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BREAKING THROUGH BORDERS
WITH σ–HARMONIC MAPPINGS

GIOVANNI ALESSANDRINI - VINCENZO NESI

We consider mappings U = (u1,u2), whose components solve an ar-
bitrary elliptic equation in divergence form in dimension two, and whose
respective Dirichlet data ϕ1,ϕ2 constitute the parametrization of a simple
closed curve γ . We prove that, if the interior of the curve γ is not convex,
then we can find a parametrization Φ = (ϕ1,ϕ2) such that the mapping U
is not invertible.

Dedicato a chi sconfina frontiere geografiche o ideologiche,
a chi travalica stereotipi e va oltre i pregiudizi.

1. Introduction

Let B = {(x,y) ∈ R2 : x2 + y2 < 1} denote the unit disk. We denote by σ =
σ(x), x ∈ B, a possibly non–symmetric matrix having measurable entries and
satisfying the ellipticity conditions

σ(x)ξ ·ξ ≥ K−1|ξ |2, for every ξ ∈ R2 ,x ∈ B ,
σ−1(x)ξ ·ξ ≥ K−1|ξ |2, for every ξ ∈ R2 ,x ∈ B ,

(1.1)
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for a given constant K ≥ 1.
Given a homeomorphism Φ= (ϕ1,ϕ2) from the unit circle ∂B onto a simple

closed curve γ ⊂ R2, we denote by D the bounded domain such that ∂D = γ .
Consider the mapping U = (u1,u2) ∈W 1,2

loc (B;R2)∩C(B;R2) whose com-
ponents are the solutions to the following Dirichlet problems®

div(σ∇ui) = 0, in B,
ui = ϕ i, on ∂B , i = 1,2 .

(1.2)

We call such a U a σ -harmonic mapping.
In the last two decades, it has been investigated, by the present authors and

others, under which conditions can one assure that U is an invertible mapping
between B and D.

The classical starting point for this issue is the celebrated Radò–Kneser–
Choquet Theorem [10, 11, 13, 16] which asserts that assuming σ = I, the iden-
tity matrix, (that is: u1,u2 are harmonic) if D is convex then U is a homeo-
morphism. Generalizations to equations with variable coefficients have been
obtained in [2, 7] and to certain nonlinear systems in [6, 8, 14]. Counterexam-
ples [3, 10] show that if D is not convex then the invertibility of U may fail. In
fact Choquet [10] proved that, whenever D is not convex, there exists a homeo-
morphism Φ : ∂B→ γ such that the corresponding harmonic (σ = I) mapping
U is not invertible. The proof is crucially based on the classical mean value
property of harmonic functions. Also the counterexample in [3] is limited to the
purely harmonic case.

In [3, 5] the present authors investigated which additional conditions are
needed for invertibility in the case of a possibly non–convex target D. Let us
recall the main result in that direction.

Theorem 1.1. Let Φ and U be as above stated. Assume that the entries of σ

satisfy σi j ∈ Cα(B) for some α ∈ (0,1) and for every i, j = 1,2. Assume also
that U ∈C1(B;R2). The mapping U is a diffeomorphism of B onto D if and only
if

detDU > 0 everywhere on ∂B. (1.3)

The object of the present note is to extend the construction by Choquet to
σ -harmonic mappings with arbitrary coefficient matrix σ . The main result will
be as follows.

Theorem 1.2. Given a homeomorphism Ψ : ∂B→ γ ⊂R2, let D be the bounded
domain such that ∂D = γ . Assume that D is not convex. For every σ = σ(x),
satisfying (1.1), there exists a C∞ diffeomeomorphism Ξ : ∂B→ ∂B such that,
posing Φ = Ψ◦Ξ, the σ -harmonic mapping U solving (1.2) is not invertible.
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Note that the parametrization Φ of the curve γ is as much smooth as the
original one Ψ. In particular, if Ψ is C1,α so is Φ. Hence under the hypothesis
of Hölder continuity of σ , it turns out that U is C1,α up to the boundary. As
a consequence, we obtain that the hypothesis (1.3) in Theorem 1.1 is indeed
non–trivial.

Let us illustrate what should be the features of a candidate counterexample:
first we recall that Kneser [13] noticed that, in the purely harmonic case, if it
is a–priori known that U(B) ⊂ D, then indeed U is invertible, whether or not
D is convex. The observation by Kneser, is merely of topological nature, see
also Duren [11, p. 31], and hence it actually extends to the σ -harmonic case,
for any σ . That is, in order to violate invertibility in general, we must provide a
mapping U whose image exceeds D.

Viceversa, again by elementary topological arguments, if U is one–to–one
on all of B, then it is an open mapping, hence a homeomorphism. Therefore it
maps ∂B onto γ and B onto D. In other terms, if U maps some point of B outside
of D, then it cannot be one–to–one.

In conclusion, in order to construct an example of a non–invertible σ–
harmonic mapping U , whose boundary data Φ : ∂B→ γ is invertible, it is nec-
essary and sufficient that U trespasses the boundary γ , or in other words, that U
maps some interior point of B outside of D. This will be indeed the crux of our
argument below.

2. σ–harmonic measure

Given σ as in (1.1), and ϕ ∈C(∂B), consider the scalar Dirichlet problem®
div(σ∇u) = 0, in B,
u = ϕ, on ∂B,

(2.1)

the, by now, classical theory of divergence structure elliptic equation tells us
that there exists a unique weak solution u ∈W 1,2

loc (B)∩C(B), see for instance
[12, Theorem 8.30]. In particular the functional

C(∂B) 3 ϕ → u(0) ∈ R

is bounded and linear. Hence there exists a Radon measure ωσ on ∂B such that

u(0) =
∫

∂B
ϕdωσ .

We call ωσ the σ–harmonic measure. Note that, being u ≡ 1 the solution to
(2.1) when ϕ ≡ 1, we trivially have ωσ (∂B) = 1.
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From examples due to Modica and Mortola and to Caffarelli, Fabes and
Kenig [9, 15], it is known that the the σ–harmonic measure may not be ab-
solutely continuous with the arclength measure. Still, some kind of continuity
holds. For every P ∈ ∂B and for every r > 0 let us denote

∆r(P) = ∂B∩Br(P) .

We prove the following.

Lemma 2.1. For every P ∈ ∂B we have

lim
r→0+

ωσ (∆r(P)) = 0 . (2.2)

Proof. Let hr be the Perron solution to the Dirichlet problem®
div(σ∇hr) = 0, in B,
hr = χ∆r(P), on ∂B,

(2.3)

our aim is to prove that
lim

r→0+
hr(0) = 0 .

We start considering the selfadjoint case, that is when σ = σT . We extend σ = I
outside of B.

Let Dr be the annulus B2(P)\Br(P), and let cr be the solution of the follow-
ing Dirichlet problem

div(σ∇cr) = 0, in Dr,
cr = 0, on ∂B2(P),
cr = 1, on ∂Br(P).

(2.4)

By the maximum principle, we have

0≤ hr ≤ cr ,on B\Br(P) .

Because of selfadjointness, we have∫
Dr

σ∇cr ·∇cr =

= min
®∫

Dr

σ∇v ·∇v
∣∣∣v ∈W 1,2(Dr),v = 0 on ∂B2(P) ,v = 1 on ∂Br(P)

´
.

Choosing

v(x) =
log 2

|x−P|

log 2
r

,
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we compute ∫
Dr

σ∇cr ·∇cr ≤ K
∫

Dr

|∇v|2 =

= 2πK
1

log 2
r

→ 0 as r→ 0 .

Next we invoke a more or less standard form of Poincaré inequality, the empha-
sis being on the uniformity of the inequality with respect to the small radius r.
A proof is outlined in Section 4 below.

Lemma 2.2. For every w ∈W 1,2(Dr), having zero trace on ∂B2(P), we have∫
Dr

w2 ≤ 16
∫

Dr

|∇w|2 .

Consequently we obtain ‖cr‖W 1,2(Dr)→ 0 as r→ 0, and by an interior bound-
edness estimate [12, Theorem 8.17], cr(0)→ 0, and the thesis follows.

Now we remove the symmetry assumption on σ .
It is well–known that there exists kr ∈W 1,2(B), called the stream function

of hr such that
∇kr = Jσ∇hr , (2.5)

where the matrix J denotes the counterclockwise 90◦ rotation

J =

ñ
0 −1
1 0

ô
, (2.6)

see, for instance, [1]. Denoting

f = hr + ikr , (2.7)

it is well–known that f solves the Beltrami type equation

fz̄ = µ fz +ν fz in B , (2.8)

where, the so called complex dilatations µ,ν are given by

µ = σ22−σ11−i(σ12+σ21)
1+Trσ+detσ

, ν = 1−detσ+i(σ12−σ21)
1+Trσ+detσ

, (2.9)

and satisfy the following ellipticity condition

|µ|+ |ν | ≤ k < 1 , (2.10)

where the constant k only depends on K, see [4, Proposition 1.8] and the notation
TrA is used for the trace of a square matrix A. We can also write

fz̄ = µ̃ fz in B ,
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where µ̃ is defined almost everywhere by

µ̃ = µ +
fz

fz
ν ,

and consequently we obtain

div(‹σ∇hr) = 0, in B

where ‹σ is given by

‹σ =


|1− µ̃|2

1−|µ̃|2
−2ℑm(µ̃)

1−|µ̃|2

−2ℑm(µ̃)

1−|µ̃|2
|1+ µ̃|2

1−|µ̃|2

 ,

which satisfies uniform ellipticity conditions of the form (1.1) with a new con-
stant ‹K only dependent on K, see, for instance, [4], but in addition is symmetric.
Hence we may proceed as before, just replacing σ with ‹σ in (2.3) and obtain
again

lim
r→0+

hr(0) = 0 .

The above Lemma can be seen as a continuity result for the cumulative
distribution function associated to ωσ .

Given two points P,Q ∈ ∂B we denote by P̃Q the arc of the unit circle ∂B
which connects P to Q, moving in the counterclockwise direction. The above
Lemma, along with Harnack’s inequality, implies the following straightforward
consequence.

Corollary 2.3. For every P ∈ ∂B, the function

∂B 3 Q→ ωσ (P̃Q) ∈ [0,1]

is a strictly increasing, onto and continuous function, as Q performs a full coun-
terclockwise rotation on ∂B starting from P and ending on P itself. Moreover,
for every P ∈ ∂B, there exists exactly one point Q ∈ ∂B such that

ωσ (P̃Q) = ωσ (Q̃P) =
1
2
.



BREAKING THROUGH BORDERS 63

3. Assembling a parametrization

Let us consider a given homeomorphism Ψ : ∂B→ γ ⊂R2, let us fix two distinct
points a,b ∈ γ . For any ε > 0 let α,β two disjoint simple open arcs in γ such
that

a ∈ α ⊂ Bε(a) , b ∈ β ⊂ Bε(b) .

Denote
A = Ψ

−1(a) , B = Ψ
−1(b) ,

and
Ȧ−A+ = Ψ

−1(α) , Ḃ−B+ = Ψ
−1(β ) .

Having fixed points P,Q ∈ ∂B such that

ωσ (P̃Q) = ωσ (Q̃P) =
1
2

for any r,0 < r < 1 we select a C∞ diffeomeomorphism Ξr : ∂B→ ∂B such that

Ξr(∆r(P)) = Ȧ+B− , Ξr(∆r(Q)) = Ḃ+A− .

In other words, setting Ṗ−P+ = ∆r(P), Q̇−Q+ = ∆r(Q), we need to construct a
diffeomorphism Ξr which maps the points P−,P+,Q−,Q+ to the points A+,B−,
B+,A− in their respective order. More generally, we can prove the following
Lemma, whose proof is deferred to the next Section 4.

Lemma 3.1. Let N ≥ 2 and let P1, . . . ,PN be distinct, cyclically ordered points
on ∂B and let Q1, . . . ,QN be another N–tuple of distinct, cyclically ordered
points on ∂B. There exists a C∞ diffeomeomorphism Ξ : ∂B→ ∂B such that
Ξ(Pn) = Qn for every n = 1, . . . ,N.

Proof of Theorem 1.2. We let Φr = Ψ◦Ξr and consider U =Ur as the solution
to (1.2) when Φ = Φr. If D is not convex, we may find two points a,b ∈ γ such
that the open segment with endpoints a,b lies outside D. In particular

1
2
(a+b) /∈ D .

We have
Ur(0) =

∫
∂B

Φrdωσ

and we may split ∂B into the four arcs Ṗ−P+, Ṗ+Q−, Q̇−Q+, Q̇+P−. Let M > 0
be such that γ ⊂ BM(0), then we evaluate∣∣∣∣∫

P̄−P+
Φrdωσ

∣∣∣∣≤Mωσ (∆r(P))→ 0
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as r→ 0 and, analogously,∣∣∣∣∣
∫

Q̆−Q+
Φrdωσ

∣∣∣∣∣≤Mωσ (∆r(Q))→ 0 .

Conversely, Φr(Ṗ+Q−)⊂ β ⊂ Bε(b) and Φr(Q̇+P−)⊂ α ⊂ Bε(a), that is

|Φr−b|< ε on Ṗ+Q− , |Φr−a|< ε on Q̇+P− .

Note also that

lim
r→0+

ωσ (Ṗ+Q−) = lim
r→0+

ωσ (Q̇+P−) =
1
2
.

Hence we may find r > 0 small enough and a constant C > 0 such that

|Ur(0)−
1
2
(a+b)| ≤Cε

and, in conclusion, with r,ε small enough, U =Ur is such that

U(0) /∈ D .

4. Auxiliary proofs

Proof of Lemma 2.2. As is customary in this context, it suffices to consider w ∈
C1(Dr), w(P+2eiϑ ) = 0 for all ϑ . Hence, for every ρ ∈ (r,2) we have

w2(P+ρeiϑ ) =−
∫ 2

ρ

∂

∂ s
w2(P+ seiϑ )ds ,

hence

w2(P+ρeiϑ )≤ 2
∫ 2

ρ

|w||∇w|(P+ seiϑ )ds .

Consequently∫
Dr

w2 ≤ 2
∫ 2π

0
dϑ

∫ 2

r
ρdρ

∫ 2

ρ

|w||∇w|(P+ seiϑ )ds ,

and, using the inequalities 0 < r ≤ ρ ≤ s,∫
Dr

w2 ≤ 2
∫ 2π

0
dϑ

∫ 2

r
dρ

∫ 2

ρ

|w||∇w|(P+ seiϑ )sds ≤

≤ 2
∫ 2π

0
dϑ

∫ 2

0
dρ

∫ 2

r
|w||∇w|(P+ seiϑ )sds ,

that is ∫
Dr

w2 ≤ 4
∫

Dr

|w||∇w|,

and by Schwarz inequality the thesis follows.
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Proof of Lemma 3.1. Up to rotations, we may assume Pn = eiϑn ,Qn = eiϕn ,n =
1, . . . ,N where

0 = ϑ1 < .. . < ϑN < 2π ,0 = ϕ1 < .. . < ϕN < 2π .

We may construct a continuous, strictly increasing, piecewise linear function f
mapping the interval [0,2π] onto itself, such that

f (ϑn) = ϕn for every n = 1, . . . ,N ,

we may consider to extend f to R in such a way that f (ϑ)−ϑ is 2π–periodic.
We may also require that its corner points ξ1, . . . ,ξJ ∈ [0,2π] are distinct from
the points

0 = ϑ1, . . . ,ϑN ,ϑN+1 = 2π .

Let δ = min
{
|ϑn−ξ j||n = 1, . . . ,N +1, j = 1, . . . ,J

}
. Let χε be a family of

C∞, mollifying kernels, supported in [−ε,ε], even symmetric with respect to 0.
Fixing ε < δ and denoting

g = χε ∗ f ,

we compute g(ϑn) = f (ϑn) for all n, we obtain that g is C∞ with positive deriva-
tive everywhere and we conclude that

Ξ(eiϑ ) = eig(ϑ)

fulfils the thesis.
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Piazzale A. Moro 2, 00185 Roma, Italia

e-mail: nesi@mat.uniroma1.it


	Introduction
	–harmonic measure
	Assembling a parametrization
	Auxiliary proofs

