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ON THE CONVOLUTION PRODUCT OF
THE DISTRIBUTIONAL FAMILIES RELATED
TO THE DIAMOND OPERATOR

MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

In this paper, we introduce a distributional family K g which is related
to the Diamond operator X iterated k-times. At first we study the properties
of K4, g and then we give a sense to the convolution product of Ky g« Ky’ g

1. Introduction.

A. Kananthai [4] has first introduced the Diamond operator <>* iterated
k-times which is defined by

1) ((Z — —(pf )

j= p+1

where p +¢q = n is the dimension of the n-dimensional Euclidean space R" and
k is a nonnegative integer. Actually (1) can be rewrite in the following form

) OF = OFAK = AFTF
where the operators [J* and A are defined by
k
2 82 32 32 32 82
3) O —t =+ ... =
ax?  9x3 oxy  dxy,,  dx), dxp 1,
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and

k
L CEECE 32
“ A=|l—FS+—=+...+ ,pt+q=n
ax?  9x3 8xp+q

In this paper, the family K, g is defined by K, g(x) = R * Rg’ where R¢ is
elliptic kernel defined by (5) and Rg’ is hyperbolic kernel defined by (8) and
the symbol * designates as the convolution and x € R". By A. Kananthai ([4]
, P- 33, Theorem 3.1) (—1)f K, g(x) is an elementary solution of the Diamond
operator f defined by (1) for @ = B = 2k.

We found the following properties Ko o(x) = &(x) where § is the
Dirac-delta distribution, K_p; _o(x) = (—1FOFS(x), O (Ky p(x)) = (—1)F
Kook p—ok and OF(Kox o1 (x)) = (—1)*8(x).

Moreover, we found the convolutions product K, s * Ko g = Bg g RE pip %

. if pis even, and Ko p * Ky pr = (Rg'ﬂg, + T,g+,g/) * RS, if p is odd,

Cl+(1
where )
B cos(%n)cos(%n)
pe= cos(%)n
and / 1
C(—p — B2)4" n _
Ts o = . [H ,—H ]
e T A

C(r) =TI —r)and H* = H,(u £ io,n) = eF Ti jE_la( LYu +io)T
and a(§) = (55272 ()"

2. Preliminaries.

Definition 2.1. Let the function R{(x) be defined by

5) Ry = 2
X) =
“ W, (o)
where x = (x1, x2, ..., x,) € R", « is a complex parameter, n is the dimension

of R and |x| = (x7 + x5 + ...+ x2)7 and W, (e) is defined by the formula

m22°T (%)

Wi(a) = N
2
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The function R¢(x) is precisely the definition of elliptic kernel of Marcel
Riesz [2] and the following formula is valid

©6) RE(x) % R(x) = RS, 4(x)
which hold for@ > 0, 8 > 0 and o + 8 < n see([2], p. 20).

Definition 2.2. Let x = (x1, xp, ..., X,;) be a point of R” and write
@) u:u(x):xlz—i-x%—i-...—i-x;—x;“—x;+2—...—x;+q
where p + q = n.

Denote by I'; the interior of the forward cone defined by I'y = {x e R" :
x; > 0 and # > 0} and by I', designates its closure. )

Similarly, define '_ = {x e R" : x; < 0 and # > 0} and I"_ designates its
closure. For any complex number «, define
®) R =1t f xeTy

0 if x¢l'y

where K, () is given by the formula

7T (D) (@)

9 K, (x) =
) S T T

The function Rg’ was introduced by Y. Nozaki ([3], p. 72). R(f , which is
an ordinary function if R,(«) > n, is a distribution of « and is a distribution of
o if R,(a) < n. Let supp r(u). Suppose
(10) suppRJ () C T

We shall call R the Marcel Riesz’s ultra-hyperbolic kernel. By putting p = 1
in (8) and (9) and remembering the Legendre’s duplication formula of I'(z),

| 1
(11) 27 =272l (z + 5)
see([5], Vol I, p. 5) the formula (8) reduces to
(12) M, = { e W xely

0 lf X ¢ F+
Here u = u(x) =x{ —x3 —... — x2 and

n—2 - 2

(13) Hy@) =27 S P )

M, is precisely the hyperbolic kernel of Marcel Riesz ([2], p. 31).



42 MANUEL A. AGUIRRE TELLEZ - A. KANANTHAI

Lemma 2.1. The function R (x) has the following properties

(i) RG(x) =48(x)
(i) Ry (x) = (=DFA*S(x)
(iii) A*RS(x) = (—1)*R¢_,,(x)

where AX is the Laplace operator iterated k-times defined by (4).
The proofs of Lemma 2.3 is given by S.E Trione [5].

Lemma 2.2. (The convolutions of R (u))
(i) RY«Rl = %Rgfw where RY is defined by (8) and (9) with p is
an even.

(ii) Rf * Rg’ = Ré’ﬂg + Ty p for p is an odd, where

2i —
R )

(14) Top=Typution=———=—
Y C(=$)C(=5)

[ oj_+ﬂ - Hoz_+ﬂ]

Cr)y=T@ra-r)
H* = H,(utio,n)=e¥e3a(5)(u £io)=
a(5) =T(5H)2'mirG)]!
(uxio) = lime_o(u +i6]|x|2)A see([6], p. 275) u = u(x) is defined by (7) and
x| = (xf + x5 + ... +x2)2.
In particular R? « R", = R ) and RY « R} = RY.,,.
The proofs of this Lemma is given by M. Aguirre Tellez ([1], p. 121-123).

Lemma 2.3.

(i) R, =0
(i) OFRE = RH
(iii) OFRE =Rl =6

where [ is defined by (3).

Proof. See ([1], p. 123).
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3. The family of distributions K, g(x).
Let K, g(x) be a distributional family defined by
(15) Ky p(x) = RS x Rg’
where the functions R{, and Rg’ are defined by (5) and (8) respectively. We now
show that K, 4 exists an is in the space O, of rapidly decreasing distributions.

We know from [1], p. 119, formulae (I,2,2) that the Fourier’s transform of
R (u) is given by the following formulae

1
(16) (R )" = 7 /(@ +i0) + fo(Q —i0)]

if p is odd and

1 cos

(17) (RE@Y = o —Z /(@ +i0) + fu(Q — i0)]
2

2i sin
if p is even. Where
(18) f(Q £i0) = % (Q £ i0)7

and from [7] page 44 and [6], page 194, the Fourier transform of R{(x) is given
by the following formula

(19) (RECY =y =y
Now using the properties

(20) (Q +i0) = Q% + ™™ 0"
([6], page 276), where

o) QA:{QA it 020

and

22) 0 — {(—Q)A if Q=<0
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and

(23) Q=00 =Y+ .4V =V == Vorg

From [1] and [2], we have

(ST~

(24) [fo(Q +i0) + fu(Q —i0)] =2 cos ?Q_% +20_
if p is odd and

25) [£(Q — i0) — £,(Q + i0)] = 2i sin %Q_

if p is even . Therefore

(ST~

(26) {RH w)}" = cos ?Q_% + 0

if p is odd and

-
2

27) {RH )} = cos %Q

if p is even.
The formulae (26) and (27) using (21) and (22) can be rewrite

(28) (R w)" = cos?ayﬁ,)—%(l — ) (=D () I 577
if p is odd and
(29) (RE @) = —cos -~ H (¥ H(1 — )7

if p is even, where

(30) Vo =yi+...+v

(31) Y=y 4t Vg
2

(32) 2 g <1

RE
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33) sc=—= <1

Now using that
(1+r)eoy

([8], page 271) where
rP=xid g
from (28) and (29) we have

(34) (REu)}" € Oy

2
Ptq

where Oy, is the space of functions slow growth (slowly increasing, c.f. [8],
page 243). Similary from [4], we have

(35) {R:(u)}" € Op.

On the other hand, from [8] theorem XV, page 268 the Fourier’s transforms F
and F are reciprocal isomorphisms form Oy and O respectively. In addition
if

(36) TeOy= F{T}€O,
and if
(37) TeO.= F{T}e Oy

where O is the space of rapidly decreasing distributions and if

g=F{f}= f=Fl{g}=F '{g}

Now putting

(38) Hop = (R ()} {R(w)}"
and considering (34) and (35) we have

(39) Hype€ Oy

Therefore considerring (36), (37), (38) and (39) we have
(40) F{Hyp} = F '{Hy,p} € O]

Taking into account (38) and (40) we can define the distribution families K, g
in the following from

41) Kop = Kop(x) = RI W) x RS(x) = FT'{RI )} {RS()}"}

From (40) the families K, g exists an is in O,.
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Lemma 3.1. The following formulae are valid

(i) Koo(x)=03(x)
(i) K o, 2 (x) = (=1} OF8(x)
(iii) Ky p(x)) = (=1 Kyok poar(x)
(iv) OF(Koak(x)) = (—DF8(x).
Proof.
(i) By (14) Ko o(x) = R * Rg’, and by Lemma 2.3(i) and Lemma 2.5(1) we
obtain Ko o(x) =8%6 =6
(i1) We have

OF Ko p(x) = QKRS * R

= OFAK(RS % R
= A*R « O'Rf!
= (—1*R¢_,, * Rgl—zk by Lemma 2.3(iii) and Lemma 2.5(ii)
= (=1 Kq—ok p—ak(x)

putting @ = B = 0 and (i) we obtain K_o; o (x) = (= 1)*X8(x).

(iii) Similarly as (ii)

(iv) Putting o« = B = 2k in (iii) we obtain

S (Kapan(x)) = (=D Ko ox) = (=1)f8(x) O

4. Main results.

Theorem 4.1. Let the families K, g(x) and Ky g(x) be defined by (14) then
the convolution product K, g(x) * K, g/(x) can be obtained by the following
formulae

(i) Kop(x)* Ky p(x) = B,g,,g/Rg’Jrﬁ, * R, , where Rg’ and R{, are defined

a+to

by (8) and (5) respectively which p is an even and

cos(gn)cos(%n)

cos(#n)

Bg g

(ii)) Ko pg(x)* Ky g(x) = (Rgﬂrﬁ, + Tgp) * R§+a, if pisanoddand Tg g is
defined by (13)
(iii) Ko p(x) % K_op ox(x) = (=1} OF K, p(x).
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Proof.
(i) We have

Ky p(x) * Ky g(x) = (RS % Rg’) * (RS, % Rg’,
= (RS % R:) (Rg’ * Rg’,
=R’ , % (Rg’ * Ré’,)by 6)

a+to

= (RY %« RY) % R¢
p g

o+’

= Bp g Ry 5 * RS, by Lemma 2.4(i) for p is even,

!
cos(%rr) cos( %7‘[)
B8
2

where Bg g =

cos( )

(i) from(i), Ko p(x)* Ko pr(x) = (Rg'*Rg',)*Re = (Rg’+5,+Tﬂ,ﬂ/)*R;+a,

a+ao’

by Lemma 2.2(ii) for p is odd and Tpg g is defined by (14)
(iii) we have K, p(x) * K o —o(x) = Bg _aRf 5 * Ry, for p is even.

Since
cos(gn) cos(—2k)%
Bg o) = T =1,
cos(——m)
we have K, p(x) * K_op _ox(x) = Rgl—zk * RS, = Kook pon(x). Now

for p is odd, we have Ko g(x) * K o a(x) = (R, + Tp o) * RS_y;.
i o B2k _

By (14) Tp_o = W[HE_M — Hyg 5] where C(r) = T'(nI'(1 —r),

HFf = e Tt Tia(5)(u £ i0)7 and a(§) = T(55)[2' 7w 2T(5)]7". Applying

the formula [()['(1 — 2) = <Z— to C(=5%), C(=5) and C(k) and also the

formulae Hﬂi_Zk and a(%) we obtain T o, = 0 and T_y; g = 0. It follows
that Ko g(x) % K o —ok(x) = RfL 5 % RSy = Koot g2k (x) for p is odd.
Now MKy g(x) = (—=1)FKy—2k p—2x(x) by Lemma 3.1(iii).

Thus Ky p(x) * K g —ox(x) = (=14 K, p(x). That completes the
proofs. U
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