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HEIGHT ESTIMATE AND LIPSCHITZ APPROXIMATION FOR
GEODESICS IN CARNOT GROUPS

ROBERTO MONTI - MICHELE ZACCARON

In [11] it is proved that length-minimizing curves in Carnot groups
have infinitesimal excess at any point, for a suitable sequence of scales.
In this paper we prove some results dealing with the small excess regime.
We prove a height-estimate for horizontal curves and an approximation of
geodesics with Lipschitz graphs along the direction where excess is small.
The setting is that of free Carnot groups.

1. Introduction

The most important open problem in sub-Riemannian geometry is the regularity
of length minimizing curves, see [9, 10, 13]. The difficulty of the problem is due
to the existence of singular extremal that can be length minimizing [7]. For these
extremals the classical tools of geometric control theory do not provide any
further regularity beyond the Lipschitz continuity. Recently, there was some
progress on the problem based on techniques inspired by geometric measure
theory, see [4, 6, 8, 11] and also [2, 5, 12].

In particular, in [11] it is proved that, in the setting of Carnot groups, for any
point in the support of a length-minimizing curve there exists an infinitesimal
sequence of scales such that the excess of the curve is infinitesimal. In fact, this
implies that there is a line in the tangent cone of the curve at that point.
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In this paper, we study length minimizing curves in the small excess regime.
We first prove a height estimate and then an approximation of the curve by
means of Lipschitz graphs. These results were announced in [10]. In the theory
of minimal surfaces, the Lipschitz approximation of a minimal current is the
first step in the regularity theory and paves the way to the so-called harmonic
approximation and to the improved excess-decay lemma.

Given integers m,s ≥ 2, we denote by Fm,s the real Lie algebra generated by
m elements that is nilpotent with step s. This Lie algebra can be realized as a
Lie algebra of left-invariant vector fields in Rn, where n ≥ 3 is the dimension of
Fm,s as a vector space. We denote the m vector fields generating the Lie algebra
by

X1, . . . ,Xm ∈C∞
(Rn;Rn

).

The Campbell-Hausdorff-Beker formula gives Fm,s the structure of a Lie group
that we denote by Gm,s. The group operation is denoted by a dot ⋅. The underly-
ing manifold of Gm,s is again Rn.

We call V1 = span{X1, . . . ,Xm} the generating layer and we fix on V1 the
scalar product ⟨⋅, ⋅⟩ that makes X1, . . . ,Xm orthonormal. We denote by ∣ ⋅ ∣= ⟨⋅, ⋅⟩1/2

the corresponding norm. The Lie algebra Fm,s has the grading

Fm,s =V1⊕ . . .⊕Vs,

where Vi+1 = [V1,Vi] and Vs+1 = {0}. To the stratum Vi we assign the weight i
and for each λ > 0 the map defined by δλ (X) = λ

iX if and only if X ∈Vi, linearly
extends to an automorphism of Fm,s. We identify Gm,s with Rn using exponential
coordinates. We complete X1, . . . ,Xm to a basis X1, . . . ,Xn of Fm,s ordered by the
grading and we assume that

x = (x1, . . . ,xn) = exp(
n

∑
i=1

xiXi).

We shall work with vector fields X1, . . . ,Xn given by the Hall basis construction,
see Section 2.

To the jth coordinate we assign the weight w j = i if and only if the element
e j = (0, . . . ,1, . . .0), with 1 at the jth position, satisfies e j ∈ exp(Vi). Then for
any λ > 0 the dilations

δλ (x) = (λ
w1x1, . . . ,λ

w j x j, . . . ,λ
wnxn)

are automorphisms of Gm,s.
A Lipschitz continuous curve γ ∶ [0,1]→Gm,s is admissible if γ̇ ∈V1(γ) a.e.,

that is if γ̇ =∑
m
j=1 h jX j(γ) for uniquely determined functions h j ∈ L∞(0,1), j =

1, . . . ,m. The length of γ is

L(γ) = ∫

1

0
∣γ̇(t)∣dt = ∫

1

0
∣h(t)∣dt,
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where h = (h1, . . . ,hm). There is always a reparameterization of γ by arc-length,
i.e., such that ∣h(t)∣ = (h1(t)2+ . . .+hm(t)2)1/2 = 1 for a.e. t ∈ [0,L(γ)].

The Carnot-Carathéodory distance d between two points x,y ∈ Gm,r is the
infimum (minimum) of L(γ) among all admissible curves γ such that γ(0) = x
and γ(1) = y. This distance is left-invariant and homogeneous with respect to
dilations:

i) d(z ⋅x,z ⋅y) = d(x,y) for all x,y,z ∈Gm,s;
ii) d(δλ (x),δλ (y)) = λd(x,y) for all x,y ∈Gm,s and λ > 0.
An admissible curve γ ∶ [0,1]→ Gm,s is a geodesic (i.e., a length minimiz-

ing curve) if d(γ(0),γ(1)) = L(γ). One of the major open problems in sub-
Riemannian geometry is the regularity of length minimizing curves, even in the
setting of Lie groups of Carnot type.

Our first result is the so-called height estimate. It states that an admissible
curve is contained in a thin tube around a fixed direction, provided that the
excess of the curve in this direction is small. Without loss of generality, we
assume that this direction is the one given by the first vector field X1.

Definition 1.1. The parametric excess of an admissible curve γ ∶ [0,1]→ Gm,s

in direction X1, at η ∈ [0,1] and at a scale r > 0 such that η + r ≤ 1 is

E(γ;η ;r;X1) ∶=
1
r

η+r

∫
η

∣γ̇ −X1(γ)∣
2dt.

Theorem 1.2 (Height estimate). Let γ ∶ [0,1] → Gm,s be an admissible curve
parameterized by arc-length with γ(0) = 0 and let 0 < r ≤ 1. Then for all i =
2, . . . ,n there exist positive integers αi,βi ∈N such that:

i) αi+βi+1 =wi, the weight of the ith coordinate;

ii)
⎛

⎝

∣γi(t)∣

∣t ∣αi

⎞

⎠

1
βi+1

≤ t
√

E(γ;0;r;X1) for all 0 < t ≤ r.

Above, γi is the ith coordinate of γ in exponential coordinates.

Theorem 1.2 is proved in Section 3. Our second result is the approximation
of length-minimizing curves by Lipschitz graphs along a fixed direction where
the excess is small. This result is better formulated in terms of a geometric
notion of excess.

Let γ ∶ [−1,1]→Gm,s be an admissible injective curve and let Γ = γ([−1,1])
be its support. The curve γ can be assumed to be parameterized by arc-length
and so the tangent γ̇(t) ∈V1(γ(t)) exists for a.e. t ∈ [−1,1] and satisfies ∣γ̇(t)∣= 1.
We denote by H 1 the 1-dimensional Hausdorff measure in Gm,s = Rn defined
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using the Carnot-Carathéodory metric d. Then for H 1-a.e. x ∈ Γ we can define
the unit tangent vector τΓ(x) = γ̇(t) where t ∈ [−1,1] is such that γ(t) = x.

Definition 1.3. Let Γ be the support of an admissible curve γ , oriented by the
unit tangent τΓ. The geometric excess of Γ in direction X1, at x ∈ Γ and at scale
r > 0 is

E(Γ;x;r;X1) =∫
Γ∩Br(x)

∣τΓ−X1∣
2dH 1,

where Br(x) is a ball in the Carnot-Carathéodory metric.

We denote by π ∶ Gm,s = Rn → R, π(x) = π(x1, . . . ,xn) = x1, the projection
onto the first coordinate. We denote by Br = Br(0) Carnot-Carathéodory balls
centered at 0.

Theorem 1.4 (Lipschitz approximation). Let γ ∶ [−1,1]→ Gm,s be a geodesic
parameterized by arc-length, with γ(0) = 0 and support Γ. For any ε > 0 there
exist a closed set I ⊂ π(Γ∩B1/4) ⊂ R and a curve γ̄ ∶ I → Gm,s with support Γ̄

such that:

i) Γ̄ ⊂ Γ;

ii) γ̄1(t) = t for t ∈ I, i.e., Γ̄ is a graph along X1;

iii) ∣(γ̄(s)−1 ⋅ γ̄(t))i∣
1/wi

≤ ε ∣t − s∣ for s,t ∈ I and i = 2, . . . ,n;

iv) H 1(B1/4∩ Γ̄∖Γ) ≤C(ε,αi,βi)E(Γ;0;1;X1);

v) L 1(π (Γ∩B1/4)∖ I) ≤C(ε,αi,βi)E(Γ;0;1;X1).

Above, L 1 is the Lebesgue measure on R and C(ε,αi,βi) is a constant
depending on ε and on the integers αi,βi, i = 2, . . . ,n, given by Theorem 1.2. We
comment on iii). In Gm,s we can define the pseudo-norm

∥x∥ =max{∣xi∣
1/wi ∶ i = 1, . . . ,n} .

Then there is a constant C1 > 0 such that for all x,y ∈Gm,s

1
C1

d(x,y) ≤ ∥y−1
⋅x∥ ≤C1d(x,y). (1)

Condition iii) asserts that the graph γ̄ is Lipschitz for the Carnot-Carathéodory
metric, with Lipschitz constant proportional to ε .
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Theorem 1.4 is proved in Section 4. The assumption that γ be a geodesic
can be weakened. A sufficient condition for the validity of the Lipschitz approx-
imation is the assumption that Γ is 1-Ahlfors regular, i.e., the assumption that
there exist constants 0 < c1 < c2 such that for 0 ≤ r ≤ 1

c1r ≤H 1
(Γ∩Br(x)) ≤ c2r,

for any point x ∈ Γ. The lenght minimality implies these density estimates.

2. Hall Basis of free vector fields

In this section we review Grayson and Grossmann’s method to construct a basis
of vector fields in Rn that span a free Lie algebra. We will use the explicit
formulas for these vector fields in order to get the integers αi and βi in Theorem
1.2. We refer to [3] for more details.

Let E1, . . . ,Em be the m generators of the free Lie algebra Fm,s. We assign to
them the weight 1. We complete these elements to a basis of Fm,s in a recursive
way. If we have already defined basis elements of weights 1, . . . ,r−1, they are
ordered so that E < F if weight(E) <weight(F). Also, if weight(E) = q and
weight(F) = t and r = q+ t, then [E,F] is a basis element of weight r if:

1. E and F are basis elements and E > F ;

2. if E = [G,H], then F ≥H.

The resulting basis is called a Hall basis.
We number the basis elements for the Lie algebra by ordering them as

explained above, i.e., Em+1 = [E2,E1],Em+2 = [E3,E1],Em+3 = [E3,E2],Em+4 =

[E4,E1], etc. Consider a basis element Ei and write it as a bracket of lower or-
der basis elements, Ei = [E j1 ,Ek1], where j1 > k1. Repeat this process of writing
the left-most element as a bracket of lower basis elements, until we obtain

Ei = [[⋯[[E jp ,Ekp]Ekp−1],⋯,Ek2],Ek1], (2)

where kp < jp ≤ m, and kl+1 ≤ kl for 1 ≤ l ≤ p− 1. This expansion involves p
brackets, and we write `(i) = p and define `(1) = . . . = `(m) = 0. We associate
to this expansion a multi-index I(i) = (a1, . . . ,an), with aq defined by aq = #{t ∶
kt = q}. For the first m basis elements, the associated multi-index is (0, . . . ,0).
We say that Ei is a direct descendant of each E jt , and we indicate this by writing
jt ≺ i. Moreover, to any index i we can associate another index Λi ∈ {1, . . . ,m},
being the index of the (unique) generator that has i as a direct descendant, that
is Λi ≺ i; if i ∈ {1, . . . ,m} already, then set Λi = i. If Ei = [E j,Ek], then Λi = Λ j,



96 ROBERTO MONTI - MICHELE ZACCARON

`(i) = `( j)+ 1 and each entry in I(i) is at least as large as the corresponding
entry in I( j).

For every pair i and j with j ≺ i, we define the monomial pi, j in Rn by

pi, j(x) =
(−1)`(i)−`( j)

(I(i)− I( j))!
xI(i)−I( j). (3)

Lemma 2.1. Consider the Hall basis E1, . . . ,En. If the basis element Ei, for
i ∈ {m+1, . . . ,n}, is of the form Ei = [E j,Eq] for some 1 ≤ q < j < i, then

pi,Λi(x) = −
p j,Λi(x)xq

I(i)q
, (4)

and in particular ∣pi,Λi(x)∣ ≤ ∣p j,Λi(x)xq∣ .

Proof. Indeed if we consider Ei = [E j,Eq] and we remember its decomposition
as in (2), we have that

Ei = [[⋅ ⋅ ⋅[[E jp ,Ekp]Ekp−1], ⋅ ⋅ ⋅,Ek2],Ek1],

therefore Eq = Ek1 and E j = [[⋅ ⋅ ⋅[[E jp ,Ekp]Ekp−1], ⋅ ⋅ ⋅,Ek2]. Moreover Λi = Λ j,
`(i) = `( j)+1 and all entries of I(i) are equal to those of I( j) except for the
q-th one, where we have that I(i)q = I( j)q+1. Notice that in particular I(i)q ≥ 1.
The thesis now follows immediately from (3).

The next theorem gives the connection between the abstract Lie algebra Fm,s

and the vector space Rn, and it will be the starting point of our computations.

Theorem 2.2 (Grayson-Grossman). Fix s ≥ 1 and m ≥ 2 and let n be the dimen-
sion of Fm,s. The vector fields in Rn

X1 =
∂

∂x1
, X2 =

∂

∂x2
+∑

j≻2
p j,2(x)

∂

∂x j
, . . . Xm =

∂

∂xm
+∑

j≻m
p j,m(x)

∂

∂x j

generate a Lie algebra isomorphic to Fm,s.

3. Proof of Theorem 1.2

As explained above, we identify Gm,s with Rn and we fix the vector fields
X1, . . . ,Xm as in Theorem 2.2. Let γ ∶ [0,1]→ (Rn,d) be an admissible curve
parameterized by arc-length, where d is the Carnot-Carathéodory distance asso-
ciated to X1, . . . ,Xm. Thus for a.e. τ ∈ [0,1] we have

γ̇(τ) =
m

∑
i=1

hi(τ)Xi(γ(τ)),
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where h1, . . . ,hm ∈ L∞(0,1) satisfy

h2
1(τ)+ . . .+h2

m(τ) = 1 for a.e τ ∈ [0,1]. (5)

First of all notice that

∣γ̇(τ)−X1∣
2
= ∣γ̇(τ)∣

2
−2⟨γ̇(τ),X1⟩+ ∣X1∣

2
= 2(1−h1(τ)).

From (5) we deduce that

a) ∣hi∣ ≤ 1 for all i = 1, . . . ,m;

b) for all i ≠ 1, h2
i ≤ 1−h2

1 = (1−h1)(1+h1) ≤ 2(1−h1);

c) for t ∈ [0,1] and for all i ≠ 1, by Hölder’s inequality we have

∫

t

0
∣hi(τ)∣dτ ≤ t

√
1
t ∫

t

0
hi(τ)2dτ

≤ t

√
1
t ∫

t

0
2(1−h1(τ))dτ

= t
√

E(γ;0;t;X1).

For semplicity, we shall use the notation E(t) =E (γ;0;t;X1). We will prove
the existence of integers αi and βi such that the claims i) and ii) in Theorem 1.2
and such that

∣pi,Λi(γ(τ))∣ ≤ tαi+βiE(t)βi/2 for all 0 ≤ τ ≤ t (6)

hold for every i ∈ {2, . . . ,n}. The proof is by induction on the weight of i.
The initial step is with i = 2, . . . ,m. In this case we have wi = 1 and we choose

αi = βi = 0. Then i) holds and also

∣γi(t)∣ ≤ ∫
t

0
∣hi(τ)∣dτ ≤ t

√
E(t),

which is ii). Condition (6) also holds because for i ∈ {1, . . . ,m} we have pi,Λi =

pi,i = 1.
We now prove the inductive step. Let i be of weight wi ≥ 2. Following the

Hall basis construction, Xi will be of the form Xi = [X j,Xq] for some 1 ≤ q < j < i
with weights w j and wq such that w j +wq = wi. Λi is the (unique) index in
{2, . . . ,m} that has i as a direct descendant. Notice that Λi can’t be 1 due to the
construction of the Hall basis, and moreover Λi =Λ j.

By lemma 2.1 we have ∣pi,Λi(x)∣ ≤ ∣p j,Λi(x)xq∣. Therefore, by the inductive
assumption ii) of Theorem 1.2 on γq and by the inductive assumption (6) on
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p j,Λi , there exist positive integers αq,βq,α j,β j, with α j +β j +1 = w j and αq +

βq+1 =wq, such that

∣pi,Λi(γ(τ))∣ ≤ ∣p j,Λi(γ(τ))∣∣γq(τ)∣

≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tα j (t
√

E(t))
β j

tαq (t
√

E(t))
βq+1

if q > 1

tα j (t
√

E(t))
β j

t if q = 1

≤ tαi (t
√

E(t))
βi
,

where in the first case we set αi ∶=α j+αq and βi ∶= β j+βq+1, and in the second
one αi ∶= α j +1 and βi ∶= β j. Notice that in both cases αi+βi+1 = w j +wq = wi,
as we wanted. This concluds the proof of the induction step for (6).

At this point we have that γ̇i = hΛi pi,Λi and so

γi(t) = ∫
t

0
hΛi(τ)pi,Λi(γ(τ))dτ.

Hence using estimate (6) (that we already proved to be true at this step) we
obtain

∣γi(t)∣ ≤ tαi (t
√

E(t))
βi

∫

t

0
∣hΛi(τ)∣dτ

≤ tαi (t
√

E(t))
βi

t
√

E(t)

= tαi (t
√

E(t))
βi+1

,

(7)

that becomes
⎛

⎝

∣γi(t)∣

tαi

⎞

⎠

1
βi+1

≤ t
√

E(t).

Thus we proved the point ii) of Theorem 1.2 for the index i with general weight,
and this concludes the proof.

Now we compare the parametric and the geometric definitions of excess.
We start by recalling the construction of the 1-Hausdorff measure in the metric
space (Rn,d). We refer to [1] for more details. For any subset U ⊆Rn we call

diam(U) = sup{d(x,y) ∶ x,y ∈U}

the diameter of U , where d is the Carnot-Carathéodory metric. By definition,
we set diam(∅) = 0. Let S be a subset of Rn and δ > 0 a real number, and define

H 1
δ
(S) = inf

⎧⎪⎪
⎨
⎪⎪⎩

∞

∑
i=1

diam(Ui) ∶ S ⊆
∞

⋃
i=1

Ui, diam(Ui) < δ

⎫⎪⎪
⎬
⎪⎪⎭

.
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It can be proved that each H 1
δ

is an outer measure. Since the map δ ↦H 1
δ
(S)

is decreasing, the limit

H 1
(S) ∶= lim

δ↓0
H 1

δ
(S) = sup

δ>0
H 1

δ
(S)

exists (although it may be infinite). H 1 is a Borel measure in Rn.
Now denote the support of γ by Γ= γ([0,1])⊂Rn =Gm,s, and its unit tangent

vector by τΓ = γ̇ ∈ span{X1, . . . ,Xm}. As above, γ is parameterized by arc-length.
Using the definition of H 1 it is not difficult to see that

H 1
(Γ) ≤Var(γ) ∶= sup{

k−1

∑
i=0

d(γ(ti+1),γ(ti)) ∶ 0 ≤ t0 < t1 < . . . < tk ≤ 1}. (8)

If γ is injective, than we have the equality H 1(Γ) = Var(γ). This can be
proved in the following way. It is easy to show that for any a,b ∈ [0,1] we have

H 1 (γ([a,b])) ≥ d (γ(a),γ(b)) .

Now take 0 ≤ t0 < ⋅ ⋅ ⋅ < tk ≤ 1. We have

k−1

∑
i=0

d (γ(ti+1,γ(ti)) ≤
k−1

∑
i=0

H 1 (γ([ti,ti+1])) ≤H 1
(Γ) ,

where the last inequality relies on the injectivity of γ and on the additivity of the
Hausdorff measure. This shows that H 1(Γ) ≥Var(γ).

On the other hand we have the following result, see [8, page 26]:

Theorem 3.1. Let γ ∶ [0,1] → (Rn,d) be a Lipschitz curve with controls h ∈

L∞ (0,1)m, i.e., γ̇ =∑
m
j=1 h jX j(γ). Then we have

Var(γ) = ∫

1

0
∣h(t)∣dt. (9)

From the previous discussion we deduce that if γ ∶ [0,1]→Gm,s is an injec-
tive admissible curve then for any compact set K ⊂ Γ we have

H 1
(K) = ∫

γ−1(K)
∣h(τ)∣dτ.

Theorem 1.2 can now be rephrased in the following way.

Corollary 3.2. Let γ ∶ [0,1]→Gm,s be a geodesic parameterized by arc-length,
with γ(0) = 0 and support Γ. Let 0 < r ≤ 1. Then for all i = 2, . . . ,n there exist
positive integers αi,βi with α1+βi+1 =wi and such that:

⎛

⎝

∣γi(t)∣

∣t ∣αi

⎞

⎠

1
βi+1

≤ t
√

E(Γ;0;r;X1) for all 0 < t ≤ r. (10)
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Proof. Observe that if Γ is a length minimizer and d(0,γ(1)) ≥ r, then H 1(Γ∩

Br(x)) = r. Using this observation one can see that the two definitions of excess
coincide, and then conclude.

Remark 3.3. The proof of the last corollary shows that for the validity of the
result it is enough that Γ satisfies certain density estimates, without necessarily
being a length minimizer; if there exist two constants 0 < c1 ≤ c2 such that

c1r ≤H 1
(Γ∩Br(x)) ≤ c2r,

then (10) holds with an appropriate constant in the right hand-side of the in-
equality.

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. We start with some elementary properties
of the projection π ∶Gm,s =Rn →R defined by π(x) = x1, where x = (x1, . . . ,xn)

are the exponential coordinates associated with the vector fields given by the
Hall basis. It is well-known that π ∶ (Gm,s, ⋅)→ (R,+) is a group homomorphism,
i.e., π(x ⋅y) = (x ⋅y)1 = x1+y1 = π(x)+π(y). Moreover, we have

∣π(x)−π(y)∣ = ∣x1−y1∣ ≤ d(x,y),

i.e. π is 1-Lipschitz from (Rn,d) to R.
Let B1/4 = {x ∈Rn ∶ d(x,0) < 1/4} and for η > 0 consider the set

Γ̄ = {x ∈ Γ∩B1/4 ∶ E(Γ;x;r;X1) ≤ η for all 0 ≤ r ≤ 1/2} ⊂ Γ.

Take points x ∈ Γ∩B1/4 and y ∈ Γ̄, with x ≠ y, and define λ = d(x,y) > 0. By the
triangle inequality we have λ ≤ 1/2. The set

Γλ = δ 1
λ

(y−1
⋅Γ)

is the support of a length-minimizing curve, because left-translations and dila-
tions take geodesics to geodesics. Moreover, we have 0 ∈ Γλ .

The point z = δ1/λ (y−1 ⋅ x) is in Γλ and by the invariance properties of the
Carnot-Carathéodory distance we have d(z,0) = 1

λ
d(x,y) = 1. By the height-

estimate (10), we have that for any i ≥ 2

∣zi∣
1

βi+1 = (
∣zi∣

d(z,0)αi
)

1
βi+1

≤
√

E(Γλ ;0;1;X1) =
√

E(Γ;y;λ ;X1) ≤
√

η .
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We used the elementary invariance properties of excess

E(Γλ ;0;1;X1) = E(Γ;y;λ ;X1).

By (1), this in turn gives

∣(y−1
⋅x)i∣ = ∣(δλ (z))i∣ = λ

wi ∣zi∣ ≤ η
βi/2+1/2d(x,y)wi

≤Cwi
1 η

βi/2+1/2
∥y−1

⋅x∥
wi
.

(11)

Now we take ε > 0 such that ε
wi < 1/2 for all i and we choose a number

η = η(ε,αi,βi) > 0 such that for all i = 2, . . . ,n we have

Cwi
1 η

βi/2+1/2
≤min{ε

wi ,
1
2
} = ε

wi . (12)

In this way, the maximum norm is given by

∥y−1
⋅x∥ = max

j=1,...,n
∣(y−1

⋅x) j∣
1/w j

= ∣(y−1
⋅x)1∣

1/w1
= ∣x1−y1∣ ,

and (11) becomes

∣(y−1
⋅x)i∣

1/wi
≤ ε ∣x1−y1∣ , i = 2, . . . ,n. (13)

The projection π ∶ Γ̄→R is injective because π(x) = π(y) means x1 = y1 and
thus, by (13), we have ∣(y−1 ⋅x)i∣ = 0 for all i ≥ 2. This implies y−1 ⋅x = 0 and so
x = y. Let I = π (Γ̄) and denote by π

−1 ∶ I → Γ̄ the inverse of the projection. We
define the curve γ̄ ∶ I→Rn letting

γ̄(t) = π
−1

(t), t ∈ I.

The support of γ̄ is Γ̄ ⊂ Γ. This is claim i) in Theorem 1.4.
Then we have γ̄1(t) = π (π

−1(t)) = t for all t ∈ I. This is claim ii). Claim iii)
follows from (13).

Next, we prove claim iv). For any point x ∈ B1/4∩Γ∖ Γ̄ there exists a radius
0 < rx ≤ 1/2 such that

1
2rx
∫

Γ∩Brx(x)
∣τΓ−X1∣

2 dH 1
= E(Γ;x;rx;X1) > η .

Moreover, since
B1/4∩Γ∖ Γ̄ ⊂ ⋃

x∈B1/4∩Γ∖Γ̄

Brx/5(x)∩Γ,
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using the 5-covering lemma, there exists a sequence of points xk ∈ B1/4 ∩Γ∖ Γ̄

such that, letting rk = rxk , we have

B1/4∩Γ∖ Γ̄ ⊂ ⋃
k∈N

Brk(xk)∩Γ,

where the balls Brk/5(xk) are pair-wise disjoint. Thus we obtain

H 1
(B1/4∩Γ∖ Γ̄) ≤∑

k∈N
H 1 (Brk(xk)∩Γ) =∑

k∈N
2rk

≤∑
k∈N

1
η
∫

Γ∩Brk(xk)
∣τΓ−X1∣

2 dH 1

≤
1
η
∫

Γ∩B1

∣τΓ−X1∣
2 dH 1

=
2
η

E(Γ;0;1;X1).

Finally, claim v) follows from iv) and from the fact that the projection π is 1-
Lipschitz. The set I may be assumed to be closed, because all the claims are
stable passing to the closure.
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