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BREAKING THROUGH BORDERS
WITH 6-HARMONIC MAPPINGS

GIOVANNI ALESSANDRINI - VINCENZO NESI

We consider mappings U = (u',u?), whose components solve an ar-
bitrary elliptic equation in divergence form in dimension two, and whose
respective Dirichlet data ¢!, @ constitute the parametrization of a simple
closed curve y. We prove that, if the interior of the curve 7y is not convex,
then we can find a parametrization ® = (', ¢?) such that the mapping U
is not invertible.

Dedicato a chi sconfina frontiere geografiche o ideologiche,
a chi travalica stereotipi e va oltre i pregiudizi.

1. Introduction

Let B = {(x,y) € R? : x> +y* < 1} denote the unit disk. We denote by o =
0 (x), x € B, a possibly non-symmetric matrix having measurable entries and
satisfying the ellipticity conditions

o(x)E-E > K&, forevery £ € R? (xEB, (L.1)
o 1 (x)E-& > K |E|?, forevery £ € R? x€B, ’
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for a given constant K > 1.
Given a homeomorphism ® = (¢!, ¢?) from the unit circle dB onto a simple
closed curve y C R?, we denote by D the bounded domain such that 9D = 7.
Consider the mapping U = (u',u?) € W,Lf(B;Rz) N C(B;R?) whose com-
ponents are the solutions to the following Dirichlet problems

{diV(O'Vui)—O, in B (12)

ut = @', on dB,i=1,2.

We call such a U a 6-harmonic mapping.

In the last two decades, it has been investigated, by the present authors and
others, under which conditions can one assure that U is an invertible mapping
between B and D.

The classical starting point for this issue is the celebrated Rado—Kneser—
Choquet Theorem [10, 11, 13, 16] which asserts that assuming ¢ = I, the iden-
tity matrix, (that is: u',u? are harmonic) if D is convex then U is a homeo-
morphism. Generalizations to equations with variable coefficients have been
obtained in [2, 7] and to certain nonlinear systems in [6, 8, 14]. Counterexam-
ples [3, 10] show that if D is not convex then the invertibility of U may fail. In
fact Choquet [10] proved that, whenever D is not convex, there exists a homeo-
morphism ® : dB — ¥ such that the corresponding harmonic (¢ = I) mapping
U is not invertible. The proof is crucially based on the classical mean value
property of harmonic functions. Also the counterexample in [3] is limited to the
purely harmonic case.

In [3, 5] the present authors investigated which additional conditions are
needed for invertibility in the case of a possibly non—convex target D. Let us
recall the main result in that direction.

Theorem 1.1. Let ® and U be as above stated. Assume that the entries of &
satisfy o;j € C*(B) for some o € (0,1) and for every i,j = 1,2. Assume also
that U € C'(B;R?). The mapping U is a diffeomorphism of B onto D if and only
if

detDU >0 everywhere on 0JB. (1.3)

The object of the present note is to extend the construction by Choquet to
o-harmonic mappings with arbitrary coefficient matrix o. The main result will
be as follows.

Theorem 1.2. Given a homeomorphism ¥ : 9B — y C R?, let D be the bounded
domain such that dD = 7. Assume that D is not convex. For every ¢ = o (x),
satisfying (1.1), there exists a C* diffeomeomorphism = : dB — dB such that,
posing ® =Y o &, the 6-harmonic mapping U solving (1.2) is not invertible.
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Note that the parametrization ® of the curve Y is as much smooth as the
original one . In particular, if ¥ is C'** so is ®. Hence under the hypothesis
of Holder continuity of o, it turns out that U is C"** up to the boundary. As
a consequence, we obtain that the hypothesis (1.3) in Theorem 1.1 is indeed
non—trivial.

Let us illustrate what should be the features of a candidate counterexample:
first we recall that Kneser [13] noticed that, in the purely harmonic case, if it
is a—priori known that U(B) C D, then indeed U is invertible, whether or not
D is convex. The observation by Kneser, is merely of topological nature, see
also Duren [11, p. 31], and hence it actually extends to the o-harmonic case,
for any o. That is, in order to violate invertibility in general, we must provide a
mapping U whose image exceeds D.

Viceversa, again by elementary topological arguments, if U is one—to—one
on all of B, then it is an open mapping, hence a homeomorphism. Therefore it
maps dB onto ¥ and B onto D. In other terms, if U maps some point of B outside
of D, then it cannot be one—to—one.

In conclusion, in order to construct an example of a non—invertible o—
harmonic mapping U, whose boundary data ® : dB — v is invertible, it is nec-
essary and sufficient that U trespasses the boundary 7, or in other words, that U
maps some interior point of B outside of D. This will be indeed the crux of our
argument below.

2. o-harmonic measure

Given o as in (1.1), and ¢ € C(dB), consider the scalar Dirichlet problem

2.1

div(oVu) =0, in B,
u=0Q, on 0B,

the, by now, classical theory of divergence structure elliptic equation tells us
that there exists a unique weak solution u € WILLZ(B) NC(B), see for instance
[12, Theorem 8.30]. In particular the functional

C(dB)> ¢ —u(0) eR
is bounded and linear. Hence there exists a Radon measure ws; on 0B such that
u(0)= | oedog .
JB

We call ws the 6—harmonic measure. Note that, being u = 1 the solution to
(2.1) when ¢ = 1, we trivially have wg(dB) = 1.
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From examples due to Modica and Mortola and to Caffarelli, Fabes and
Kenig [9, 15], it is known that the the o—harmonic measure may not be ab-
solutely continuous with the arclength measure. Still, some kind of continuity
holds. For every P € dB and for every r > 0 let us denote

A,(P)=0dBNB,(P) .
We prove the following.

Lemma 2.1. For every P € dB we have

lim g (A(P) =0. 2.2)

Proof. Let h, be the Perron solution to the Dirichlet problem

{diV(GVhr>—O, in B,

hr = XA,(P)a on aBu (23)

our aim is to prove that

Jig 1(0) =0.

We start considering the selfadjoint case, that is when ¢ = 67. We extend 6 =/
outside of B.

Let D, be the annulus B;(P) \m, and let ¢, be the solution of the follow-
ing Dirichlet problem

div(oVe,) =0, in D,
¢ =0, on dB,(P), 2.4)
cr=1, on dB,(P).

By the maximum principle, we have

0<h,<c,,onB\B,(P).

Because of selfadjointness, we have

/ oVe, Ve, =
D,

= min {/ GVv-Vv’v € W]’Z(Dr),v:Oon dB,(P) ,v=1o0n 8Br(P)} .
D,

Choosing

v(x) =

log %
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we compute
/ oVe,-Ve, gK/ |Vv|? =
D, D,

=2nK

3 —0asr—0.

log £
Next we invoke a more or less standard form of Poincaré inequality, the empha-
sis being on the uniformity of the inequality with respect to the small radius r.
A proof is outlined in Section 4 below.

Lemma 2.2. For every w € W'2(D,), having zero trace on dBy(P), we have

/w2§16/ Vwp .
D, D,

Consequently we obtain |¢,[|y12(p ) — 0 as r — 0, and by an interior bound-
edness estimate [12, Theorem 8.17], ¢,(0) — 0, and the thesis follows.

Now we remove the symmetry assumption on ©.

It is well-known that there exists &, € WI’Z(B), called the stream function
of A, such that

Vk, =JoVh, , 2.9
where the matrix J denotes the counterclockwise 90° rotation
0 —1
J= { L0 } , (2.6)

see, for instance, [1]. Denoting
f=h~+ik., 2.7)
it is well-known that f solves the Beltrami type equation

fi=uf.+Vf, inB, (2.8)
where, the so called complex dilatations u, v are given by

02—011—i(012+021)

o _ 1—deto+i(o1n—021)
H= 1+Tro+deto o V= (2'9)

1+Tro+deto ’

and satisfy the following ellipticity condition
ul+ v <k <1, (2.10)

where the constant k£ only depends on K, see [4, Proposition 1.8] and the notation
TrA is used for the trace of a square matrix A. We can also write

fZ:ﬁfZinBv



62 GIOVANNI ALESSANDRINI - VINCENZO NESI

where [l is defined almost everywhere by

~ f
= —|——v’
H=H 7.

and consequently we obtain
div(6Vh,) =0, in B
where G is given by

[1-gP  23m)
1—|nf? 1—|nf?
_28m(p)  [1+ppP
I—|a>  1-ap?

which satisfies uniform ellipticity conditions of the form (1.1) with a new con-
stant K only dependent on K, see, for instance, [4], but in addition is symmetric.
Hence we may proceed as before, just replacing ¢ with ¢ in (2.3) and obtain
again

lim £,(0)=0. O
r—0+

The above Lemma can be seen as a continuity result for the cumulative
distribution function associated to @ .

Given two points P,Q € dB we denote by i’b the arc of the unit circle dB
which connects P to Q, moving in the counterclockwise direction. The above
Lemma, along with Harnack’s inequality, implies the following straightforward
consequence.

Corollary 2.3. For every P € dB, the function
9B > Q — ws(PQ) € [0,1]
is a strictly increasing, onto and continuous function, as Q performs a full coun-

terclockwise rotation on dB starting from P and ending on P itself. Moreover,
for every P € 9B, there exists exactly one point Q € dB such that

— — 1
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3. Assembling a parametrization

Let us consider a given homeomorphism ¥ : dB — y C R?, let us fix two distinct
points a,b € y. For any € > 0 let a, B two disjoint simple open arcs in ¥ such
that

a€aCBegla),bef CB:(b).

Denote
A=w"(a), B=W"(b),

and
A-AT=¥"(a), BB =¥"1(B).

Having fixed points P,Q € dB such that

— — 1
@6(PQ) = @ (0P) = 5

for any r,0 < r < 1 we select a C* diffeomeomorphism E, : dB — dB such that

E.(A/(P))=ATB~, E,(A/(Q))=BtA~.
In other words, setting P~P+ = A,(P), 0~ 0" = A,(Q), we need to construct a
diffeomorphism Z, which maps the points P~, P, Q~, Q" to the points AT, B,
B",A™ in their respective order. More generally, we can prove the following
Lemma, whose proof is deferred to the next Section 4.

Lemma 3.1. Let N > 2 and let Py, ..., Py be distinct, cyclically ordered points
on dB and let Qy,...,Qn be another N—tuple of distinct, cyclically ordered
points on dB. There exists a C* diffeomeomorphism Z : dB — dB such that
E(P,) = Qp foreveryn=1,...,N.

Proof of Theorem 1.2. We let ®, =¥ o E, and consider U = U, as the solution
to (1.2) when @ = ®,.. If D is not convex, we may find two points a,b € ¥ such
that the open segment with endpoints a, b lies outside D. In particular

1 —
§(a+b) ¢D.

We have
U0)= [ ®dos
JdB
and we may split dB into the four arcs PP+, PTQ—,0= Q0+, Q0tP~. Let M >0
be such that ¥ C By(0), then we evaluate

— (I)rdwc
PP+

< Mws(A(P)) =0
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as r — 0 and, analogously,

/A ¢rdw6
0 of

<Mwos(A(Q)) — 0.

Conversely, d)r(I;f‘Q\—) C B C Be(b) and ®,(QTP~) C o C Be(a), that is
|®, — b| <eonPTQ, P, —al <eonQ P .

Note also that

— — 1
1 +()— — 1 +p- = —
i, 05(PT0) = lig 00(07P) = 5.

Hence we may find » > 0 small enough and a constant C > 0 such that
1
|U-(0) — §(a+b)! <Ce

and, in conclusion, with r, € small enough, U = U, is such that

U0)¢D. O

4. Auxiliary proofs

Proof of Lemma 2.2. As is customary in this context, it suffices to consider w €
CY(D,), w(P+2¢") = 0 for all ¥. Hence, for every p € (r,2) we have

. 2 ) ‘
w2 (P+pe'®) = —/ —w(P+se')ds
p Os
hence 5
w (P4 pe'®) < 2/ (w||[Vw|(P+se')ds .
p
Consequently

o 2 2 .
/w2§2/ dﬁ/ pdp/ Wl [Vw|(P+se™)ds ,
D, 0 r P

and, using the inequalities 0 <r < p <,

2 2 2 _
/ w? §2/ dﬁ/ dp/ (w||Vw|(P+ s’ )sds <
D, 0 r p

27 2 2 )
gz/ cw/ dp/ w||Vw| (P +se)sds
0 0 r

[wrzal wlivw,
D, D,

and by Schwarz inequality the thesis follows. O

that is
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Proof of Lemma 3.1. Up to rotations, we may assume P, = eV 0, =eP n=
1,...,N where

0= <..<W<2r 0=¢1<...<@Qy<27m.

We may construct a continuous, strictly increasing, piecewise linear function f
mapping the interval [0,27] onto itself, such that

f(0,) =¢, foreveryn=1,...,N,

we may consider to extend f to R in such a way that f(%) — ¥ is 2n—periodic.
We may also require that its corner points &, ...,&; € [0,27] are distinct from
the points

0:191,---77~9N;19N+1 =21.

Let 6 =min{|9, —§jlln=1,....N+1,j=1,...,J}. Let x¢ be a family of
C*, mollifying kernels, supported in [—¢, €], even symmetric with respect to 0.
Fixing € < 6 and denoting

8= XS * f i

we compute g(,) = f(3,) for all n, we obtain that g is C* with positive deriva-
tive everywhere and we conclude that

E(eiﬂ) — eig(l‘})

fulfils the thesis. O
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