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HARNACK TYPE INEQUALITIES FOR THE PARABOLIC
LOGARITHMIC P-LAPLACIAN EQUATION

SIMONA FORNARO - EURICA HENRIQUES - VINCENZO VESPRI

In this note, we concern with a class of doubly nonlinear operators
whose prototype is

ut −div
(
|u|m−1|Du|p−2Du

)
= 0, p > 1, m+ p = 2.

In the last few years many progresses were made in understanding the
right form of the Harnack inequalities for singular parabolic equations.
For doubly nonlinear equations the singular case corresponds to the range
m+ p < 3. For 3− p/N < m+ p < 3, where N denotes the space dimen-
sion, intrinsic Harnack estimates hold. In the range 2 < m+ p≤ 3− p/N
only a weaker Harnack form survives. In the limiting case m+ p= 2, only
the case p = 2 was studied. In this paper we fill this gap and we study the
behaviour of the solutions in the full range p > 1 and m = 2− p.

1. Introduction

Harnack estimates for parabolic operators were first established in the fifties
by Hadamard [20] and Pini [31] who extended the Harnack theory to the heat
equation using representation formulas. A breakthrough was made by Moser
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[30] who extended it to linear parabolic equations with measurable coefficients.
Ivanov [23] considered the setting of quasilinear second order parabolic equa-
tions, and Serrin [33] and Trudinger [34] worked within a nonlinear setting. The
extension of Harnack estimates to the p-Laplacian and to the Porous Medium
equations were extremely more complicated. In the singular case, i.e p < 2 or
m < 1 (in such a range the Porous Medium Equations are called Fast Diffusion
Equations), the first results were obtained for the prototype equations for the
super-critical case, i.e 2N/(N +1)< p < 2 and (N−2)+/N < m < 1 (N is the
space dimension) - DiBenedetto and Kwong [11] proved the so called intrinsic
Harnack estimates. The right form of singular intrinsic Harnack estimates and
the extension to general operators were obtained by DiBenedetto, Gianazza and
Vespri in [8]. In that paper, it was also proved that intrinsic Harnack inequali-
ties cannot hold in the so called sub-critical range, i.e 1 < p≤ 2N/(N +1) and
0 < m ≤ (N−2)+/N. The right form of the weak Harnack inequalities for the
sub-critical range is due by Bonforte, Iagar and Vázquez ([1] and [2]) for the
prototype equations. The result for the general case was proved in [10] (see also
[18]). The singular equation

ut −div
(
D lnu

)
= 0,

that can be seen as the limit case of the Porous Medium equation when m→
0+, was studied by Davis, DiBenedetto and Diller [4] and, some years later,
DiBenedetto, Gianazza and Liao [6] proved an intrinsic Harnack-type inequal-
ity. These same authors worked with a logarithmically singular equation which
was treated as the limit of a family of porous medium equations, for 0 < |m|< 1
(see [7]). This equation, as it is linked to the Ricci flow, was studied by several
authors (among them, we quote [3], [12], [13], [35], [36]) that proved interesting
and quite surprising properties satisfied by its solutions.

As there is a strong correspondence between Porous Medium Equation and
the p-Laplacian equation, it is natural to find a class of equations enjoying the
same properties. This class is the one of the doubly nonlinear equations

ut −div
(
|u|m−1|Du|p−2Du

)
= 0, p > 1, m > 0. (1)

The doubly nonlinear term, appearing in the principal part of the operator, is
due to the fact that the diffusion coefficient depends both on the gradient and
on the solution itself. Such kind of equations rules several physical phenomena
such as the dynamics of the turbulent flow of a non-Newtonian polytropic fluid
through a porous medium. These equations were introduced, for the first time,
by Lions [28]. Especially in the last years, many are the papers devoted to this
topic (for the first contributions on the subject, we refer the reader to the survey
by Kalashnikov [25]). But, as already written above, the reason of the interest
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of these equations consists in being a natural bridge between the more natural
generalisations of the heat equation: the p-Laplacian and the Porous Medium
equations. For doubly nonlinear equations, the degenerate case is represented
by the values m, p verifying m+ p > 3. The case when m+ p = 3 is known
as the Trudinger’s equation (it was introduced by Trudinger in [34]) . The case
2 < m+ p < 3 corresponds to the singular case. Lastly, when m+ p = 2, we are
in the logarithmic case.

The regularity for the degenerate case was faced by Ivanov [24] and Porzio-
Vespri [32]. For the Harnack inequality in the degenerate range (corresponding
to m+ p≥ 3, p≥ 2 and m≥ 1) see, for instance, Fornaro and Sosio [14]. Nowa-
days the Trudinger’s equation is widely studied by the Scandinavian school (see,
for instance, [26]). The first proof of a Harnack inequality can be found in [19].

In the case of singular equations, Vespri [37] obtained a Harnack estimate
within the singular setting 3− p/N < m+ p < 3. By considering a more general
equation, having (1) as a prototype and working for 2 < m+ p < 3, Fornaro, So-
sio and Vespri obtained an integral Harnack estimate and a pointwise Harnack-
type estimate, respectively in [15] and [16].

To our knowledge, Harnack estimates for doubly nonlinear logarithmic e-
quations were never proved. The main goal of this work is to fulfill this gap, i.e.
to present a weak Harnack estimate for the weak solutions to (1) taken within
the wider setting m+ p = 2, p > 1. Note that it corresponds to see (1) as

ut −div
(
u1−p|Du|p−2Du

)
= 0, p > 1 (2)

which is equivalent to consider the parabolic p-Laplacian of lnu (say parabolic
logarithmic p-Laplacian)

ut −∆p(lnu) = ut −div
(
|D lnu|p−2D lnu

)
= 0, p > 1. (3)

To prove an intrinsic-weak Harnack estimate (for a better understanding
of this see Remark 2.4) we follow the regularity approach due to DiBenedetto
([10]) that relies on several estimates, namely energy estimates, Lr

loc and Lr
loc−

L∞
loc estimates, and results such as a De Giorgi-type lemma and an expansion of

positivity. These will be the contents of the sections to come.

2. Intrinsic Harnack estimate

We start this section by defining what we mean by weak solution, which will be
done in the usual regularity setting.

Let E be an open set of RN and T > 0 and define ET = E× (0,T ]. We say
that a nonnegative function

u ∈C(0,T ;L2
loc(E)), lnu ∈ Lp

loc(0,T ;W 1,p
loc (E))



280 SIMONA FORNARO - EURICA HENRIQUES - VINCENZO VESPRI

is a locally weak sub(super)-solution to (3) if∫
K

uψdx
∣∣∣∣t2
t1

+
∫ t2

t1

∫
K

(
−uψt + |D lnu|p−2D lnu ·Dψ

)
dxdt ≤ (≥) 0 (4)

for every compact set K ⊂ E, for every sub-interval [t1, t2] ⊂ (0,T ] and for all
nonnegative test functions

ψ ∈W 1,2
loc (0,T ;L2(K))∩Lp

loc(0,T ;W 1,p
0 (K)).

A nonnegative function u is called a locally weak solution if it is both a locally
weak sub-solution and super-solution.

Remark 2.1. The integrability hypothesis on u ensures that the integrals in (4)
are well defined.

It is known that in the singular setting, the notion of boundedness for the
weak solutions does not come along with the definition of weak solution; there-
by an extra regularity assumption is in force. For a full proof on this subject see
[21]-[22].

Following the ideas presented in [4]-[6], let r > 1 be any number such that

λr
def
= rp−N > 0 and u ∈ Lr

loc(ET ), (5)

which will allow us to transform qualitatively information on the local bound-
edness of u into quantitatively information (see section 4 for more details). This
qualitatively information gives sense to the space derivative Du. In fact, ob-
serve that by taking into account the work of Markus and Mizel [29], one has
that u = ev, v = lnu, is locally strongly differentiable if and only if its formal
derivative is locally integrable, in which case the formal derivative of u is also
its strong derivative. The formal derivative of u is Du = uDv, being u∈ L∞

loc(ET )
and Dv ∈ Lp

loc(ET ), therefore Du is locally integrable. Hence we also have for
locally bounded u the inequalities∫

K
uψdx

∣∣∣∣t2
t1

+
∫ t2

t1

∫
K

(
−uψt +u1−p|Du|p−2Du ·Dψ

)
dxdt ≤ (≥) 0 (6)

for every compact set K ⊂ E, for every sub-interval [t1, t2] ⊂ (0,T ] and for all
nonnegative test functions

ψ ∈W 1,2
loc (0,T ;L2(K))∩Lp

loc(0,T ;W 1,p
0 (K)).

Before presenting the main result, we introduce some notation.
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We denote by Kρ(y) the cube of RN centered at y with edge 2ρ . If y = 0, we
simply write Kρ instead of Kρ(0). Let θ > 0. We define the cylinders

Q−ρ (θ) = Kρ × (−θρ
p,0], Q+

ρ (θ) = Kρ × (0,θρ
p]

and, for (y,s) ∈ RN×R,

(y,s)+Q−ρ (θ) = Kρ(y)× (s−θρ
p,s], (y,s)+Q+

ρ (θ) = Kρ(y)× (s,s+θρ
p].

Fix (x0, t0) ∈ ET and ρ > 0 such that K8ρ(x0)⊂ E, and introduce the quantity

θ0 = ε

(∫
Kρ (x0)

uq(·, t0)dx
) 1

q

, (7)

where ε ∈ (0,1) is to be chosen, and q > 1 is arbitrary. If θ0 > 0 assume that

(x0, t0)+Q−8ρ
(θ0) = K8ρ(x0)× (t0−θ0(8ρ)p, t0]⊂ ET ,

and set

η =


(∫

Kρ (x0)
uq(·, t0)dx

) 1
q

(∫
K4ρ (x0)

ur(·, t0−θ0ρ
p)dx

) 1
r


rp
λr

, (8)

where r satisfies (5). In addition, assume that u satisfies

lnu ∈ L∞
loc(0,T ;Lα

loc(E)), for α > N + p. (9)

Set

Λ =

[
sup

t0−θ0(8ρ)p<t<t0

∫
K8ρ (x0)

(
ln

sup(x0,t0)+Q−8ρ
(θ0)

u

u

)α

dx
] 1

α

. (10)

The main result can be understood in the following way: if u(·, t0) is not identi-
cally zero in a neighborhood of a certain point x0, in a measure-theoretical sense,
then it is pointwise positive in a neighborhood of (x0, t0). This is established by
means of an intrinsic-weak Harnack-type inequality, which also determines the
size of the neighborhood.

Theorem 2.2. Let u be a nonnegative, locally bounded local weak solution to
the singular equation (2), satisfying (9) in ET . Introduce θ0 as in (7) and as-
sume that θ0 > 0. There exist constants ε ∈ (0,1), and a continuous, increasing
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function fΛ(η), defined in R+ and such that fΛ(η)→ 0, as η → 0, that can be
determined a priori only in terms of {α,N, p,q,r} and Λ, such that

inf
K4ρ (x0)×(t0−

θ0
16 ρ p,t0)

u≥ fΛ(η) sup
K2ρ (x0)×(t0−

θ0
2 ρ p,t0)

u. (11)

The function fΛ(η) behaves has

exp

{
−
(

ΛC1

ηC2

)2

e
2
(

Λ
C1

η
C2

)
lnΛ

}
, for 0 < η << 1 and Λ >> 1,

being C1 and C2 positive constants depending only upon {p,N,q,α}.

Remark 2.3. Inequality (11) is not a Harnack inequality per se, since η de-
pends upon the solution itself. Therefore it can be regarded as a weak form
of a Harnack estimate. Also the size of the cylinder depends on the solution,
giving thereby the name intrinsic to the inequality. A similar result has been
established in [17], for 2 < m+ p < 3.

3. Two results on supersolutions

Proposition 3.1. [Energy estimates] Let u be a nonnegative, locally bounded
local weak supersolution to (3) in ET . Then for every cylinder (y,s)+Q−ρ (θ)⊂
ET , k > 0 and every nonnegative smooth cutoff function ζ vanishing on the
boundary of Kρ(y), it holds

sup
s−θρ p<t≤s

∫
Kρ (y)

(u− k)2
−ζ

p(x, t)dx−2k
∫

Kρ (y)
(u− k)−ζ

p(x,s−θρ
p)dx

+
1

kp−1

∫∫
(y,s)+Q−ρ (θ)

|D[(u− k)−ζ ]|pdxdt

≤ 2kp
∫∫

(y,s)+Q−ρ (θ)
(u− k)−ζ |ζt |dxdt

+2p(p−1)p−1k
∫∫

(y,s)+Q−ρ (θ)
χ[u<k]

(
ln

k
u

)p

+
|Dζ |pdxdt

+
1

kp−1

∫∫
(y,s)+Q−ρ (θ)

(u− k)p
−|Dζ |pdxdt.

(12)

Analogous estimates hold in the cylinder (y,s)+Q+
ρ (θ)⊂ ET .

Proof. Without loss of generality, we assume (y,s) = (0,0). It is well known
that the time derivative ut has to be avoided in a certain sense since it does not
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necessarily exist in Sobolev’s sense. We use a regularization to overcome this
difficulty, more precisely we consider

u?(x, t) =
1
σ

∫ t

0
e

s−t
σ u(x,s) ds, σ > 0 (13)

used by Kinnunen and Lindqvist [27] when studying several properties for the
porous medium equation. This average only needs to consider values of u(x, t)
taken in ET , it is defined at each point, for continuous or bounded and semicon-
tinuous functions u, and verifies

u−u?

σ
= (u?)t

which implies

(lnu− lnu?)(u?)t ≥ 0 .

For regularity results on this average we refer to Lemma 2.1 in [27].

The average inequality for a nonnegative weak supersolution u in ET to
equation (3) is the following. For every compact set K ⊂ E, for every sub-
interval [t1, t2] ⊂ (0,T ] and for all nonnegative test functions ψ belonging to
L2

loc(0,T ;L2(K))∩Lp
loc(0,T ;W 1,p

0 (K)),

∫ t2

t1

∫
K

(
(u?)tψ +

(
|D lnu|p−2D lnu

)? ·Dψ

)
dxdt

≥
∫

K
u(x, t1)

(
1
σ

∫ t2

t1
ψ(x,s)e−s/σ ds

)
dx

and then, since both u and ψ are nonnegative functions, one gets

∫ t2

t1

∫
K

(
(u?)tψ +

(
|D lnu|p−2D lnu

)? ·Dψ

)
dxdt ≥ 0. (14)

Now in (14) we consider the integration over Qτ = Kρ × (−θρ p,τ], where
−θρ p < τ ≤ 0, and take ψ = (lnk− lnu)+ζ p where ζ is a nonnegative smooth
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cutoff function vanishing on the boundary. The parabolic term verifies∫∫
Qτ

(u?)t(lnk− lnu)+ζ
pdxdt

=
∫∫

Qτ

(u?)t(lnu− lnu?+ lnu?− lnk)ζ p
χ[u<k]dxdt

=
∫∫

Qτ

∂t

(∫ k

u?
(lnk− lns) ds

)
ζ

p
χ[u<k]dxdt

+
∫∫

Qτ

(u?)t(lnu− lnu?)ζ p
χ[u<k]dxdt

≥
∫∫

Qτ

∂t

(∫ k

u?
(lnk− lns) ds

)
ζ

p
χ[u<k]dxdt

=
∫

Kρ

(∫ k

u?(x,τ)
(lnk− lns) ds

)
ζ

p(x,τ)χ[u<k]dx

−
∫

Kρ

(∫ k

u?(x,−θρ p)
(lnk− lns) ds

)
ζ

p(x,−θρ
p)χ[u<k]dx

− p
∫∫

Qτ

(∫ k

u?
(lnk− lns) ds

)
ζ

p−1
ζt χ[u<k]dxdt.

We then pass to the limit as σ → 0 to obtain the inferior bound∫
Kρ×{τ}

(∫ k

u
(lnk− lns) ds

)
ζ

p
χ[u<k]dx

−
∫

Kρ×{−θρ p}

(∫ k

u
(lnk− lns) ds

)
ζ

p
χ[u<k]dx

− p
∫∫

Qτ

∫ k

u
(lnk− lns) dsζ

p−1
ζt χ[u<k]dxdt.

In order to estimate
∫ k

u
(lnk− lns)+ds, from below and above, we use two dif-

ferent arguments.
On the one hand, due to the convexity of f (s) = lnk− lns, we have lnk−

lns≥ 1
k (k− s), for every s ∈ [u,k], thereby∫ k

u
(lnk− lns)+ds≥ 1

k

∫ k

u
(k− s)ds =

1
2k

(u− k)2
−.

On the other hand, by performing the integration and recalling u(lnk− lnu)≥ 0,
when 0≤ u≤ k, we have∫ k

u
(lnk− lns)+ds = k−u−u(lnk− lnu)≤ (u− k)−.
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Therefore the parabolic term of (3) can be estimated from below by

1
2k

∫
Kρ

(u− k)2
−ζ

p(x,τ)dx−
∫

Kρ

(u− k)−ζ
p(x,−θρ

p)dx

− p
∫∫

Qτ

(u− k)−ζ
p−1|ζt |dxdt.

Concerning the elliptic term, one starts by recalling the regularity assumption
D lnu ∈ Lp

loc and then the properties stated in Lemma 2.1 [27] allow us to pass
to the limit as σ → 0 and get∫∫

Qτ

|D lnu|p−2D(lnu) ·D[(lnk− lnu)+ζ
p]dxdt.

By means of Young’s inequality with ε = (2(p−1))
p−1

p , we get∫∫
Qτ

|D lnu|p−2D(lnu) ·D[(lnk− lnu)+ζ
p]dxdt

=
∫∫

Qτ

|D(u− k)−|p

up ζ
pdxdt

− p
∫∫

Qτ

ζ
p−1(lnk− lnu)+|D lnu|p−2D(lnu) ·Dζ dxdt

≥ 1
2

∫∫
Qτ

|D(u− k)−|p

up ζ
pdxdt

− [2(p−1)]p−1
∫∫

Qτ

(lnk− lnu)p
+|Dζ |pdxdt

≥ 1
2kp

∫∫
Qτ

|D(u− k)−|pζ
pdxdt

− [2(p−1)]p−1
∫∫

Qτ

χ[u<k]

(
ln

k
u

)p

+
|Dζ |pdxdt

≥ 1
2pkp

∫∫
Qτ

|D[(u− k)−ζ ]|pdxdt

− [2(p−1)]p−1
∫∫

Qτ

χ[u<k]

(
ln

k
u

)p

+
|Dζ |pdxdt

− 1
2kp

∫∫
Qτ

(u− k)p
−|Dζ |pdxdt

Combining all the estimates so far and taking the supremum over τ , we obtain
(12).

Let us now consider u to be a nonnegative locally bounded local weak su-
persolution to (3) in ET and θ > 0. Assume that the cylinder

(y,s)+Q−8ρ
(θ) = K8ρ(y)× (s−θ(8ρ)p,s]
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is contained in ET and take M > 0 such that

essinf(y,s)+Q−8ρ
(θ)u < M ≤ essup(y,s)+Q−8ρ

(θ)u. (15)

Assuming that u satisfies (9), set

Λ8ρ,M = max
{

1,
[

sup
s−θ(8ρ)p<t<s

∫
K8ρ (y)

(
ln

M
u

)α

+

dx
] 1

α
}
. (16)

Lemma 3.2. [De Giorgi-type lemma] For every ξ and a in the interval (0,1),
there exists a positive number ν , depending on M,θ ,ξ ,a,N, p,Λ8ρ,M such that
if

|[u≤ ξ M]∩ (y,s)+Q−2ρ
(θ)| ≤ ν |Q−2ρ

(θ)|
then

u≥ aξ M a.e. in (y,s)+Q−ρ (θ).

Proof. We limit ourselves to the case (y,s) = (0,0), which is admissible via a
translation argument.

Introduce the decreasing sequences of numbers

ρn = ρ +
ρ

2n ∈ (ρ,2ρ], kn = ξnM, where ξn = aξ +
1−a

2n ξ ∈ (aξ ,ξ ]

and construct the sequences of nested cubes and cylinders

Kn = Kρn , Qn = Kn× (−θρ
p
n ,0],

for n = 0,1,2, . . ., over which we define the cutoff function ζ (x, t) = ζ1(x)ζ2(t)
verifying

ζ1 =

{
1 in Kn+1
0 in RN \Kn

|Dζ1| ≤
1

ρn−ρn+1
=

2n+1

ρ
, (17)

and

ζ2 =

{
0 if t ≤−θρ

p
n

1 if t ≥−θρ
p
n+1

0≤ (ζ2)t ≤
2p(n+1)

θρ p . (18)

For the above choices, the energy estimates (12) now read

sup
−θρ

p
n <t≤0

∫
Kn

(u− kn)
2
−ζ

p(x, t)dx+
1

kp−1
n

∫∫
Qn

|D[(u− kn)−ζ ]|pdxdτ

≤ p22p+1 2pn

ρ p kn

(
1+

kn

θ

)∣∣[u < kn]∩Qn
∣∣

+
2pn

ρ p 22p(p−1)p−1kn

(∫∫
Qn

(
ln

M
u

)α

+

dxdτ

) p
α ∣∣[u < kn]∩Qn

∣∣1− p
α

≤ cp
2pn

ρ p kn

{(
1+

kn

θ

)
|An|+Λ

p
8ρ,M|An|1−

p
α |Qn|

p
α

}
,

(19)
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where cp = max{22p(p−1)p−1,22p+1 p} and An = [u < kn]∩Qn.
Since (u− kn)− ≤ kn ≤ ξ M and p > 1, in the previous estimate we can

substitute kn by ξ M. To proceed with the estimates we have to treat separately
the cases p≥ 2 and 1 < p < 2.

At first consider p≥ 2.
Now observe that, by recalling the definition of An, applying consecutively

Hölder’s inequality and then the Sobolev embedding (see Proposition3.1, chap-
ter I, in [5]) and using the previous estimate, we arrive at(

1−a
2n+1

)p

(ξ M)p|An+1|

≤
∫∫

Qn+1

(u− kn)
p
−dxdτ

≤
(∫∫

Qn

[(u− kn)−ζ ]p
N+p

N dxdτ

) N
N+p

|An|
p

N+p

≤ γ

(∫∫
Qn

|D[(u− kn)−ζ ]|pdxdτ

) N
N+p

×
(

sup
−θρ

p
n <t≤0

∫
Kn

|(u− kn)−ζ |p(x, t)dx
) p

N+p

|An|
p

N+p

≤ γ

(
cp

2pn

ρ p (ξ M)p
{(

1+
ξ M
θ

)
|An|+Λ

p
8ρ,M|An|1−

p
α |Qn|

p
α

}) N
N+p

×
(

sup
−θρ

p
n <t≤0

∫
Kn

|(u− kn)−ζ |p(x, t)dx
) p

N+p

|An|
p

N+p ,

(20)
where γ depends only upon N and p.

Since p≥ 2 we have

(u− kn)
p
− ≤ (ξ M)p−2(u− kn)

2
−

and this allows to estimate the sup-term in (20). Combining (20) and (19) we
obtain(

1−a
2n+1

)p

(ξ M)p|An+1|

≤ γcp
2pn

(ξ M)
p

N+p ρ p
(ξ M)p

{(
1+

ξ M
θ

)
|An|1+

p
N+p +Λ

p
8ρ,M|An|1+

p
N+p−

p
α |Qn|

p
α

}
(21)
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Setting Yn := |An|
|Qn| , from (21) and since Yn ≤ 1 and α > N + p, we get

Yn+1 ≤ γ̃
2n(p+1)

(1−a)p

(
θ

ξ M

) p
p+N
(

1+
ξ M
θ

)
Λ

p
8ρ,M

(
Y

1+ p
N+p

n +Y
1+ p

N+p−
p
α

n

)
≤ γ̃

2n(p+1)

(1−a)p

(
θ

ξ M

) p
p+N
(

1+
ξ M
θ

)
Λ

p
8ρ,MY 1+β

n ,

for β = p
N+p −

p
α
> 0 and γ̃ = 2N+2p+1+ N p

N+p γcp.

If 1 < p < 2, we start by considering the average level k̃n = kn+kn+1
2 and

observing that∫
Kn

(u− kn)
2
−ζ

p(x, t)dx≥
∫

Kn∩[u<k̃n]
(u− kn)

2−p
− (u− kn)

p
−ζ

p(x, t)dx

≥
(
(1−a)ξ M

2n+2

)2−p ∫
Kn

(u− k̃n)
p
−ζ

p(x, t)dx.

Then(
1−a
2n+2

)p

(ξ M)p|An+1|

≤
∫∫

Qn+1

(u− k̃n)
p
−dxdτ

≤
(∫∫

Qn

[(u− k̃n)−ζ ]p
N+p

N dxdτ

) N
N+p

|An|
p

N+p

≤ γ

(∫∫
Qn

|D[(u− k̃n)−ζ ]|pdxdτ

) N
N+p

×
(

sup
−θρ

p
n <t≤0

∫
Kn

|(u− k̃n)−ζ |p(x, t)dx
) p

N+p

|[u < k̃n]∩Qn|
p

N+p

≤ γ

(
cp

2pn

ρ p (ξ M)p
{(

1+
ξ M
θ

)
|An|+Λ

p
8ρ,M|An|1−

p
α |Qn|

p
α

}) N
N+p

×
(

sup
−θρ

p
n <t≤0

∫
Kn

|(u− k̃n)−ζ |p(x, t)dx
) p

N+p

|An|
p

N+p .

(22)
Combining the two previous estimates we arrive at

|An+1| ≤ γcp22p+1 2(2p+1)n

(ξ M)
p

N+p ρ p

(
1

1−a

) p(N+2)
N+p

×
{(

1+
ξ M
θ

)
|An|1+

p
N+p +Λ

p
8ρ,M|An|1+

p
N+p−

p
α |Qn|

p
α

} (23)
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and therefore, for γ̃ = γcp2N+4p+2+ N p
N+p and β the same as before,

Yn+1 ≤ γ̃
2n(2p+1)

(1−a)
p(N+2)

N+p

(
θ

ξ M

) p
p+N
(

1+
ξ M
θ

)
Λ

p
8ρ,MY 1+β

n

So, choosing conveniently C = C(N, p,Λ,M,θ ,a) and b = 22p+1, we have a
recursive algebraic estimate of the type

Yn+1 ≤CbnY 1+β
n ,

therefore, from a fast geometric convergence result (see Lemma 4.1, chap.1, in
[5]), one has Yn→ 0, as n→ ∞, if

Y0 ≤C−
1
β b
− 1

β2 =: ν

More explicitly

ν =

(
(1−a)p

γ22p/β

θ

θ +ξ M
1

Λ
p
8ρ,M

(
ξ M
θ

) p
N+p
) 1

β

. (24)

4. Lr
loc and Lr

loc−L∞
loc estimates

In this section we present quantitative information on the local boundedness of
u.

Proposition 4.1. [Lr
loc estimates backwards in time] Let u be a nonnegative

locally bounded local weak solution to (2) in ET satisfying u ∈ Lr
loc(ET ), for

r > 1. Assume that the cylinder K2ρ(y)× [s, t] is included in ET . Then there
exists a positive constant γ , depending only upon the data {p,N} and r, such
that

sup
s≤τ≤t

∫
Kρ (y)

ur(x,τ)dx≤ γ

(∫
K2ρ (y)

ur(x,s)dx+
(t− s)r

ρ pr−N

)
.

Proof. At this stage we present the proof in a formal way, however one could
argue as in the proof of the energy estimates considering the average function
u? and working with the average equation. So formally we multiply (2) by ϕ =
ur−1ζ p and integrate over the cylinder Qτ = K(1+σ)ρ(y)×(s,τ], where s < τ ≤ t
and 0 < σ < 1. The function 0≤ ζ (x)≤ 1 is defined in K(1+σ)ρ(y) and verifies

ζ = 1 in Kρ(y), ζ = 0 in E \K(1+σ)ρ(y), |Dζ | ≤ 1
σρ

.
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We then get, for s < τ ≤ t,∫∫
Qτ

utur−1
ζ

pdxdt +
∫∫

Qτ

u1−p|Du|p−2Du ·D(ur−1
ζ

p)dxdt = 0.

Since the cutoff function is independent of t, the parabolic term is easily given
by

1
r

∫
K(1+σ)ρ (y)×{τ}

ur
ζ

pdx− 1
r

∫
K(1+σ)ρ (y)×{s}

ur
ζ

pdx.

As for the elliptic term, one gets

(r−1)
∫∫

Qτ

ur−p−1|Du|pζ
pdxdt− p

∫∫
Qτ

ur−p|Du|p−2
ζ

p−1Du ·Dζ dxdt

and then, by means of Young’s inequality with ε , it is bounded from below by

(r−1)(1− p−1
(r−1)ε p/(p−1) )

∫∫
Qτ

ur−p−1|Du|pζ
pdxdt−ε

p
∫∫

Qτ

ur−1|Dζ |pdxdt.

=−
(

2
p−1
r−1

)p−1 ∫∫
Qτ

ur−1|Dζ |pdxdt,

by taking ε =
(

2 p−1
r−1

) p−1
p

.

Combining the previous estimates, recalling the definition of ζ and applying
Hölder’s inequality, one gets

sup
s<τ≤t

∫
Kρ (y)×{τ}

urdx≤ sup
s<τ≤t

∫
K(1+σ)ρ (y)×{τ}

ur
ζ

pdx

≤
∫

K(1+σ)ρ (y)×{s}
urdx+ r

(
2

p−1
r−1

)p−1 ∫∫
Qτ

ur−1|Dζ |pdxdt

≤
∫

K(1+σ)ρ (y)×{s}
urdx

+
r

σ pρ p

(
2

p−1
r−1

)p−1
(

sup
s<τ≤t

∫
K(1+σ)ρ (y)×{τ}

urdx

) r−1
r

(t− s)
r−1

r |Qt |
1
r

≤
∫

K(1+σ)ρ (y)×{s}
urdx

+
r2

2N
r +p−1

σ p

(
p−1
r−1

)p−1((t− s)r

ρrp−N

) 1
r
(

sup
s<τ≤t

∫
K(1+σ)ρ (y)×{τ}

urdx

) r−1
r
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The idea now is to obtain an iterative relation regarding the values sup
∫

ur. For

that purpose, for n ∈ N, we consider the sequence of radii,

ρn = ρ

n

∑
i=1

1
2i = ρ

(
1− 1

2n

)
, being ρn+1 = (1+σn)ρn,

and define
Yn = sup

s<τ≤t

∫
Kρn (y)×{τ}

urdx.

Applying the previous integral estimate to the sequences above, we arrive at the
recursive inequality

Yn ≤
∫

K2ρ (y)×{s}
urdx+ γ2np

(
(t− s)r

ρrp−N

) 1
r

Y 1− 1
r

n+1 ,

where γ1 = r2
N
r +3p−1

(
p−1
r−1

)p−1
. Moreover, after applying consecutive Young’s

inequality with ε , we obtain

Y1 ≤

(
1+

n−2

∑
i=1

ε
i

)∫
K2ρ (y)×{s}

urdx

+

(
1+

n−2

∑
i=1

(2rp
ε)i

)
2rp

εr B+ ε
n−1Yn, for n≥ 2,

where B = 1
r
(t−s)r

ρrp−N γr
1. Taking ε = 2−(rp+1), and since u ∈ Lr

loc(ET ),

Y1 ≤ γ

{∫
K2ρ (y)×{s}

urdx+
(t− s)r

ρrp−N

}
,

where γ = max
{

2rp+1+1
2rp+1−1 ,

2rp+1

r2 γr
1

}
.

Remark 4.2. The constant γ = γ(N, p,r) and it goes to infinity as r↘ 1.

In what follows we present and prove a sup estimate for the weak solutions
of (2), known in the literature as Lr

loc−L∞
loc estimate.

Theorem 4.3. [Lr
loc− L∞

loc estimate] Let u be a nonnegative locally bounded
local weak solution to the singular equation (2) in ET satisfying (5), for r > 1.
Then there exists a positive constant γr, depending only upon N, p and r, such
that

sup
K ρ

2
(y)×[s,t]

u≤ γr

(
ρ p

t− s

) N
rp−N ( 1

ρN(t− s)

∫ t

−t+2s

∫
Kρ (y)

ur
) p

rp−N
+ γr

t− s
ρ p
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for all cylinders

K2ρ(y)× [s− (t− s),s+(t− s)]⊂ ET .

The constant γr→ ∞ if either λr→ 0 or, when 1 < p < 2, r→ 1.

Proof. Assume (y,s) = (0,0) and for fixed σ ∈ (0,1) set

ρn = σρ +
1−σ

2n+1 ρ, tn =−σt− 1−σ

2n t, n = 0,1,2, . . .

Consider the sequence of nested and shrinking cylinders Qn = Kρn× (tn, t) with
common vertex (0, t) and observe that, by construction

Q0 = Kρ × (−t, t), Q∞ = Kσρ × (−σt, t).

Set
M = sup

Q0

u, Mσ = sup
Q∞

u.

We first prove an estimate of Mσ in terms of M.
Consider cutoff functions ξ ∈C∞

0 (Qn), verifying ξ (x, t) = ξ1(x)ξ2(t)∈ [0,1]

ξ1 = 1 in Kρn+1 , ξ1 = 0 in RN \Kρn , |Dξ1| ≤
2n+1

(1−σ)ρ

ξ2 = 1 , τ ≥ tn+1, ξ2 = 0 , τ ≤ tn, 0≤ (ξ2)t ≤
2n+1

(1−σ)t
.

Finally define the sequence of levels

kn = k
(

1− 1
2n+1

)
, n = 0,1,2, . . .

where k > 0 is to be chosen.
Consider first 1 < p < 2. Formally multiply equation (2) by (u− kn+1)

r−1
+ ξ p,

where r > 1 satisfies (5), and integrate over the cylinders Kρn × (tn,τ), for τ ∈
(tn, t].
The parabolic term is easily estimated from below by

1
r

∫
Kρn

(u− kn+1)
r
+ξ

p(x,τ)dx− p
r

2n+1

(1−σ)t

∫ ∫
Qn

(u− kn+1)
r
+ dxdt
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As for the elliptic term, we integrate by parts and then use Young’s inequal-
ity (with ε) to arrive at the inferior bound

(r−1)
∫ ∫

Qn

|D(u− kn+1)+|p

up−1 (u− kn+1)
r−2
+ ξ

p dxdt

− p
∫ ∫

Qn

|D(u− kn+1)+|p−1

up−1 ξ
p−1(u− kn+1)

r−1
+ |Dξ | dxdt

≥r−1
2

∫ ∫
Qn

|D(u− kn+1)+|p

up−1 (u− kn+1)
r−2
+ ξ

p dxdt

−
(

2
p−1
r−1

)p−1 ∫ ∫
Qn

u1−p(u− kn+1)
p+r−2
+ |Dξ |p dxdt .

By observing that∣∣∣D(u− kn+1)
r
p
+

∣∣∣p = ( r
p

)p

(u− kn+1)
r−p
+ |D(u− kn+1)+|p

≤
(

r
p

)p

(u− kn+1)
r−2
+ u2−p|D(u− kn+1)+|p

= u
(

r
p

)p

(u− kn+1)
r−2
+ u1−p|D(u− kn+1)+|p

we get, by noticing that
k
2
< kn+1 < u≤M,

∫ ∫
Qn

|D(u− kn+1)+|p

up−1 (u− kn+1)
r−2
+ ξ

p dxdt

≥ 1
M

( p
r

)p ∫ ∫
Qn

|D(u− kn+1)
r
p
+|pξ

p dxdt

≥ 1
2(p−1)M

( p
r

)p ∫ ∫
Qn

∣∣D[(u− kn+1)
r
p
+ξ ]
∣∣p dxdt

− 2
k

( p
r

)p ∫ ∫
Qn

(u− kn+1)
r
+|Dξ |p dxdt

and for k̃n =
kn+kn+1

2∫ ∫
Qn

u1−p(u− kn+1)
p+r−2
+ |Dξ |p dxdt ≤

∫ ∫
Qn

(u− kn+1)
r−1
+ |Dξ |p dxdt

≤
∫ ∫

Qn

(u− k̃n)
r−1
+ |Dξ |p dxdt,

≤ 2n+3

k

∫ ∫
Qn

(u− kn)
r
+|Dξ |p dxdt .



294 SIMONA FORNARO - EURICA HENRIQUES - VINCENZO VESPRI

Combining all the previous estimates, and taking

k ≥ t
ρ p

we obtain, for all τ ∈ (tn, t]∫
Kρn

(u− kn+1)
r
+ξ

p(x,τ)dx+
r(r−1)

2pM

( p
r

)p ∫ ∫
Qn

∣∣D[(u− kn+1)
r
p
+ξ ]
∣∣p dxdt

≤ 2n(p+1)

(1−σ)p

{
2p
t
+

r2p+3

kρ p

(
p−1
r−1

)p−1

+ r(r−1)
( p

r

)p 22p

kρ p

}
×
∫ ∫

Qn

(u− kn)
r
+ dxdt

≤C1
2n(p+1)

(1−σ)pt

∫ ∫
Qn

(u− kn)
r
+ dxdt,

for C1 = max
{

6p,3r2p+3
(

p−1
r−1

)p−1
,3r(r−1)

( p
r

)p 22p
}

. By first applying

Hölder’s inequality (with exponent (N + p)/N), afterwards Sobolev’s embed-
ding (with exponent p(N + p)/N) and finally using the previous estimate we
get

Xn+1 =
∫ ∫

Qn+1

(u− kn+1)
r
+ dxdt ≤

∫ ∫
Qn

(u− kn+1)
r
+ξ

p dxdt

=
∫ ∫

Qn

(
(u− kn+1)

r
p
+ξ

)p
dxdt

≤
(∫ ∫

Qn

(
(u− kn+1)

r
p
+ξ

)p(N+p)/N
dxdt

)N/(N+p)

|Qn∩ [u > kn+1]|p/(N+p)

≤ γ(N, p)
{(∫ ∫

Qn

|D[(u− kn+1)
r
p
+ξ ]|p dxdt

)

×
(

sup
tn≤τ≤t

∫
Kρn

(u− kn+1)
r
+ξ

p(x,τ)dx
)p/N

}N/(N+p)

|Qn∩ [u > kn+1]|p/(N+p)

≤CM
N

N+p
2n(p+1)

(1−σ)pt
Xn |Qn∩ [u > kn+1]|p/(N+p)

≤CM
N

N+p
2n(p+1)

(1−σ)pt

(
2(n+1)r

kr

) p
N+p

X
1+ p

N+p
n ,

where C = γ(N, p)
C1

C2
, for C2 = min

{
1,

r(r−1)
22p

( p
r

)p
}

. The last inequality
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was obtained by noticing that

Xn ≥
∫ ∫

Qn∩[u>kn+1]
(u− kn)

r
+ dxdt ≥

(
k

2n+1

)r

|Qn∩ [u > kn+1]| . (25)

From the previous estimate and by defining Yn =
Xn

|Qn|
, we have, for C̄ = 2

rp
N+p C,

Yn+1 ≤ C̄
M

N
N+p

krp/(N+p)(1−σ)p

(
ρ p

t

) N
N+p

bnY
1+ p

N+p
n , b = 2p+1+rp/(N+p) > 1.

From a geometric convergence lemma, one has Yn→ 0, as n→ ∞, if

Y0 ≤

(
C̄

M
N

N+p

krp/(N+p)(1−σ)p

(
ρ p

t

) N
N+p
)−N+p

p

b−(
N+p

p )2
.

This estimate (and also the previous one k ≥ t/ρ p) is verified once we take

k =C(N, p,r)
M

N
pr

(1−σ)
N+p

r

(∫ ∫
Q

ur
)1/r(

ρ p

t

) N
pr

+
t

ρ p .

For this choice of k we have

Mσ = sup
Q∞

u≤C(N, p,r)
M

N
pr

(1−σ)
N+p

r

(∫ ∫
Q

ur dxdt
)1/r(

ρ p

t

) N
pr

+
t

ρ p . (26)

Now consider the sequences, n = 0,1, · · · ,

ρ̃n = σρ +(1−σ)ρ
n

∑
i=1

1
2i and t̃n =−σt− (1−σ)t

n

∑
i=1

1
2i

for which Kρ̃n × (t̃n, t) = Q̃n ⊂ Q̃n+1, and define Mn = sup
Q̃n

u. Applying (26) to

the cylinders Q̃n and Q̃n+1 and then Young’s inequality (with 0 < ε < 1) we
arrive at

Mn ≤ εMn+1 +C(N, p,r,ε)I

for

I =
1

(1−σ)
(N+p)p

pr−N

(
ρ p

t

) N
rp−N

(∫ ∫
Q

ur dxdt
) p

rp−N

+
t

ρ p .

By iteration

M0 ≤ ε
nMn +C(N, p,r,ε)I

n

∑
i=1

ε
i
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and then, since (Mn)n is equibounded, when taking n→ ∞,

sup
Qσ

u≤C(N, p,r,ε)I

and the proof is complete once we take σ =
1
2

.

Now consider p > 2. Proceed in a formal way and multiply equation (2) by
(u− kn+1)+ξ p and then integrate over the cylinders Kρn× (tn,τ), for τ ∈ (tn, t].

While there are no substantial changes in the estimation of the parabolic
term, the elliptic term is estimated from below as follows

M1−p

2p

∫ ∫
Qn

|D(u− kn+1)+ξ |p dxdt

− 2p(p−1)p−1

2

∫ ∫
Qn

u1−p(u− kn+1)
p
+|Dξ |p dxdt

≥M1−p

2p

∫ ∫
Qn

|D(u− kn+1)+ξ |p dxdt

− 2p(p−1)p−1

2

∫ ∫
Qn

u1−p+p−2(u− kn+1)
2
+|Dξ |p dxdt

≥M1−p

2p

∫ ∫
Qn

|D(u− kn+1)+ξ |p dxdt

− 2p(p−1)p−1

2k
2p(n+1)

(1−σ)pρ p

∫ ∫
Qn

(u− kn+1)
2
+ dxdt .

By considering k ≥ t
ρ p , one gets, for all τ ∈ (tn, t]

∫
Kρn

(u− kn+1)
2
+ξ

p(x,τ)dx+
1

(2M)p−1

∫ ∫
Qn

|D(u− kn+1)+ξ |p dxdt

≤C(p)
2np

(1−σ)pt

∫ ∫
Qn

(u− kn)
2
+ dxdt.

(27)
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Set Xn =
∫ ∫

Qn

(u− kn)
2
+ dxdt. Arguing as before we have

Xn+1 ≤
∫ ∫

Qn

(u− kn+1)
2
+ξ

2 dxdt

≤
(∫ ∫

Qn

((u− kn+1)+ξ )
p(N+p)

N dxdt
) 2N

p(N+p)

|Qn∩ [u > kn+1]|1−
2N

p(N+p)

≤ γ(N, p)
{(∫ ∫

Qn

|D[(u− kn+1)+ξ ]|p dxdt
)

×
(

sup
tn≤τ≤t

∫
Kρn

(u− kn+1)
p
+ξ

p(x,τ)dx
) p

N
} 2N

p(N+p)

|Qn∩ [u > kn+1]|1−
2N

p(N+p)

≤ γ(N, p)
{(∫ ∫

Qn

|D[(u− kn+1)+ξ ]|p dxdt
)

×
(

Mp−2 sup
tn≤τ≤t

∫
Kρn

(u− kn+1)
2
+ξ

p(x,τ)dx
) p

N
} 2N

p(N+p)

|Qn∩ [u > kn+1]|1−
2N

p(N+p)

≤ γ(N, p)M[(p−1)+(p−2) p
N ] 2N

p(N+p)

(
2np

(1−σ)pt

) 2
p
(

2(n+1)2

k2

)1− 2N
p(N+p)

X
2
p+1− 2N

p(N+p)
n

Set Yn =
Xn

|Qn|
. Then

Yn+1 ≤C(N, p)M[(p−1)+(p−2) p
N ] 2N

p(N+p)

× bn

(1−σ)2

(
ρ p

t

) 2N
p(N+p)

(
1
k2

)1− 2N
p(N+p)

Y
1+ 2

N+p
n .

The fast geometric convergence lemma says that Yn→ 0, when n→ ∞, if

Y0 ≤

(
C(N, p)Ms 1

(1−σ)2

(
ρ p

t

) 2N
p(N+p)

k−2
(

1− 2N
p(N+p)

))−N+p
2

b−(
N+p

2 )2
,

where s = [(p−1)+(p−2) p
N ]

2N
p(N+p) . Observe that if r ≥ 2 then we estimate

Y0 =
∫ ∫

Q
u2 ≤ k2−r

∫ ∫
Q

ur.

Thus we choose k in order to satisfy the inequality

k2−r
∫ ∫

Q
ur ≤

(
C(N, p)Ms 1

(1−σ)2

(
ρ p

t

) 2N
p(N+p)

k−2
(

1− 2N
p(N+p)

))−N+p
2

b−(
N+p

2 )2
.



298 SIMONA FORNARO - EURICA HENRIQUES - VINCENZO VESPRI

This is assured once we take

k =C(N, p)
{∫ ∫

Q
ur
} p

p(N+p+r−2)−2N

M
(p−1)N+p(p−2)
p(N+p+r−2)−2N

×
(

ρ p

t

) N
p(N+p+r−2)−2N

(
1

1−σ

) p(N+p)
p(N+p+r−2)−2N

+
t

ρ p .

Thus, by Young’s inequality with exponent [p(N+p+r−2)−2N]
(p−1)N+p(p−2) , we obtain

Mσ ≤ εM+C(N,r, p,ε)

{
1

(1−σ)
p(N+p)
rp−N

(
ρ p

t

) N
rp−N

(∫ ∫
Q

ur
) p

rp−N

+
t

ρ p

}
.

Arguing as in the case 1 < p < 2, we first apply the estimate above to the se-
quence Mn and then, by iteration and taking the limit as n→ ∞, we arrive at

sup
Kσρ×(−σt,t)

u≤C(N, p,r)
1

(1−σ)
p(N+p)
rp−N

(
ρ p

t

) N
rp−N

(∫ ∫
Q

ur
) p

rp−N

+
t

ρ p .

If r < 2 then we modify the estimate of Y0 according to∫ ∫
Q

u2 ≤M2−r
∫ ∫

Q
ur

and consequently

Mσ ≤C(N, p)
{∫ ∫

Q
ur
} p

[p(N+p)−2N]

M
(p−1)N+p(p−r)

p(N+p)−2N

×
(

ρ p

t

) N
p(N+p)−2N

(
1

1−σ

) p(N+p)
p(N+p)−2N

+
t

ρ p

≤ εM+C(N,r, p,ε)

{
1

(1−σ)
p(N+p)
rp−N

(
ρ p

t

) N
rp−N

(∫ ∫
Q

ur
) p

rp−N

+
t

ρ p

}
.

The conclusion is as above.

Remark 4.4. When 1 < p < 2, the constant γr → ∞ when r → 1 due to the
presence of the factor r−1 in the denominator; for p> 1, γr becomes unbounded
when λr→ 0.

Combining Theorem 4.3 and Proposition 4.1 we are led to the following result.
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Theorem 4.5. Let u be a nonnegative locally bounded local weak solution to (2)

in ET satisfying u ∈ Lr
loc(ET ), for r > max

{
1,

N
p

}
. Then there exists a positive

constant γr depending on N,r such that, for all cylinders Kρ(y)× [2s−t, t]⊂ET ,

sup
K ρ

2
(y)×[s,t]

u≤ γr
1

(t− s)
N
λr

(∫
K2ρ (y)

ur(x,2s− t)dx
) p

λr
+ γr

t− s
ρ p .

The constant γr→ ∞ as either r→ 1 or λr→ 0.

5. Expansion of positivity and Harnack Inequality

In this section we will be concerned in these two issues: the expansion of posi-
tivity and a Harnack-type inequality. Being the first one presented (and proved),
since it is the heart of any form of Harnack inequality, the second one follows.

5.1. Estimating the positivity set of the solution

Proposition 5.1. Assume that u is a nonnegative locally bounded local weak
super-solution to (2) satisfying (9). Assume that for some M > 0 as in (15) and
parameters a,δ ∈ (0,1) there holds

|[u(·,τ)≥M]∩Kρ(y)| ≥ a|Kρ(y)| (28)

for all τ such that
s−δMρ

p ≤ τ ≤ s .

Then there exist a constant σ ∈ (0,1) that can be determined in terms of a,δ ,
Λ8ρ,M such that

u(·, t)≥ σM in K2ρ(y)

for all times

s− 1
8

δMρ
p ≤ t ≤ s.

To prove the previous result we need the following lemma.

Lemma 5.2. Under the assumptions of Proposition 5.1, for every ν > 0 there
exist σ ∈ (0,1) such that

|[u(·, t)≤ 2σM]∩K4ρ(y)| ≤ ν |K4ρ |

for all s− 1
4 δMρ p < t ≤ s. The number σ depends on a,δ and Λ8ρ,M.
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By performing the change of variables

x→ x− y
ρ

, t→ 8p t− (s−δMρ p)

δMρ p , u→ u
M

the cylinder K8ρ(y)× (s− δMρ p,s] is transformed into Q+
8 = K8× (0,8p] and

the new function (still denoted by u) solves the equation

ut −δ8−p
∆p(lnu) = 0, weakly in Q+

8 . (29)

Moreover, the assumption (28) yields

|[u(·, t)≥ 1]∩K4| ≥
a

4N |K4| (30)

and consequently
|[u(·, t)≥ 1]∩K8| ≥

a
8N |K8| (31)

for all t ∈ (0,8p]. Assumption (9) is preserved under the change of variables
and the quantities Λ and Λ8ρ,M remain unchanged. This procedure allows us to
reformulate Lemma 5.2 as follows.

Lemma 5.3. Let u be a locally bounded, nonnegative local weak super-solution
to equation (29) satisfying (31). Then for every ν > 0 there exist σ ∈ (0,1) such
that

|[u(·, t)≤ σ ]∩K4| ≤ ν |K4| (32)

for all 3
4 8p < t ≤ 8p. The number σ depends on a,δ and Λ8ρ,M.

Proof. Assume that ut ∈C(0,8p;L1(K8)). Since u is a super-solution, for every
nonnegative test function φ ∈C(Q+

8 )∩C(0,8p;W 1,p
0 (K8)) we have∫

K8

∂

∂ t
(k−u)+φ dx+

δ

8p

∫
K8

u1−p|D(k−u)+|p−2D(k−u)+ ·Dφ dx≤ 0.

Take φ =
(
ln k

u

)
+

ζ p, where k ∈ (0,1] and ζ ∈ C∞
0 (Q

+
8 ) is such that ζ (x, t) =

ζ1(x)ζ2(t) ∈ [0,1]

ζ1 = 1 in K4, ζ1 = 0 in RN \K8, |Dζ1| ≤
1
4

ζ2 = 1 , t ≥ 3
4

8p, ζ2 = 0 , t ≤ 0, 0≤ (ζ2)t ≤
4

3 ·8p .

By Young’s inequality we get

d
dt

∫
K8

Φk(u)ζ p(x, t)dx+
δ

2 ·8p

∫
K8

|D(k−u)+|p

up ζ
pdx

≤ cpδ

∫
K8

Ψ
p
k (u)|Dζ |pdx+ cp

∫
K8

Φk(u)ζ p−1
ζtdx
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where

Φk(u) =
(∫ k

u
ln

k
s

ds
)

+

Ψk(u) =
(

ln
k
u

)
+
.

We estimate Ψk(u) taking into account the definition of Λ8ρ,M and by means of
Hölder’s inequality, and Φk(u) by the estimate

Φk(u)≤
∫ 1

0
| lns|ds = 1.

Hence we infer

d
dt

∫
K8

Φk(u)ζ p(x, t)dx+
δ

2 ·8p

∫
K8

|D(k−u)+|p

up ζ
pdx≤ c(1+Λ

p
8ρ,M)

where c depends on N, p and α .
Since k ∈ (0,1], from the assumption (31) it follows that

|[Ψk(u) = 0]∩K4| ≥
a

4N |K4| , ∀t ∈ (0,8p).

Next, we apply the Poincaré’s inequality as stated in Proposition 2.1 of Chapter
I of [5] and we obtain

d
dt

∫
K8

Φk(u)ζ p(x, t)dx+ap
δ

∫
K8

Ψ
p
k (u)ζ

pdx≤ c(1+Λ
p
8ρ,M). (33)

Let us introduce the quantities

Yn = sup
0<t<8p

∫
K8

χ[u(·,t)<hn]ζ
p(x, t)dx (34)

where h ∈ (0,1) is to be chosen. We claim that,

given ν > 0, there exist h,ξ ∈ (0,1), depending on a,δ ,ν and Λ
p
8ρ,M, such

that for every n = 0,1, . . .

either Yn ≤ ν or Yn+1 ≤max{ν ,ξYn}. (35)

Now (32) is a straightforward consequence of this claim. In fact, by iterating
(35) we find Yn ≤ max{ν ,ξ nY0} for every n ≥ 1. Choosing n̄ such that ξ n̄ <
ν2−N , we have Yn̄ ≤ ν |K4|, since Y0 ≤ |K8|. By the definition of Yn̄ we get

sup
3
4 8p<t<8p

∣∣K4∩ [u(·, t)< hn̄]
∣∣≤ sup

0<t<8p

∫
K8

χ[u(·,t)<hn̄]ζ
p(x, t)dx≤ ν |K4| ,

which yields (32) with σ = hn̄.
To complete the proof we have to prove the claim. For that purpose, fix ν > 0,
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take n ∈ N and assume that Yn > ν , otherwise there is nothing to prove. By the
definition of Yn+1, for every ε ∈ (0, ν

2 ) there exists tε ∈ (0,8p] such that∫
K8

χ[u(·,tε )<hn+1]ζ
p(x, tε)dx≥ Yn+1− ε.

At this point we have two alternatives, either

d
dt

∫
K8

Φhn [u(·, tε)]ζ p(x, tε)dx≥ 0

or
d
dt

∫
K8

Φhn [u(·, tε)]ζ p(x, tε)dx < 0.

Assume that the first alternative holds true. Then, by (33) we deduce that

∫
K8

Ψ
p
hn [u(·, tε)]ζ p(x, tε)dx≤ c

Λ
p
8ρ,M

apδ
.

On the set [u(·, tε)< hn+1] we have

Ψhn [u(·, tε)] =
(

ln
hn

u(·, tε)

)
+
≥ ln

hn

hn+1 = ln
1
h
.

Therefore

| lnh|p
∫

K8

χ[u(x,tε )<hn+1]ζ
p(x, tε)dx≤

∫
K8

Ψ
p
hn [u(x, tε)]ζ p(x, tε)dx≤ c

Λ
p
8ρ,M

apδ
.

and also

Yn+1 ≤ c
Λ

p
8ρ,M

apδ | lnh|p
+ ε.

By considering ε ∈ (0, ν

2 ) and then choosing h sufficiently small in order to have

c
Λ

p
8ρ,M

apδ | lnh|p ≤
ν

2 , the thesis follows.
Now assume that the second alternative holds and define

t∗ = sup
{

t ∈ (0, tε) |
d
dt

∫
K8

Φhn [u(x, t)]ζ p(x, t)dx≥ 0
}
.

It follows that the function t→
∫

K8

Φhn [u(x, t)]ζ p(x, t)dx has negative derivative

in the interval (t∗, tε ] and this yields∫
K8

Φhn [u(x, tε)]ζ p(x, tε)dx≤
∫

K8

Φhn [u(x, t∗)]ζ p(x, t∗)dx. (36)



HARNACK INEQUALITIES FOR PARABOLIC LOGARITHMIC P-LAPLACIAN 303

Due to the definition of t∗ and arguing as in the first alternative we have

∫
K8

Ψ
p
hn [u(x, t∗)]ζ p(x, t∗)dx≤ c

Λ
p
8ρ,M

apδ
.

For every s ∈ (0,1), on the set [u(·, t∗)< hn(1− s)] we have

Ψhn [u(·, t∗)] =
(

ln
hn

u(·, t∗)

)
+
≥ ln

1
1− s

and therefore∫
K8

χ[u(x,t∗)<hn(1−s)]ζ
p(x, t∗)dx≤ c

(
ln

1
1− s

)−p Λ
p
8ρ,M

apδ
.

By the definition of Yn, since [u < hn(1− s)]⊆ [u < hn], we have

∫
K8

χ[u(x,t∗)<hn(1−s)]ζ
p(x, t∗)dx≤min

{
Yn,c

(
ln

1
1− s

)−p Λ
p
8ρ,M

apδ

}
.

Since the function s→
(

ln
1

1− s

)−p

is decreasing in (0,1), there exists s∗ such

that

Yn = c
(

ln
1

1− s∗

)−p Λ
p
8ρ,M

apδ
.

This implies that

∫
K8

χ[u(x,tε )<hn(1−s)]ζ
p(x, t∗)dx≤


Yn if 0 < s < s∗

c
(

ln
1

1− s

)−p Λ
p
8ρ,M

apδ
if s∗ ≤ s < 1

(37)
One can compute

s∗ =
exp
{( c

Yn

Λ
p
8ρ,M

apδ

) 1
p
}
−1

exp
{( c

Yn

Λ
p
8ρ,M

apδ

) 1
p
}

and then, since Yn > ν , we have

s∗ <
exp
{( c

ν

Λ
p
8ρ,M

apδ

) 1
p
}
−1

exp
{( c

ν

Λ
p
8ρ,M

apδ

) 1
p
} = ξ̃ .
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Observe that, due to (36) and (37)

∫
K8

Φhn [u(x, tε)]ζ p(x, tε)dx

≤
∫

K8

Φhn [u(x, t∗)]ζ p(x, t∗)dx

=
∫

K8

(∫ (hn−u(x,t∗))+

0
χ[s<(hn−u)+] ln

hn

s+u
ds
)

ζ
p(x, t∗)dx

≤
∫

K8

(∫ hn

0
χ[s<(hn−u)+] ln

hn

s+u
ds
)

ζ
p(x, t∗)dx

≤
∫ hn

0
ln

hn

s

(∫
K8

χ[s<(hn−u)+]ζ
p(x, t∗)dx

)
ds

=
∫ 1

0
hn ln

1
s

(∫
K8

χ[shn<(hn−u)+]ζ
p(x, t∗)dx

)
ds

=
∫ 1

0
hn ln

1
s

(∫
K8∩[u<hn(1−s)]

ζ
p(x, t∗)dx

)
ds

≤
∫ s∗

0
hn ln

1
s

Yn ds+
∫ 1

s∗
hnc

Λ
p
8ρ,M

apδ
ln

1
s

(
ln

1
1− s

)−p

ds

=
∫ 1

0
hn ln

1
s

Yn ds−
∫ 1

s∗

[
Yn− c

Λ
p
8ρ,M

apδ | ln(1− s)|p

]
hn ln

1
s

ds

= hnYn

(∫ 1

0
ln

1
s

ds−
∫ 1

s∗

[
1− c

Yn

Λ
p
8ρ,M

apδ | ln(1− s)|p

]
ln

1
s

ds

)

= hnYn

(
1−

∫ 1

s∗

[
1−
∣∣∣∣ ln(1− s∗)

ln(1− s)

∣∣∣∣p] ln
1
s

ds
)

≤ hnYn

(
1−

∫ 1

ξ̃

[
1−
∣∣∣∣ ln(1− s∗)

ln(1− s)

∣∣∣∣p] ln
1
s

ds
)

≤ hnYn

(
1−

∫ 1

ξ̃

[
1−

∣∣∣∣∣ ln(1− ξ̃ )

ln(1− s)

∣∣∣∣∣
p]

ln
1
s

ds

)
= c∗hnYn .

The last three estimates were obtained by making use of the definitions of s∗
and ξ̃ and of the monotonicity of the function s→ | ln(1− s)|p in the interval
(0,1). The constant c∗ depends only on ξ̃ and hence on N, p,a,δ ,Λ8ρ,M.
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On the other hand, observe that∫
K8

Φhn [u(x, tε)]ζ p(x, tε)dx≥
∫

K8∩[u(x,tε )<hn+1]
Φhn [u(x, tε)]ζ p(x, tε)dx

=
∫

K8∩[u(x,tε )<hn+1]

(∫ hn

u(x,tε )
ln

hn

s
ds
)

+

ζ
p(x, tε)dx

≥
∫

K8∩[u(x,tε )<hn+1]

(∫ hn

hn+1
ln

hn

s
ds
)

+

ζ
p(x, tε)dx

= hn(1−h+h lnh)
∫

K8∩[u(x,tε )<hn+1]
ζ

p(x, tε)dx

≥ hn(1−h+h lnh)(Yn+1− ε) .

Combining the last two estimates we have

Yn+1− ε ≤ c∗
1−h+h lnh

Yn.

Taking h sufficiently small and letting ε → 0 we finally get Yn+1 ≤ ξYn, for a
constant ξ ∈ (0,1) depending only on N, p,a,δ ,Λ8ρ,M and our claim is proved.
A final remark: the assumption ut ∈ C(0,8p;L1(K8)) can be removed and one
has to argue in a similar way as in [5], chapter IV, section 9.

Proof of Proposition 5.1. We are now is position to prove Proposition 5.1. For
that, we start by considering any cylinder of the form (y, t)+Q−4ρ

(θ), where

θ = σM and s− δM
8

ρ
p ≤ t ≤ s.

Then the inclusion (t−(4ρ)pθ , t]⊂ (s− 1
4 δMρ p,s] holds true for any t as above

if and only if

s− δM
8

ρ
p− (4ρ)p

σM ≥ s− 1
4

δMρ
p,

which we may assume, without loss of generality. From Lemma 5.2, we know
that for every such cylinder

|(y, t)+Q−4ρ
(θ)∩ [u≤ 2σM])| ≤ ν |Q−4ρ

(θ)|,

where σ is fixed once ν is chosen. Then, we fix ν according to Lemma 3.2 with

a =
1
2

and ξ M replaced by 2σM; formula (24) yields

ν =
(

γ022p/β
Λ

p
8ρ,M

)− 1
β

, β =
p

N + p
− p

α
> 0
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ensuring that ν depends on M through Λ8ρ,M. Thus we arrive at

u≥ σM in K2ρ(y)× (t−θ(2ρ)p, t]

and then the Proposition follows once we recall the previous choices on t.
Just a final remark on the dependence of σ : going back to the proof of auxiliar
Lemma 5.3, we have σ = hn̄, where h ∈ (0,1) has to be chosen such that

c
Λ

p
8ρ,M

apδ | lnh|p
≤ ν

2
and

c∗
1−h+h lnh

= ξ ∈ (0,1)

and n̄ is such that ξ n̄ ≤ ν2−N .

5.2. Proving Theorem 2.2

Having fixed (x0, t0)∈ET , assume it coincides with the origin, write Kρ(0)=Kρ

and introduce the quantity θ0 as in (7), which is assumed to be positive. From
Proposition 4.1, considered for the cylinder K2ρ × (s,0), s ∈ (−θ0ρ p,0], where
r = q, and recalling the definition (7) of θ0, one gets∫

Kρ

uq(x,0)dx ≤ γq

∫
K2ρ

uq(x,s)dx+ γq
(θ0ρ p)q

ρλq

= γq

∫
K2ρ

uq(x,s)dx+ γqε
q
∫

Kρ

uq(x,0)dx

and then, by choosing γqεq ≤ 1
2 , one arrives at∫

K2ρ

uq(x,s)dx≥ 1
2γq

∫
Kρ

uq(x,0)dx (38)

for all s ∈ (−θ0ρ p,0]. Observe that being ε fixed the length θ0 of the cylinder
is completely determined.

Now consider the cylinder K2ρ × (−1
2 θ0ρ p,0] for which we apply Theo-

rem 4.5. Recalling the definitions (7) and (8), of θ0 and of η respectively, and
assuming 0 < η < 1, one obtains

sup
K2ρ×(− 1

2 θ0ρ p,0]
u ≤ γr

(4ρ)
N p
λr

(θ0ρ p)
N
λr

(∫
K4ρ

ur(x,−θ0ρ
p)dx

) 1
r

rp
λr
+ γrθ0

≤ γ ′r

ε
N
λr

1
η

(∫
Kρ

uq(x,0)dx
) 1

q
+ γ
′
rε

(∫
Kρ

uq(x,0)dx
) 1

q

= γ
′
rε

(
1+

1

ηε
rp
λr

)(∫
Kρ

uq(x,0)dx
) 1

q

≤ 1
ε ′η

(∫
Kρ

uq(x,0)dx
) 1

q

= M̃, ε
′ =

ε
N
λr

2γ ′r
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for a constant γ ′r depending only upon the data p,N and r. One verifies that
γ ′r→ ∞, as either λr→ 0 or λr→ ∞.

From this

ε
′
ηM̃ =

(∫
Kρ

uq(x,0)dx
) 1

q

=
θ0

ε
. (39)

Let µ ∈ (0,1) to be chosen. Using (38) and (39) one arrives at

(ε ′ηM̃)q ≤ 2N+1
γq

∫
K2ρ

uq(x,s)dx

≤ 2N+1
γq

(∫
K2ρ∩[u<µηM̃]

uq(x,s)dx+
∫

K2ρ∩[u≥µηM̃]
uq(x,s)dx

)
≤ 2N+1

γqµ
q(ηM̃)q +2N+1

γqM̃q |[u(·,s)> µηM̃]∩K2ρ |
|K2ρ |

for all s ∈ (−1
2 θ0ρ p,0]. From this

|[u(·,s)> µηM̃]∩K2ρ | ≥ α0η
q|K2ρ |,

where

α0 =
ε ′q−µq2N+1γq

2N+1γq
,

for all s ∈ (−1
2 θ0ρ p,0]. By choosing µ ∈ (0,1) sufficiently small, depending

only on the data {p,N} and on γq and γ ′r, α0 ∈ (0,1) depends only upon the data
{p,N} and on {r,q}, and is independent of η . We summarize what we have
obtained so far.

Proposition 5.4. Let u be a nonnegative locally bounded local weak solution to
the singular equation (2) satisfying (9). Fix (x0, t0) ∈ ET , let K4ρ(x0) ⊂ E and
let θ0 and η be defined by (7), (8) respectively, for some ε ∈ (0,1). Suppose
0 < η < 1. For every r > 1 satisfying (5) and every q > 1, there exist constants
ε,µ,α0 ∈ (0,1), depending only upon the data {p,N}, q and r, such that

|[u(·, t)> µηM̃]∩K2ρ(x0)| ≥ α0η
q|K2ρ |

for all t ∈ (t0− 1
2 θ0ρ p, t0].

We are one step way from proving the Harnack inequality given by Theorem
2.2. As said previously, one just has to make use of the expansion of positivity
- that is the content of the following lines.
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From the result above we have the hypothesis of Proposition 5.1 satisfied for

M = µηM̃, a = α0ηq and considering δ =
θ0

2M
=

εε ′

2µ
. In fact, M verifies (15)

M = µηM̃ =
µ

ε ′

(∫
Kρ

uq(x,0)dx
) 1

q

≤ µ

ε ′
sup
Kρ

u(x,0)≤ sup
Q−8ρ

(θ0)

u

since, from the previous choice of µ , we have µ < ε ′. Therefore, there exists a
constant σ in (0,1), depending upon the data {p,N} and α0,η and δ such that

u(x, t)> σ µηM̃ x ∈ K4ρ ,

for all t ∈ (− 1
16 θ0ρ p,0); thereby, recalling the estimate for M̃,

inf
K4ρ×(−

θ0
16 ρ p,0)

u≥ fΛ(η) sup
K2ρ×(−

θ0
2 ρ p,0)

u , fΛ(η) = σ µη .

Remark 5.5. The inequality has been derived assuming that 0<η < 1. If η ≥ 1
then fΛ(η)≥ fΛ(1), thereby establishing a strong form of the Harnack estimate
for these solutions, but this fails as pointed out in [6], whose result corresponds
to our when p = 2.
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Centro de Matemática, Universidade do Minho - Polo CMAT-UTAD

Departamento de Matemática
Universidade de Trás-os-Montes e Alto Douro

e-mail: eurica@utad.pt

VINCENZO VESPRI
Dipartimento di Matematica e Informatica “U. Dini”
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