre Tellez ([1], p. 121-123).

Lemma 2.3.

(i) $R_{-2 k}^{H}=\square^{k} \delta$
(ii) $\square^{k} R_{\alpha}^{H}=R_{\alpha-2 k}^{H}$
(iii) $\square^{k} R_{2 k}^{H}=R_{0}^{H}=\delta$
where \square^{k} is defined by (3).
Proof. See ([1], p. 123).

3. The family of distributions $K_{\alpha, \beta}(x)$.

Let $K_{\alpha, \beta}(x)$ be a distributional family defined by

$$
\begin{equation*}
K_{\alpha, \beta}(x)=R_{\alpha}^{e} * R_{\beta}^{H} \tag{15}
\end{equation*}
$$

where the functions R_{α}^{e} and R_{β}^{H} are defined by (5) and (8) respectively. We now show that $K_{\alpha, \beta}$ exists an is in the space O_{c}^{\prime} of rapidly decreasing distributions. We know from [1], p. 119, formulae ($\mathrm{I}, 2,2$) that the Fourier's transform of $R_{\alpha}^{H}(u)$ is given by the following formulae

$$
\begin{equation*}
\left\{R_{\alpha}^{H}(u)\right\}^{\wedge}=\frac{1}{2}\left[f_{\alpha}(Q+i 0)+f_{\alpha}(Q-i 0)\right] \tag{16}
\end{equation*}
$$

if p is odd and

$$
\begin{equation*}
\left\{R_{\alpha}^{H}(u)\right\}^{\wedge}=\frac{1}{2 i} \frac{\cos \frac{\alpha \pi}{2}}{\sin \frac{\alpha \pi}{2}}\left[f_{\alpha}(Q+i 0)+f_{\alpha}(Q-i 0)\right] \tag{17}
\end{equation*}
$$

if p is even. Where

$$
\begin{equation*}
f_{\alpha}(Q \pm i 0)=e^{ \pm \frac{\alpha \pi i}{2}}(Q \pm i 0)^{-\frac{\alpha}{2}} \tag{18}
\end{equation*}
$$

and from [7] page 44 and [6], page 194, the Fourier transform of $R_{\alpha}^{e}(x)$ is given by the following formula

$$
\begin{equation*}
\left\{R_{\alpha}^{e}(x)\right\}^{\wedge}=|y|^{-\alpha}=\left(|y|^{2}\right)^{\frac{-\alpha}{2}} \tag{19}
\end{equation*}
$$

Now using the properties

$$
\begin{equation*}
(Q \pm i 0)^{\lambda}=Q_{+}^{\lambda}+e^{ \pm \lambda \pi i} Q_{-}^{\lambda} \tag{20}
\end{equation*}
$$

([6], page 276), where

$$
Q_{+}^{\lambda}=\left\{\begin{array}{lll}
Q^{\lambda} & \text { if } & Q \geq 0 \tag{21}\\
0 & \text { if } & Q<0
\end{array}\right.
$$

and

$$
Q_{-}^{\lambda}=\left\{\begin{array}{lll}
(-Q)^{\lambda} & \text { if } & Q \leq 0 \tag{22}\\
0 & \text { if } & Q>0
\end{array}\right.
$$

and

$$
\begin{equation*}
Q=Q(y)=y_{1}^{2}+\ldots+y_{p}^{2}-y_{p+1}^{2}-\ldots-y_{p+q}^{2} \tag{23}
\end{equation*}
$$

From [1] and [2], we have

$$
\begin{equation*}
\left[f_{\alpha}(Q+i 0)+f_{\alpha}(Q-i 0)\right]=2 \cos \frac{\alpha \pi}{2} Q^{-\frac{\alpha}{2}}+2 Q_{-}^{-\frac{\alpha}{2}} \tag{24}
\end{equation*}
$$

if p is odd and

$$
\begin{equation*}
\left[f_{\alpha}(Q-i 0)-f_{\alpha}(Q+i 0)\right]=2 i \sin \frac{\alpha \pi}{2} Q_{-}^{-\frac{\alpha}{2}} \tag{25}
\end{equation*}
$$

if p is even. Therefore

$$
\begin{equation*}
\left\{R_{\alpha}^{H}(u)\right\}^{\wedge}=\cos \frac{\alpha \pi}{2} Q^{-\frac{\alpha}{2}}+Q_{-}^{-\frac{\alpha}{2}} \tag{26}
\end{equation*}
$$

if p is odd and

$$
\begin{equation*}
\left\{R_{\alpha}^{H}(u)\right\}^{\wedge}=\cos \frac{\alpha \pi}{2} Q_{-}^{-\frac{\alpha}{2}} \tag{27}
\end{equation*}
$$

if p is even.
The formulae (26) and (27) using (21) and (22) can be rewrite
(28) $\left\{R_{\alpha}^{H}(u)\right\}^{\wedge}=\cos \frac{\alpha \pi}{2}\left(|y|_{p}^{2}\right)^{-\frac{\alpha}{2}}\left(1-\rho^{2}\right)^{-\frac{\alpha}{2}}+(-1)^{-\frac{\alpha}{2}}\left(|y|_{q}^{2}\right)^{-\frac{\alpha}{2}}\left(1-s^{2}\right)^{-\frac{\alpha}{2}}$
if p is odd and

$$
\begin{equation*}
\left\{R_{\alpha}^{H}(u)\right\}^{\wedge}=-\cos \frac{\alpha \pi}{2}(-1)^{-\frac{\alpha}{2}}\left(|y|_{q}^{2}\right)^{-\frac{\alpha}{2}}\left(1-s^{2}\right)^{-\frac{\alpha}{2}} \tag{29}
\end{equation*}
$$

if p is even, where

$$
\begin{equation*}
|y|_{q}^{2}=y_{p+1}^{2}+\ldots+y_{p+q}^{2} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\rho^{2}=\frac{|y|_{q}^{2}}{|y|_{p}^{2}}<1 \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
s^{2}=\frac{|y|_{p}^{2}}{|y|_{q}^{2}}<1 \tag{33}
\end{equation*}
$$

Now using that

$$
\left(1+r^{2}\right) \in O_{M}
$$

([8], page 271) where

$$
r^{2}=x_{1}^{2}+\ldots+x_{p}^{2}+x_{p+1}^{2}+\ldots+x_{p+q}^{2}
$$

from (28) and (29) we have

$$
\begin{equation*}
\left\{R_{\alpha}^{H}(u)\right\}^{\wedge} \in O_{M} \tag{34}
\end{equation*}
$$

where O_{M} is the space of functions slow growth (slowly increasing, c.f. [8], page 243). Similary from [4], we have

$$
\begin{equation*}
\left\{R_{\alpha}^{e}(u)\right\}^{\wedge} \in O_{M} \tag{35}
\end{equation*}
$$

On the other hand, from [8] theorem XV, page 268 the Fourier's transforms F and F are reciprocal isomorphisms form O_{M} and O_{c}^{\prime} respectively. In addition if

$$
\begin{equation*}
T \in O_{M} \Rightarrow \bar{F}\{T\} \in O_{c}^{\prime} \tag{36}
\end{equation*}
$$

and if

$$
\begin{equation*}
T \in O_{c}^{\prime} \Rightarrow \bar{F}\{T\} \in O_{M} \tag{37}
\end{equation*}
$$

where O_{c}^{\prime} is the space of rapidly decreasing distributions and if

$$
g=F\{f\} \Rightarrow f=\bar{F}\{g\}=F^{-1}\{g\}
$$

Now putting

$$
\begin{equation*}
H_{\alpha, \beta}=\left\{R_{\alpha}^{H}(u)\right\}^{\wedge}\left\{R_{\alpha}^{e}(u)\right\}^{\wedge} \tag{38}
\end{equation*}
$$

and considering (34) and (35) we have

$$
\begin{equation*}
H_{\alpha, \beta} \in O_{M} \tag{39}
\end{equation*}
$$

Therefore considerring (36), (37), (38) and (39) we have

$$
\begin{equation*}
\bar{F}\left\{H_{\alpha, \beta}\right\}=F^{-1}\left\{H_{\alpha, \beta}\right\} \in O_{c}^{\prime} \tag{40}
\end{equation*}
$$

Taking into account (38) and (40) we can define the distribution families $K_{\alpha, \beta}$ in the following from

$$
\begin{equation*}
K_{\alpha, \beta}=K_{\alpha, \beta}(x)=R_{\alpha}^{H}(u) * R_{\alpha}^{e}(x)=F^{-1}\left\{\left\{R_{\alpha}^{H}(u)\right\}^{\wedge} .\left\{R_{\alpha}^{e}(x)\right\}^{\wedge}\right\} \tag{41}
\end{equation*}
$$

From (40) the families $K_{\alpha, \beta}$ exists an is in O_{c}^{\prime}.

Lemma 3.1. The following formulae are valid
(i) $K_{0,0}(x)=\delta(x)$
(ii) $K_{-2 k,-2 k}(x)=(-1)^{k} \diamond^{k} \delta(x)$
(iii) $\diamond^{k}\left(K_{\alpha, \beta}(x)\right)=(-1)^{k} K_{\alpha-2 k, \beta-2 k}(x)$
(iv) $\diamond^{k}\left(K_{2 k, 2 k}(x)\right)=(-1)^{k} \delta(x)$.

Proof.
(i) By (14) $K_{0,0}(x)=R_{0}^{e} * R_{0}^{H}$, and by Lemma 2.3(i) and Lemma 2.5(i) we obtain $K_{0,0}(x)=\delta * \delta=\delta$
(ii) We have

$$
\begin{aligned}
\diamond^{k} K_{\alpha, \beta}(x) & =\diamond^{k}\left(R_{\alpha}^{e} * R_{\beta}^{H}\right) \\
& =\square^{k} \Delta^{k}\left(R_{\alpha}^{e} * R_{\beta}^{H}\right) \\
& =\Delta^{k} R_{\alpha}^{e} * \square^{k} R_{\beta}^{H} \\
& =(-1)^{k} R_{\alpha-2 k}^{e} * R_{\beta-2 k}^{H} \text { by Lemma 2.3(iii) and Lemma 2.5(ii) } \\
& =(-1)^{k} K_{\alpha-2 k, \beta-2 k}(x)
\end{aligned}
$$

putting $\alpha=\beta=0$ and (i) we obtain $K_{-2 k,-2 k}(x)=(-1)^{k} \diamond^{k} \delta(x)$.
(iii) Similarly as (ii)
(iv) Putting $\alpha=\beta=2 k$ in (iii) we obtain

$$
\diamond^{k}\left(K_{2 k, 2 k}(x)\right)=(-1)^{k} K_{0,0}(x)=(-1)^{k} \delta(x)
$$

4. Main results.

Theorem 4.1. Let the families $K_{\alpha, \beta}(x)$ and $K_{\alpha^{\prime}, \beta^{\prime}}(x)$ be defined by (14) then the convolution product $K_{\alpha, \beta}(x) * K_{\alpha, \beta^{\prime}}(x)$ can be obtained by the following formulae
(i) $K_{\alpha, \beta}(x) * K_{\alpha^{\prime}, \beta^{\prime}}(x)=B_{\beta, \beta^{\prime}} R_{\beta+\beta^{\prime}}^{H} * R_{\alpha+\alpha^{\prime}}^{e}$ where R_{β}^{H} and R_{α}^{e} are defined by (8) and (5) respectively which p is an even and

$$
B_{\beta, \beta^{\prime}} \frac{\cos \left(\frac{\beta}{2} \pi\right) \cos \left(\frac{\beta^{\prime}}{2} \pi\right)}{\cos \left(\frac{\beta+\beta^{\prime}}{2} \pi\right)}
$$

(ii) $K_{\alpha, \beta}(x) * K_{\alpha^{\prime}, \beta^{\prime}}(x)=\left(R_{\beta+\beta^{\prime}}^{H}+T_{\beta, \beta^{\prime}}\right) * R_{\alpha+\alpha^{\prime}}^{e}$ if p is an odd and $T_{\beta, \beta^{\prime}}$ is defined by (13)
(iii) $K_{\alpha, \beta}(x) * K_{-2 k,-2 k}(x)=(-1)^{k} \diamond^{k} K_{\alpha, \beta}(x)$.

Proof.

(i) We have

$$
\begin{aligned}
K_{\alpha, \beta}(x) * K_{\alpha^{\prime}, \beta^{\prime}}(x) & =\left(R_{\alpha}^{e} * R_{\beta}^{H}\right) *\left(R_{\alpha^{\prime}}^{e} * R_{\beta^{\prime}}^{H}\right) \\
& =\left(R_{\alpha}^{e} * R_{\alpha^{\prime}}^{e}\right) *\left(R_{\beta}^{H} * R_{\beta^{\prime}}^{H}\right) \\
& =R_{\alpha+\alpha^{\prime}}^{e} *\left(R_{\beta}^{H} * R_{\beta^{\prime}}^{H}\right) \text { by (6) } \\
& =\left(R_{\beta}^{H} * R_{\beta^{\prime}}^{H}\right) * R_{\alpha+\alpha^{\prime}}^{e} \\
& =B_{\beta, \beta^{\prime}} R_{\beta+\beta^{\prime}}^{H} * R_{\alpha+\alpha^{\prime}}^{e} \text { by Lemma 2.4(i) for } p \text { is even, }
\end{aligned}
$$

where $B_{\beta, \beta^{\prime}}=\frac{\cos \left(\frac{\beta}{2} \pi\right) \cos \left(\frac{\beta^{\prime}}{2} \pi\right)}{\cos \left(\frac{\beta+\beta^{\prime}}{2} \pi\right)}$.
(ii) from(i), $K_{\alpha, \beta}(x) * K_{\alpha^{\prime}, \beta^{\prime}}(x)=\left(R_{\beta}^{H} * R_{\beta^{\prime}}^{H}\right) * R_{\alpha+\alpha^{\prime}}^{e}=\left(R_{\beta+\beta^{\prime}}^{H}+T_{\beta, \beta^{\prime}}\right) * R_{\alpha+\alpha^{\prime}}^{e}$ by Lemma 2.2(ii) for p is odd and $T_{\beta, \beta^{\prime}}$ is defined by (14)
(iii) we have $K_{\alpha, \beta}(x) * K_{-2 k,-2 k}(x)=B_{\beta,-2 k} R_{\beta-2 k}^{H} * R_{\alpha-2 k}^{e}$ for p is even.

Since

$$
B_{\beta,-2 k}=\frac{\cos \left(\frac{\beta}{2} \pi\right) \cos (-2 k) \frac{\pi}{2}}{\cos \left(\frac{\beta-2 k}{2} \pi\right)}=1,
$$

we have $K_{\alpha, \beta}(x) * K_{-2 k,-2 k}(x)=R_{\beta-2 k}^{H} * R_{\alpha-2 k}^{e}=K_{\alpha-2 k, \beta-2 k}(x)$. Now for p is odd, we have $K_{\alpha, \beta}(x) * K_{-2 k,-2 k}(x)=\left(R_{\beta-2 k}^{H}+T_{\beta,-2 k}\right) * R_{\alpha-2 k}^{e}$. By (14) $T_{\beta,-2 k}=\frac{\frac{2 \pi i}{4} C\left(-\frac{\beta+2 k}{2}\right)}{C\left(-\frac{\beta}{2}\right) C\left(\frac{2 k}{2}\right)}\left[H_{\beta-2 k}^{+}-H_{\beta-2 k}^{-}\right]$where $C(r)=\Gamma(r) \Gamma(1-r)$, $H_{r}^{ \pm}=e^{\mp \frac{r \pi}{2} i} e^{ \pm \frac{q \pi}{2} i} a\left(\frac{r}{2}\right)(u \pm i o)^{\frac{r-n}{2}}$ and $a\left(\frac{r}{2}\right)=\Gamma\left(\frac{n-r}{2}\right)\left[2^{r} \pi^{\frac{n}{2}} \Gamma\left(\frac{r}{2}\right)\right]^{-1}$. Applying the formula $\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin 2 \pi}$ to $C\left(-\frac{\beta+2 k}{2}\right), C\left(-\frac{\beta}{2}\right)$ and $C(k)$ and also the formulae $H_{\beta-2 k}^{ \pm}$and $a\left(\frac{\beta-2 k}{2}\right)$ we obtain $T_{\beta,-2 k}=0$ and $T_{-2 k, \beta}=0$. It follows that $K_{\alpha, \beta}(x) * K_{-2 k,-2 k}(x)=R_{\beta-2 k}^{H} * R_{\alpha-2 k}^{e}=K_{\alpha-2 k, \beta-2 k}(x)$ for p is odd. Now $\diamond^{k} K_{\alpha, \beta}(x)=(-1)^{k} K_{\alpha-2 k, \beta-2 k}(x)$ by Lemma 3.1(iii).

Thus $K_{\alpha, \beta}(x) * K_{-2 k,-2 k}(x)=(-1)^{k} \diamond^{k} K_{\alpha, \beta}(x)$. That completes the proofs.

REFERENCES

[1] M.A. Aquirre Tellez - S.E. Trione, The distributional convolution products of Marcel Riesz's ultra-hyperbolic kernel, Revista de la Union Matematica Argentina, 39 (1995), pp. 115-124.
[2] M. Riesz, Integrale de Riemann-Liouville et le probleme de Cauchy, Acta. Math., 81 (1949), pp. 1-223.
[3] Y. Nozaki, On Riemann-Liouville integral of ultra-hyperbolic type, Kodai Mathematical seminar Report, 6-2 (1964), pp. 69-87.
[4] A. Kananthai, On the solutions of the n-Dimensional Diamond operator, Applied Mathematics and Computation, 88 (1997), pp. 27-37.
[5] S.E. Trione, La Integral de Riemann-Liouville, Courses and Seminarr de Matematica, Fasciculo 29, Facultad de Ciencias Exactas, Buenos Aires, Agentina.
[6] I.M. Gelfand - G.E. Shilov, Generalized Functions, Vol I. Academic Press, New York 1964.
[7] N.S. Landkof, Foundations of modern potencial Theory, Springer-Verlag New York Heidelberg Berlin 1972.
[8] L. Scwartz, Theorie des distributions, Hermann, Paris 1966.

> Manuel A. Aguirre Tellez,
> Núcleo Consolidado Matematica Pura y Aplicada,
> Facultad de Ciencias Exactas Pinto 399,
> 7000 Tandilk (ARGENTINA)
> A. Kananthai,
> Department of Mathematics,
> Chiangmai University,
> Chiangmai 50200 (THAILAND)

