ON FRACTIONAL CALCULUS OPERATOR N^{ν_1,ν_2} AND P-TRANSFORMATION

MANJU PUROHIT - C. L. PARIHAR - MADHU TIWARI

In this paper, the set $\{N^{\nu_1\nu_2}\}$ of fractional calculus is discussed. It is shown that the set is an Abelian product group for $f(z_1,z_2)=f\in\mathbb{F}=\{f;0\neq|f_{\nu_1,\nu_2}|<\infty,\nu_1,\nu_2\in\mathbb{R}\}$ with continuous indexes $\nu_1,\nu_2,[1]$. A new P-transformation is being introduced for the functions of two variables.

1. Introduction.

Fractional and partial differintegration are defined in [3], { Part II chapter I, Definition and some properties of fractional calculus of the functions of many variables; [5]; pp. 160–175}.

Let $f = f(z_1, z_2)$ be a regular function in $D = D_1 \times D_2$,

$$(1.1) N^{\nu_1,\nu_2} f(z_1, z_2) = f_{\nu_1,\nu_2} =_{c_2,c_1} f_{\nu_1(z_1)\nu_2(z_2)} =$$

$$= \frac{\Gamma(\nu_1 + 1)\Gamma(\nu_2 + 1)}{(2\pi i)^2} \int_{C_2} \int_{C_1} \frac{f(\xi_1, \xi_2)}{(\xi_2 - z_2)^{\nu_2 + 1} (\xi_1 - z_1)^{\nu_1 + 1}} d\xi_1 d\xi_2$$

Entrato in redazione il 19 dicembre 2001.

Subject Classification 2000: 20A05, 20B05.

Key words: Fractional and partial differintegration, abelian product group, Abelian product semi group, N-transformation.

 $(\nu_1, \nu_2 \notin \mathbb{Z}^-)$ and

(1.2)
$$f_{-m_1,-m_2} = \lim_{\nu_k \to -m_k} f_{\nu_1,\nu_2} \quad (m_1, m_2 \in \mathbb{Z}^+), (k = 1, 2)$$

where

$$\xi_k \neq z_k, z_k \in \mathbb{C}, \nu_k \in \mathbb{R}$$

$$-\pi \leq \arg(\xi_k - z_k) \leq \pi \text{ for } C_k$$

$$0 \leq \arg(\xi_k - z_k) < 2\pi \text{ for } C_k$$

- $_{-}C_{k}$ is a curve along the cut joining two points z_{k} and $-\infty + i \operatorname{Im}(z_{k})$,
- $_{+}C_{k}$ is a curve along the cut joining two points z_{k} and $\infty + i \operatorname{Im}(z_{k})$,
- $_{-}D_{k}$ is a domain surrounded by $_{-}C_{k}$,
- $_{+}D_{k}$ is a domain surrounded by $_{+}C_{k}$,

$$D_k = \{-D_k, +D_k\}$$
 and $C_k = \{-C_k, +C_k\}$.

Then $f_{\nu_1,\nu_2}(\nu_1,\nu_2>0)$ is fractional and partial derivatives of order ν_1,ν_2 with respect to z_1,z_2 respectively of the function f and $f_{\nu_1,\nu_2}(\nu_1,\nu_2<0)$ is fractional and partial integral of order ν_1,ν_2 with respect to z_1,z_2 respectively of the function f, if $|f_{\nu_1,\nu_2}|<\infty$.

2. Fractional Calculus Operator N^{ν_1,ν_2} .

Theorems $1 \sim 3$ on the function of two variables given by Nishimoto [3] are as:

1. Index Law

Theorem 1. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, then we have

$$(2.1) (f_{\alpha_1(z_1),\alpha_2(z_2)}(z_1, z_2))_{\beta_1(z_1),\beta_2(z_2)} = f_{(\alpha_1+\beta_1)(z_1),(\alpha_2+\beta_2)(z_2)}(z_1, z_2) =$$

$$= f_{\alpha_1+\beta_1,\alpha_2+\beta_2}$$

Corollary 1. *Let* α_1 , α_2 , β_1 , $\beta_2 \in \mathbb{R}$, then we have

(2.2)
$$f_{(\alpha_1+\alpha_2)(z_1),(\beta_1+\beta_2)(z_2)} = f_{(\beta_1+\beta_2)(z_2),(\alpha_1+\alpha_2)(z_1)}$$

2. Linearity

Theorem 2. We have

(2.3)
$$N^{\nu_1,\nu_2}(\alpha \cdot f(z_1, z_2)) = (\alpha \cdot f(z_1, z_2))_{\nu_1,\nu_2} =$$
$$= \alpha \cdot (f(z_1, z_2))_{\nu_1,\nu_2} = (f(z_1, z_2) \cdot \alpha)_{\nu_1,\nu_2}$$

where α is a constant.

Theorem 3. Let U and V are the function of two variables and a, b are constants then

$$(2.4) N^{\nu_1,\nu_2}\{a \cdot U(z_1,z_2) + b \cdot V(z_1,z_2)\} =$$

$$= (a \cdot U(z_1,z_2) + b \cdot V(z_1,z_2))_{\nu_1\nu_2} = a \cdot U_{\nu_1,\nu_2} + b \cdot V_{\nu_1,\nu_2},$$
where $U = U(z_1,z_2)$ and $V = V(z_1,z_2)$.

Theorem 4. Let binary operation * be defined as

$$(2.5) N^{\alpha_1,\alpha_2} N^{\beta_1,\beta_2} f(z_1,z_2) = N^{\alpha_1,\alpha_2} \cdot N^{\beta_1,\beta_2} f(z_1,z_2) = N^{\alpha_1,\alpha_2} \cdot (N^{\beta_1,\beta_2} f)$$

where $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, and N^{ν_1, ν_2} is the operator of fractional calculus for the functions of two variables such as

(2.6)
$$f_{\nu_1,\nu_2}(z_1, z_2) = N^{\nu_1,\nu_2} f =$$

$$= \frac{\Gamma(\nu_1 + 1)\Gamma(\nu_2 + 1)}{(2\pi i)^2} \int_{C_2} \int_{C_1} \frac{f(\xi_1, \xi_2) \cdot d\xi_1 \cdot d\xi_2}{(\xi_1 - z_1)^{\nu_1 + 1} (\xi_2 - z_2)^{\nu_2 + 1}} ,$$

then the set

$$\{N^{\nu_1,\nu_2}\} = \{N^{\nu_1,\nu_2}; \nu_k \in \mathbb{R}, k = 1, 2\}$$

is an Abelian product group and $f(z_1, z_2) = f \in \mathbb{F}$ is a function of two variables.

Proof.

(i) Closure: We have

$$\begin{split} N^{\alpha_{1},\alpha_{2}}N^{\beta_{1},\beta_{2}}f(z_{1},z_{2}) &= N^{\alpha_{1},\alpha_{2}}(N^{\beta_{1},\beta_{2}}f) \\ &= N^{\alpha_{1},\alpha_{2}}f_{\beta_{1},\beta_{2}} \quad \text{by (1.1)}) \\ &= (f_{\beta_{1},\beta_{2}})_{\alpha_{1},\alpha_{2}} \\ &= f_{\alpha_{1}+\beta_{1},\alpha_{2}+\beta_{2}} \quad \text{by (2.1)}) \\ &= N^{\alpha_{1}+\beta_{1},\alpha_{2}+\beta_{2}}f(z_{1},z_{2}). \end{split}$$

Therefore setting $\gamma_1 = \alpha_1 + \beta_1$, $\gamma_2 = \alpha_2 + \beta_2 \in \mathbb{R}$, we have

$$N^{\alpha_1,\alpha_2}N^{\beta_1,\beta_2} = N^{\alpha_1+\beta_1,\alpha_2+\beta_2} = N^{\gamma_1,\gamma_2} \in \{N^{\nu_1,\nu_2}\} \text{ if } f(z_1,z_2) \in \mathbb{F}$$

i.e. binary operation is closure for fractional operator of two variables.

(ii) Associative Law: We have

(2.8)
$$N^{\alpha_1,\alpha_2}(N^{\beta_1,\beta_2}N^{\gamma_1,\gamma_2})f = N^{\alpha_1,\alpha_2}(N^{\beta_1+\gamma_1,\beta_2+\gamma_2}f)$$
 (by Index law)

$$= N^{\alpha_1,\alpha_2}f_{\beta_1+\gamma_1,\beta_2+\gamma_2}$$
 (by (1.1))

$$= (f_{\beta_1+\gamma_1,\beta_2+\gamma_2})_{\alpha_1,\alpha_2}$$

$$= f_{\alpha_1+\beta_1+\gamma_1,\alpha_2+\beta_2+\gamma_2}$$

$$= N^{\alpha_1+\beta_1+\gamma_1,\alpha_2+\beta_2+\gamma_2}f$$

On the other hand we have

(2.9)
$$(N^{\alpha_1,\alpha_2}N^{\beta_1,\beta_2})N^{\gamma_1,\gamma_2}f = N^{\alpha_1+\beta_1,\alpha_2+\beta_2} \cdot f_{\gamma_1,\gamma_2} \quad \text{by (1.1) and (2.1)}$$

$$= f_{\alpha_1+\beta_1+\gamma_1,\alpha_2+\beta_2+\gamma_2}$$

$$= N^{\alpha_1+\beta_1+\gamma_1,\alpha_2+\beta_2+\gamma_2} f$$

Therefore, from (2.8) and (2.9), we get

$$N^{\alpha_1,\alpha_2}(N^{\beta_1,\beta_2}N^{\gamma_1,\gamma_2}) = (N^{\alpha_1,\alpha_2}N^{\beta_1,\beta_2})N^{\gamma_1,\gamma_2} = N^{\alpha_1+\beta_1+\gamma_1,\alpha_2+\beta_2+\gamma_2} \in \{N^{\nu_1,\nu_2}\}$$

for $f \in \mathbb{F}$ and α_k , β_k , $\gamma_k \in \mathbb{R}$, (k = 1, 2).

(iii) Identity Element: We have

$$N^{\alpha_1,\alpha_2}N^{0,0}f = N^{\alpha_1+0,\alpha_2+0}f = N^{\alpha_1,\alpha_2}f$$

and

$$N^{0,0}N^{\alpha_1,\alpha_2}f = N^{0+\alpha_1,0+\alpha_2}f = N^{\alpha_1,\alpha_2}f$$

where $\alpha_1, \alpha_2 \in \mathbb{R}$. Then we obtain

$$N^{\alpha_1,\beta_1}N^{0,0} = N^{0,0}N^{\alpha_1,\alpha_2} = N^{\alpha_1,\alpha_2}$$

This implies that

$$N^{0,0} = 1 \in \{N^{\nu_1,\nu_2}\}$$

or $N^{0,0}=1$ is an identity element of the set $\{N^{\nu_1\nu_2}\}$ for $f(z_1,z_2) \in \mathbb{F}$.

(iv) *Inverse Element*: If $\alpha_1, \alpha_2, -\alpha_1, -\alpha_2 \in \mathbb{R}$, then we have from (2.1) of index law.

(2.10)
$$N^{\alpha_1,\alpha_2}N^{-\alpha_1,\alpha_2}f = N^{\alpha_1-\alpha_1,\alpha_2-\alpha_2}f \qquad (f \in \mathbb{F})$$
$$= N^{0,0}f = f$$

and

(2.11)
$$N^{-\alpha_1, -\alpha_2} N^{\alpha_1, \alpha_2} f = N^{-\alpha_1 + \alpha_1, +\alpha_2 - \alpha_2} f$$
$$= N^{0,0} f = f$$

From (2.10) and (2.11), we have

$$(2.12) N^{-\alpha_1, -\alpha_2} N^{\alpha_1, \alpha_2} = N^{\alpha_1, \alpha_2}, \ N^{-\alpha_1 - \alpha_2} = N^{0,0} = 1$$

Moreover, let $(N^{-\alpha_1,-\alpha_2})^{-1}$ be the inverse element to N^{α_1,α_2} , we have then

$$(2.13) (N^{-\alpha_1, -\alpha_2})^{-1} N^{\alpha_1, \alpha_2} = N^{\alpha_1, \alpha_2} (N^{-\alpha_1, -\alpha_2})^{-1} = 1.$$

Therefore, we have

$$(2.13)' (N^{\alpha_1,\alpha_2})^{-1} = N^{-\alpha_1,-\alpha_2}$$

from (2.12 and (2.13).

(v) *Commutative Law*: Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, then by index Law

$$(2.14) N^{\alpha_1,\alpha_2}N^{\beta_1,\beta_2}f = N^{\alpha_1+\beta_1,\alpha_2+\beta_2}f$$

and

$$(2.15) N^{\beta_1,\beta_2} N^{\alpha_1,\alpha_2} f = N^{\beta_1+\alpha_1,\beta_2\alpha_2} f$$

for $f \in \mathbb{F}$, then we have

$$(2.16) N^{\alpha_1,\alpha_2}N^{\beta_1,\beta_2} = N^{\beta_1,\beta_2}N^{\alpha_1,\alpha_2}$$

from (2.14) and (2.15).

Hence $\{N^{\nu_1,\nu_k}\}$ satisfies commutative property for $f(z_1,z_2) \in \mathbb{F}$.

(vi) Continuity of Index ν_k : As $\nu_k \in \mathbb{R}$ with $-\infty < \nu_k < \infty$, (k = 1, 2), so N^{ν_1,ν_2} has continuous index ν_k respectively if $f(z_1, z_2) \in \mathbb{F}$. Therefore $\{N^{\nu_1,\nu_2}\}$ is a set of $N^{\nu_1\nu_2}$ with continuous index ν_k .

From (i)~(vi) all properties have been satisfied by N^{ν_1,ν_2} under binary operation *.

So, the set $\{N^{\nu_1,\nu_2}\}=N^{\nu_1,\nu_2}$; $\nu_1,\nu_2\in\mathbb{R}\}$ is an Abelian product group for the functions of two variables.

Theorem 5. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, then we have (Associative law for addition)

$$(2.17) (N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2}) + N^{\gamma_1,\gamma_2} = N^{\alpha_1,\alpha_2} + (N^{\beta_1,\beta_2} + N^{\gamma_1\gamma_2})$$

for

$$f(z_1, z_2) = f \in \mathbb{F}.$$

Proof. For $f \in \mathbb{F}$, we have

$$(2.18) \qquad ((N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2}) + N^{\gamma_1,\gamma_2})f = (N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2})f + N^{\gamma_1\gamma_2}f$$
$$= (N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2} + N^{\gamma_1\gamma_2})f$$

and

$$(2.19) (N^{\alpha_1,\alpha_2} + (N^{\beta_1,\beta_2} + N^{\gamma_1,\gamma_2}))f = (N^{\alpha_1,\alpha_2}f + (N^{\beta_1,\beta_2} + N^{\gamma_1\gamma_2})f$$
$$= (N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2} + N^{\gamma_1\gamma_2})f$$

Therefore from (2.18) and (2.19), we have (2.17).

Theorem 6. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, then we have (Commutative law for addition)

$$(2.20) N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2} = N^{\beta_1,\beta_2} + N^{\alpha_1,\alpha_2}$$

for

$$f(z_1, z_2) = f \in \mathbb{F}$$
.

Proof. As we have

$$(2.21) (N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2})f = N^{\alpha_1,\alpha_2}f + N^{\beta_1,\beta_2}f$$

and

$$(2.22) (N^{\beta_1,\beta_2} + N^{\alpha_1,\alpha_2})f = N^{\beta_1,\beta_2}f + N^{\alpha_1,\alpha_2}f$$

Therefore from (2.21) and (2.22), we get (2.20).

Theorem 7. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, and $f(z_1, z_2) = f \in \mathbb{F}$, then we have (Distributive law)

$$(2.23) (N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2}) \cdot N^{\gamma_1,\gamma_2} = N^{\gamma_1,\gamma_2} \cdot (N^{\alpha_1,\alpha_2} + N^{\beta_1,\beta_2})$$
$$= N^{\alpha_1+\gamma_1,\alpha_2+\gamma_2} + N^{\beta_1+\gamma_1,\beta_1+\gamma_2}$$

Proof. We have

$$(2.24) \quad (N^{\alpha_{1},\alpha_{2}} + N^{\beta_{1},\beta_{2}}) \cdot N^{\gamma_{1},\gamma_{2}} f = (N^{\alpha_{1},\alpha_{2}} + N^{\beta_{1},\beta_{2}}) \cdot f_{\gamma_{1},\gamma_{2}} \quad \text{(by (1.1))}$$

$$= N^{\alpha_{1},\alpha_{2}} f_{\gamma_{1},\gamma_{2}} + N^{\beta_{1},\beta_{2}} f_{\gamma_{1},\gamma_{2}}$$

$$= (f_{\gamma_{1},\gamma_{2}})_{\alpha_{1},\alpha_{2}} + (f_{\gamma_{1},\gamma_{2}})_{\beta_{1},\beta_{2}}$$

$$= f_{\alpha_{1}+\gamma_{1},\alpha_{2}+\gamma_{2}} + f_{\beta_{1}+\gamma_{1},\beta_{2}+\gamma_{2}}$$

from (2.1) of index law.

Next we have

$$(2.25) N^{\gamma_1, \gamma_2} \cdot (N^{\alpha_1, \alpha_2} + N^{\beta_1, \beta_2}) f = N^{\alpha_1 + \gamma_1, \alpha_2 + \gamma_2} f + N^{\beta_1 + \gamma_1, \beta_2 + \gamma_2} f$$
$$= f_{\alpha_1 + \gamma_1, \alpha_2 + \gamma_2} + f_{\beta_1 + \gamma_1, \beta_2 + \gamma_2}$$

Similarly

$$(2.26) (N^{\alpha_1+\gamma_1,\alpha_2+\gamma_2}+N^{\beta_1+\gamma_1,\beta_2+\gamma_2})f = N^{\gamma_1+\alpha_1,\gamma_2+\alpha_2}f + N^{\gamma_1+\beta_1,\gamma_2+\beta_2}f$$
$$= f_{\gamma_1+\alpha_1,\gamma_2+\alpha_2} + f_{\gamma_1+\beta_1,\gamma_2+\beta_2}$$

Therefore we have (2.23) from (2.24), (2.25) and (2.26).

Theorem 8. Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, then we have

$$(2.27) (N^{\alpha_1,\alpha_2}N^{\beta_1,\beta_2})^{-1} = N^{-\alpha_1,-\alpha_2}N^{-\beta_1,-\beta_2}$$

for

$$f(z_1, z_2) \in \mathbb{F}$$

Proof. Since we have

$$(N^{\alpha_1,\alpha_2}N^{\beta_1,\beta_2})^{-1}f = (N^{\alpha_1+\beta_1,\alpha_2+\beta_2})^{-1}f \quad \text{(by index law)}$$

$$= N^{-(\alpha_1+\beta_1),-(\alpha_2+\beta_2)}f \quad \text{(by (2.13)')}$$

$$= N^{-\alpha_1-\beta_1,-\alpha_2-\beta_2}f = N^{-\alpha_1,-\alpha_2,-\beta_1,-\beta_2}f$$

Using index law, we get (2.27).

Theorem 9. Let $n \in \mathbb{Z}^+$, $v_1, v_2 \in \mathbb{R}$ and $f \in \mathbb{F}$, we have then

$$(2.28) (i) (N^{\nu_1,\nu_2})^n = N^{n\nu_1,n\nu_2}$$

(2.29)
$$(ii) \left((N^{\nu_1, \nu_2})^{-1} \right)^n = N^{-n\nu_1, -n\nu_2}$$

$$(2.30) (iii) (N^{n\nu_1,n\nu_2})^{-1} = (N^{-\nu_1,-\nu_2})^n$$

Proof. of (i): We have

$$(2.31) (N^{\nu_1,\nu_2})^n f = (N^{\nu_1,\nu_2})^{n-1} (N^{\nu_1,\nu_2} f) = (N^{\nu_1,\nu_2})^{n-1} f_{\nu_1,\nu_2} by (1.1))$$

$$= (N^{\nu_1,\nu_2})^{n-2} (N^{\nu_1,\nu_2} f_{\nu_1,\nu_2}) = (N^{\nu_1,\nu_2})^{n-2} f_{2\nu_1,2\nu_2}$$

$$= (N^{\nu_1,\nu_2})^{n-n} f_{n\nu_1,n\nu_2}$$

$$= f_{n\nu_1,n\nu_2} = N^{n\nu_1,n\nu_2} f$$

Proof. of (ii): We have

$$(N^{\nu_1,\nu_2})^{-1}f = N^{-\nu_1,-\nu_2}f$$
 (by 2.13)

and

$$((N^{\nu_1,\nu_2})^{-1})^n f = (N^{-\nu_1,-\nu_2})^n f$$
$$= N^{-n\nu_1,-n\nu_2} f \quad \text{(by 2.28)})$$

Proof. of (iii): We have

$$(2.32) (N^{n\nu_1, n\nu_2})^{-1} f = N^{-n\nu_1, -n\nu_2} f (by (2.13))$$

and

(2.33)
$$N^{-n\nu_1,-n\nu_2}f = (N^{-\nu_1,-\nu_2})^n f \qquad \text{(by (2.28))}$$

Therefore, from (2.32) and (2.33), we get (2.31).

Theorem 10. Let $f(z_1, z_2) \in \mathbb{F}$ and $N^{\nu_1, \nu_2 > 0} f = f_{\nu_1, \nu_2}, (\nu_1, \nu_2 > 0)$ and $N^{\nu_1, \nu_2 < 0} f = f_{\nu_1, \nu_2}, (\nu_1, \nu_2 < 0)$ then the sets $\{N^{\nu_1, \nu_2 > 0}\} = \{N_{\nu_1, \nu_2}; \nu_1, \nu_2 \in \mathbb{R}^+\}$ and $\{N^{\nu_1, \nu_2 < 0}\} = \{N_{\nu_1, \nu_2}; \nu_1, \nu_2 \in \mathbb{R}^-\}$ are Abelian product semi groups.

Proof. Let $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 > 0$ in (i), (ii), (v) and (vi) of the proof of theorem 4. Since $\{N^{\nu_1,\nu_2>0}\}$ has no unit element i.e. $\{N^{0,0}=1\}$ and inverse element $\{N^{-\nu_1,-\nu_2}\}$. So $\{N^{\nu_1,\nu_2>0}\}$ is an Abelian semi group with continuous $\nu_1, \nu_2 > 0$ for $f(z_1, z_2) \in \mathbb{F}$.

Similarly let α_1 , α_2 , β_1 , β_2 , γ_1 , $\gamma_2 < 0$ in (i), (ii) (v) and (vi) of the proof of theorem 4. Same as in $\{N^{\nu_1,\nu_2>0}\}$, $\{N^{\nu_1,\nu_2<0}\}$ has no unit element i.e. $\{N^{0,0}=1\}$ and inverse element $\{N^{\nu_1,\nu_2}\}$. By satisfying the other properties $\{N^{\nu_1,\nu_2<0}\}$ is an Abelian semi group with continuous ν_1 , $\nu_2 < 0$ for $f(z_1, z_2) \in \mathbb{F}$.

3. Integral Transformation and Its Inverse Transformation.

Theorem 1. Let Nishimoto's complex transformations, [4], be

(3.1)
$$R\{f(\zeta)\} = \frac{\Gamma(\mu+1)}{2\pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{\mu+1}} d\zeta = F(z)$$

for a given constant $\mu \in \mathbb{R}$, then inverse to F(z) is given by

(3.2)
$$R^{-1}{F(\zeta)} = \frac{\Gamma(-\mu+1)}{2\pi i} \int_{c} \frac{F(z)}{(z-\zeta)^{-\mu+1}} dz$$

Theorem 2. Let complex integral transformations of two variables i.e. P-transformation be defined as

(3.3)
$$P\{f(\xi_1, \xi_2)\} = \frac{\Gamma(\mu_1 + 1)\Gamma(\mu_2 + 1)}{(2\pi i)^2} \int_{c_2} \int_{c_1} \frac{f(\xi_1, \xi_2)}{(\xi_1 - z_1)^{\mu_1 + 1}(\xi_2 - z_2)^{\mu_2 + 1}} d\xi_1 d\xi_2$$
$$= F(z_1, z_2)$$

for $\mu_1, \mu_2 \in \mathbb{R}$, then the inverse to $F(z_1, z_2)$ is given by

$$(3.4) P^{-1}{F(z_1, z_2)} = \frac{\Gamma(-\mu_1 + 1)\Gamma(-\mu_2 + 1)}{(2\pi i)^2} \int_{c_2} \int_{c_1} \frac{F(z_1, z_2)}{(z_1 - \xi_1)^{-\mu_1 + 1} (z_2 - \xi_2)^{-\mu_2 + 1}} dz_1 dz_2$$
$$= f(\xi_1, \xi_2)$$

where $f(\xi_1, \xi_2)$ is a regular functions in $D_1 \times D_2$.

Proof. Substituting (3.3) in (3.4), we get

(3.5)
$$P^{-1}{F(z_{1}, z_{2})} = \frac{\Gamma(-\mu_{1} + 1)\Gamma(\mu_{1} + 1)}{(2\pi i)^{2}} \int_{c_{1}} \int_{c_{1}} \frac{f(\eta_{1}, \eta_{2})}{(\xi_{1} - z_{1})^{-\mu_{1} + 1}} d\eta_{1} dz_{1} \cdot \frac{\Gamma(-\mu_{2} + 1)\Gamma(\mu_{2} + 1)}{(2\pi i)^{2}} \int_{c_{2}} \int_{c_{2}} \frac{d\eta_{2} \cdot dz_{2}}{(\xi_{2} - z_{2})^{-\mu_{2} + 1}} d\eta_{1} dz_{1}$$

Now we have from [1] (pp. 10),

(3.6)
$$\frac{\Gamma(-\mu_1+1)\Gamma(-\mu_1+1)}{(2\pi i)^2} \int_{c_1} \int_{c_1} \frac{f(\eta_1,\eta_2)}{(\xi_1-z_1)^{-\mu_1+1}(\eta_1-z_1)^{\mu_1+1}} d\eta_1 dz_1 =$$

$$= \frac{1}{2\pi i} \int_{c_1} \frac{f(\eta_1,\eta_2)}{(\eta_1-\xi_1)} d\eta_1$$

$$(3.7) = f(\xi_1, \eta_2)$$

Hence we have

$$P^{-1}{F(z_1, z_2)} = \frac{\Gamma(-\nu_2 + 1)\Gamma(\nu_2 + 1)}{(2\pi i)^2} \int_{c_2} \int_{c_2} \frac{f(\xi_1, \eta_2)}{(\xi_2 - z_2)^{-\nu_2 + 1} (\eta_2 - z_2)^{\nu_2 + 1}} d\eta_2 dz_2$$

from (3.5) and (3.7).

Now again using the result of [1] (pp. 10) i.e. (3.7) for ξ_2 , we get

$$P^{-1}{F(z_1, z_2)} = \frac{1}{2\pi i} \int_{c_2} \frac{f(\xi_1, \eta_2)}{(\eta_2 - \xi_2)} d\eta_2 = f(\xi_1, \xi_2)$$

Therefore

(3.8)
$$P^{-1}{F(z_1, z_2)} = f(\xi_1, \xi_2)$$

when

$$(3.9) P\{f(\xi_1, \xi_2)\} = F(z_1, z_2)$$

for

$$0 \neq F(z_1, z_2) | < \infty$$
.

Theorem 3. If $P\{f(\xi_1, \xi_2)\} = F(z_1, z_2)$ and $F(z_1, z_2) \neq 0$, then

$$(3.10) PP^{-1} = P^{-1}P = 1$$

Proof. We have

(3.11)
$$P\{f(\xi_1, \xi_2)\} = P\{P^{-1}\{F(z_1, z_2)\}\} = PP^{-1}\{F(z_1, z_2)\}$$

from (3.8).

Therefore, we have

$$(3.12) PP^{-1} = 1$$

from (3.11) and (3.9).

Next, we have

$$(3.13) P^{-1}{F(z_1, z_2)} = P^{-1}{P\{f(\xi_1, \xi_2)\}} = P^{-1}P\{f(\xi_1, \xi_2)\}$$

from (3.9), hence

$$(3.14) P^{-1}P = 1$$

from (3.8) and (3.13).

Therefore, finally we have

$$PP^{-1} = P^{-1}P = 1$$

from (3.14) and (3.12).

Theorem 4. If $\alpha \neq 0$, z_1 , $z_2 \in \mathbb{C}$ and μ_1 , $\mu_2 \in \mathbb{R}$ then

(3.15)
$$(i) P\{e^{-\alpha(\xi_1+\xi_2)}\} = e^{-i\pi(\mu_1+\mu_2)}a^{\mu_1+\mu_2} \cdot e^{-\alpha(z_1+z_2)}$$

(3.16) (ii)
$$P^{-1}\left\{e^{-i\pi(\mu_1+\mu_2)}a^{\mu_1+\mu_2}\cdot e^{-\alpha(z_1+z_2)}\right\} = e^{-\alpha(\xi_1+\xi_2)}$$

Proof. of (i): Letting $f(\xi_1, \xi_2) = e^{-\alpha(\xi_1 + \xi_2)}$ in (3.3), we have

$$P\{e^{-\alpha(\xi_1+\xi_2)}\}=$$

$$= \frac{\Gamma(\mu_1 + 1)\Gamma(\mu_2 + 1)}{(2\pi i)^2} \int_{c_2} \int_{c_1} \frac{e^{-\alpha \xi_1} \cdot e^{-\alpha \xi_2}}{(\xi_1 - z_1)^{\mu_1 + 1} (\xi_2 - z_2)^{\mu_2 + 1}} d\xi_1 d\xi_2$$

$$= R\{e^{-\alpha \xi_1}\} \cdot R\{e^{-\alpha \xi_2}\} \qquad \text{(using (3.1) [4])}$$

$$= e^{-i\pi\mu_1} a^{\mu_1} e^{-\alpha z_1} \cdot e^{-i\pi\mu_2} a^{\mu_2} e^{-\alpha z_2}$$

and so get (3.15).

Proof. of (ii): Letting $F(z_1, z_2) = e^{-i\pi(\mu_1 + \mu_2)} a^{\mu_1 + \mu_2} e^{-\alpha(z_1 + z_2)}$ in (3.4), we have

$$(3.17) P^{-1}\left\{F(z_{1},z_{2})\right\} = P^{-1}\left\{e^{-i\pi(\mu_{1}+\mu_{2})} \cdot a^{\mu_{1}+\mu_{2}} \cdot e^{-\alpha(z_{1}+z_{2})}\right\}$$

$$= e^{-i\pi(\mu_{1}+\mu_{2})} \cdot a^{\mu_{1}+\mu_{2}} \cdot \frac{\Gamma(-\mu_{1}+1)\Gamma(-\mu_{2}+1)}{(2\pi i)^{2}} \cdot \frac{\int_{c_{1}} \int_{c_{2}} \frac{e^{-\alpha z_{1}} \cdot e^{-\alpha z_{2}}}{(z_{1}-\xi_{1})^{-\mu_{1}+1}(z_{2}-\xi_{2})^{-\mu_{2}+1}} dz_{1} dz_{2}$$

$$= e^{-i\pi(\mu_{1}+\mu_{2})} \cdot a^{\mu_{1}+\mu_{2}} \cdot \frac{\Gamma(-\mu_{1}+1)}{(2\pi i)} \int_{c_{1}} \frac{e^{-\alpha z_{1}}}{(z_{1}-\xi_{1})^{-\mu_{1}+1}} dz_{1}$$

$$\cdot \frac{\Gamma(-\mu_{2}+1)}{(2\pi i)} \int_{c_{2}} \frac{e^{-\alpha z_{2}}}{(z_{2}-\xi_{2})^{-\mu_{2}+1}} dz_{2}$$

$$= e^{-i\pi(\mu_{1}+\mu_{2})} a^{\mu_{1}+\mu_{2}} R^{-1}\left\{e^{-\alpha z_{1}}\right\} \cdot R^{-1}\left\{e^{-\alpha z_{2}}\right\} \qquad \text{(by (3.2) [4])}$$

$$= R^{-1}\left\{e^{-i\pi\mu_{1}} a^{\mu_{1}} e^{-\alpha z_{1}}\right\} \cdot R^{-1}\left\{e^{-i\pi\mu_{2}} a^{\mu_{2}} e^{-\alpha z_{2}}\right\}$$

$$= e^{-\alpha \xi_{1}} \cdot e^{-\alpha \xi_{2}} = e^{-\alpha(\xi_{1}+\xi_{2})}$$

Theorem 5. If $a \neq 0$, $z_1, z_2 \in \mathbb{C}$ and $\mu_1 \mu_2 \in \mathbb{R}$, then

(3.18)
$$(i) P\{e^{\alpha(\xi_1+\xi_2)}\} = a^{\mu_1+\mu_2} \cdot e^{\alpha(z_1+z_2)}$$

(3.19)
$$(ii) P^{-1}\{a^{\mu_1+\mu_2} \cdot e^{\alpha(z_1+z_2)}\} = e^{\alpha(\xi_1+\xi_2)}$$

Proof. of (i): Letting $f(\xi_1, \xi_2) = e^{\alpha(\xi_1 + \xi_2)}$ in (3.3), we get

$$P\{f(\xi_1, \xi_2)\} = P\{e^{\alpha(\xi_1 + \xi_2)}\} = \frac{\Gamma(\mu_1 + 1)\Gamma(\mu_2 + 1)}{(2\pi i)^2}$$

$$\int_{c_2} \int_{c_1} \frac{e^{\alpha \xi_1} \cdot e^{\alpha \xi_2}}{(\xi_1 - z_1)^{\mu_1 + 1} (\xi_2 - z_2)^{\mu_2 + 1}} d\xi_1 d\xi_2 \quad \text{using (3.1)}$$

$$= R \{ e^{\alpha \xi_1} \} \cdot R \{ e^{\alpha \xi_2} \}$$

Using the result in [4], we obtain (3.18).

Proof. of (ii): $F(z_1, z_2) = a^{\mu_1 + \mu_2} e^{\alpha(z_1 + z_2)}$ in (3.4), we have

$$P^{-1}{F(z_1, z_2)} = P^{-1}{a^{\mu_1 + \mu_2} \cdot e^{\alpha(z_1 + z_2)}}$$

By using (3.2) and the result in [4], we get (3.19).

Acknowledgement. The authors express their gratitude and thanks to the referee for his valuable suggestions and corrections in the original manuscript.

REFERENCES

- [1] K. Nishimoto, *Unifications of the integrals and derivatives (A serendipity in fractional calculus)*, JFC, 6 Nov. (1994), pp. 1–14.
- [2] K. Nishimoto, On Nishimoto's fractional calculus operator N^{ν} (on an actions groups), JFC, 4 Nov. (1993), pp. 1–11.
- [3] K. Nishimoto, *Fractional calculus*, Vol III (1989), Descartes Press, Koriyama, Japan.
- [4] K. Nishimoto, *N-transformations of elementary functions and their inverses*, JFC, 7 May (1995), pp. 1–15.
- [5] K. Nishimoto, *An Essence of Nishimoto Fractional Calculus*, (Calculus in 21st Century) (1991), Descartes Press; Koriyama, Japan.

Department of Mathematics, Holkar Science College, Indore-452 017 (INDIA) e-mail: profparihar@hotmail.com