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ANISOTROPIC ESTIMATES OF SUBELLIPTIC TYPE

ANNAMARIA MONTANARI - DANIELE MORBIDELLI

We discuss some estimates of subelliptic type related with vector fields
satisfying the Hörmander condition. Our approach makes use of a class of
approximate exponentials studied in our previous papers [7–9, 11]. Such
kind of estimates arises naturally in the study of regularity theory of weak
solutions of degenerate elliptic equations.

1. Introduction

In this note we review and slightly improve some estimates of subelliptic type
for a family X1, . . . ,Xm of smooth vector fields of Hörmander type in Rn. We
mainly use the analysis of a class of approximate exponential maps appearing in
some previous papers of the authors and of Ermanno Lanconelli. See [7–9, 11].
We shall formulate our estimates making use of a family of fractional Sobolev
norms modeled on the subRiemannian geometry defined by X1, . . . ,Xm. These
norms have been analyzed in [11].

Let X1, . . . ,Xm be a family of vector fields satisfying the Hörmander condi-
tion of step κ ∈ N in Rn. A classical estimate states that given a bounded set
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Ω⊂ Rn and p ∈ [1,+∞[, there is a positive constant C such that

[ f ]W 1/k,p :=
(∫

Ω×Ω

| f (x)− f (y)|p

|x− y|n+p(1/κ)
dxdy

)1/p

≤C(‖ f‖Lp +∑
j
‖X j f‖Lp), (1)

for all smooth f compactly supported in Ω. Here [ f ]W 1/κ,p denotes the Lp

(semi)norm of the fractional derivative of order 1/κ of f . Classical references
for this inequality are [3, 13]. Various versions of estimate (1) have been used
extensively starting from the seminal paper of Hörmander [4] in the theory of
hypoelliptic operators.

Estimate (1) inherently gives the same order 1/κ of Euclidean fractional
differentiability in all directions, for a function f ∈ Lp with derivatives X1 f , . . . ,
Xm f ∈ Lp. Note that in typical situations of interest in subelliptic analysis, the
dimension of the subspace generated by X1(x), . . . ,Xm(x) is strictly less than the
topological dimension n. It is known that (1) is sharp, as far as we refer to
Euclidean fractional derivatives. However, it does not capture the fact that given
f in the first order Folland–Stein space,1 one can expect a better regularity of f
along the directions of commutators of lower order compared with the regularity
expected along the directions of commutators of higher order. This motivates
the introduction of a different notion of fractional differentiability, based on the
data of the metric measure space (Rn,Ln,d), where Ln denotes the Lebesgue
measure in Rn and d the subRiemannian distance. Namely, following [11],
given Ω⊂ Rn, we define for any s ∈ ]0,1[ and p ∈ [1,+∞[, the seminorm

[ f ]W s,p
d (Ω) :=

(∫
Ω×Ω

| f (x)− f (y)|p

Ln(B(x,d(x,y)))d(x,y)ps dxdy
)1/p

, (2)

where d denotes the subRiemannian distance associated with the vector fields X1,
. . . , Xm. Here and hereafter, B(x,r) will denote the ball of center x ∈ Rn and ra-
dius r with respect to the subRiemannian distance d. Observe that, by known
properties in subRiemannian geometry, we have the local estimates Ln(B(x,r))
≤Crn and d(x,y)≤C|x−y|1/κ , where κ is the step of the vector fields. See (19)
in Section 2. Then we have the trivial local embedding

‖ f‖Lp(Ω)+
(∫

Ω×Ω

| f (x)− f (y)|p

|x− y|n+p(s/κ)
dxdy

)1/p
≤C‖ f‖W s,p

d (Ω),

where ‖ f‖W s,p
d (Ω) := ‖ f‖Lp(Ω)+ [ f ]W s,p

d (Ω) and the positive constant C depends
on the bounded set Ω⊂ Rn and on s ∈ ]0,1[.

1The functional space defined by the norm in the right-hand side of (1).



ANISOTROPIC ESTIMATES OF SUBELLIPTIC TYPE 315

Note also that the embedding is somehow strict. In order to explain our
comment, given a bounded set Ω, we define the fractional derivative of order
ε ∈ ]0,1[ of a function f along a vector field Z as

[ f ]W ε,p
Z (Ω) :=

(∫
Ω

dx
∫
{t∈[0,1] :etZ(x)∈Ω}

dt
|t|1+pε

| f (etZx)− f (x)|p
)1/p

, (3)

where as usual we denote by etZ(x) the value at time t of the integral curve of Z
starting from x when t = 0.

Let us introduce the notation Xw := [Xw1 , . . . , [Xw`−1 ,Xw`
] . . . ] to denote nested

commutators of length |w| = ` ≤ κ . Then, we show that given vector fields of
step κ ∈ N, p ∈ [1,+∞[ and a triple Ω1 b Ω2 b Ω3 of bounded sets, for all
s ∈ ]0,1[ we have the equivalence

C−1‖ f‖W s,p
d (Ω1)

≤ ‖u‖Lp(Ω2)+ ∑
|w|≤κ

[ f ]
W s/|w|,p

Xw (Ω2)
≤C‖ f‖W s,p

d (Ω3)
. (4)

This means that given a function f ∈ Lp(Ω) and s< 1, the seminorm [ f ]W s,p
d (Ω) is

finite if and only if f has s/|w| derivatives in Lp along commutators Xw of length
|w|= 1,2,3, . . . ,κ . Note that in [11] the first author proved the equivalence (4)
for commutators Xw with length |w|= 1 only. Here we show that the argument
in [11] provides also the inequality

[ f ]
W s/|w|,p

Xw (Ω2)
≤C‖ f‖W s,p

d (Ω3)

for commutators Xw of arbitrary length |w| ≤ κ.
In Section 3 we shall prove the following anisotropic subelliptic estimate.

Theorem 1.1. Given Hörmander vector fields X1, . . . ,Xm in Rn, for all p ∈
[1,+∞[, for all s ∈ ]0,1[ and for any pair of nested bounded sets Ω b Ω0 there
is C > 0 such that for all C1 function f we have the inequality

[ f ]W s,p
d (Ω) ≤C

( m

∑
j=1
‖X j f‖Lp(Ω0)+‖ f‖Lp(Ω0)

)
. (5)

Roughly speaking, the inequality (5) means that the Lp norm of the deriva-
tives of order s < 1 in the subRiemannian metric measure space (Rn,Ln,d) can
be estimated from above with the derivatives of order 1 in the Folland–Stein
space. This estimate is trivial in the Euclidean case, see the discussion in Re-
mark 3.1. Surprisingly, the proof of the subRiemannian statement (5) becomes
less trivial and requires a certain amount of work.

Inequality (5) has been proved in [11, Theorem 5.1] for 1 < p < Q
1−s and for

an appropriate Q, by using some nice properties of the fundamental solution of
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Hörmander operators. Here we extend this inequality to every p ≥ 1 by using
a completely different technique, whose main tool is the approximate exponen-
tial map. The proof of Theorem 1.1 will be presented in Section 3 and it is
inspired to the argument of the Lanconelli’s unpublished proof of the nonsharp
version of (1). See [9, Proposition 6.2]. Let us mention that for the case s = 1
our seminorm (2) is not useful, but there is a rich theory of Sobolev spaces of
order s = 1 defined on metric measure spaces. See the Hajłasz spaces [5] and
the Newtonian spaces [14], just to quote a few.

In the subsequent Section 4, following [11], we describe the proof of the
equivalence (4). As a corollary, we obtain estimates in the directions of com-
mutators.

Namely, we will get the following statement.

Theorem 1.2. Let X1, . . . ,Xm be Hörmander vector fields of step κ in Rn and
take p ∈ [1,+∞[. Let s ∈ ]0,1[ and consider a commutator Xw of length |w| ≤ κ .
Then, given bounded open sets Ω b Ω0 there is C > 0 such that

[ f ]
W s/|w|,p

Xw (Ω)
:=
(∫

Ω

dx
∫
{t∈[0,1] :etXw (x)∈Ω}

dt
|t|1+ps/|w|

∣∣ f (etXwx)− f (x)
∣∣pdx

)1/p

≤C
(
‖ f‖Lp(Ω0)+

m

∑
j=1
‖X j f‖Lp(Ω0)

)
.

The idea of using anisotropic estimates along different directions in a subel-
liptic context arises naturally in the study of pointwise estimates for weak so-
lutions of degenerate elliptic equations with measurable coefficients and it was
exploited long ago by Franchi and Lanconelli [2] in the setting of the diagonal
vector fields X j = λ j

∂

∂x j
, where j = 1, . . . ,n and λ1, . . . ,λn are suitable functions.

Here we formulate a family of anisotropic inequalities in the setting of Hörman-
der vector fields with their commutators. Again, our techniques do not provide
a proof of the borderline case s = 1.

To motivate Theorem 1.2, let us give a formulation of its L∞ version, starting
from a well known fact. Let X = ∂x+2y∂t anf Y = ∂y−2x∂t be the vector fields
of the Heisenberg group with coordinates (x,y, t). Then, by an easy computa-
tion, we have the exact formula

e−sY e−sX esY esX(x,y, t) = (x,y, t−4s2) = es2[X ,Y ](x,y, t), (6)

for all (z, t) := (x,y, t) ∈ R3 and s > 0. Then, given any regular function f =
f (z, t), we have an estimate of the 1

2 -Hölder seminorm of f on a bounded set Ω:

sup
(z,t)∈Ω, |τ|≤r0

∣∣ f (eτ[X ,Y ](z, t))− f (z, t)
∣∣

|τ|1/2 ≤C sup
(z,t)∈Ω0

(
|X f (z, t)|+ |Y f (z, t)|

)
, (7)
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where Ω0 ⊃Ω and r0 > 0 is small enough.
A natural generalization of (6) to more general vector fields X1, . . . ,Xm would

be a formula of the following form. Let Xw be any commutator of length
|w| ≤ κ constructed from a family X1, . . . ,Xm of Hörmander vector fields of
step κ in Rn. Given a bounded set Ω and Ω0 ⊃Ω there is r0 > 0 and a positive
C such that for all nested commutator Xw := [Xw1 , . . . [Xw`−1 ,Xw`

] . . . ] of length
|w| ∈ {1,2, . . . ,κ}, we have

sup
x∈Ω, |τ|≤r0

| f (eτXwx)− f (x)|
|τ|1/|w|

≤C sup
y∈Ω0

m

∑
j=1
|X j f (y)|. (8)

If we try to prove (8) by generalizations of formula (6), we encounter some
remainders which can not be controlled with elementary methods. However,
estimate (8) does hold as a consequence of the ball-box Theorem presented in
Section 2. See the explanation in Remark 2.4.

We conclude the Introduction by remarking that in this paper, for the sake
of clarity, we consider smooth vector fields satisfying Hörmander condition.
However, by the ball-box Theorem in [9], we expect that all the results of the
present paper can be extended to nonsmooth vector fields of arbitrary step κ ∈N
and with coefficients in some regularity class related with the step κ appearing
in the Hörmander condition.

2. Preliminaries

Consider smooth vector fields X1, . . . ,Xm in Rn. Given a word w = w1 · · ·w` in
the alphabeth {1, . . . ,m}, let us introduce the commutator

Xw := [Xw1 , [Xw2 , . . . [Xw`−1 ,Xw`
] . . . ].

The number |w|= |w1w2 · · ·w`|=: ` is called the length of the commutator Xw.
Let us define the subRiemannian distance

d(x,y) := inf
{

r > 0 : there is γ ∈ Lip((0,1),Rn) with γ(0) = x,γ(1) = y

and γ̇(t) = ∑
1≤ j≤m

u j(t)rX j(γ(t)) with |u(t)|Euc ≤ 1 for a.e. t ∈ [0,1]
}
.

Given a fixed κ ≥ 1, denote by Y1, . . . ,Yq an enumeration of {Xw : 1≤ |w| ≤
κ}, the family of commutators of length at most κ . Let ` j ≤ κ be the length of
Yj. Define the distance ρ

ρ(x,y) := inf
{

r ≥ 0 : there is γ ∈ Lip((0,1),Rn) such that γ(0) = x

γ(1) = y and γ̇(t) =
q

∑
j=1

b j(t)r` jYj(γ(t)) : |b(t)|Euc ≤ 1 for a.e. t ∈ [0,1]
}
.

(9)
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The Hörmander condition of step κ reads as span{Xw(x) : |w| ≤ κ}=Rn for all
x ∈ Rn.

We denote by Bρ(x,r), B(x,r) and BEuc(x,r) the balls of center x and radius
r with respect to ρ , d and the Euclidean distance respectively. Sometimes, to
avoid any confusion, we denote by | · |Euc the Euclidean norm.

Since the vector fields Y1, . . . ,Yq span Rn at any point, it is easy to see that for
all pair of points x,y ∈ Rn, the set of competitors defining ρ(x,y) is nonempty
and then ρ(x,y)<+∞ for any pair of points. Furthermore, an elementary argu-
ment shows that a local estimate of the form ρ(x,y) ≤C|x− y|1/κ holds. Triv-
ially, by definition, we have ρ(x,y) ≤ d(x,y). The classical Chow’s theorem
implies also that for any pair of points x and y ∈Rn the set of competitors defin-
ing d(x,y) is nonempty. Then d(x,y) < ∞. Finally, both ρ and d satisfy the
axioms of a distance.

Ball-box Theorem We recapitulate here the statement of the ball-box Theo-
rem. Let us consider a family of vector fields X1, . . . ,Xm satisfying the Hörman-
der condition of step κ in Rn. Let us fix an enumeration Y1, . . . ,Yq of all the
commutators Xw with length |w| ≤ κ . Let `i be the length of Yi. If the Hörman-
der condition of step κ is fulfilled, then the vector fields Y1, . . . ,Yq span Rn at any
point. Given a multi-index I = (i1, . . . , in) ∈ {1, . . . ,q}n and its corresponding
n−tuple Yi1 , . . . ,Yin , let

λI(x) = det(Yi1(x), . . . ,Yin(x)), and `(I) = `i1 + · · ·+ `in . (10)

The first “ball-box Theorem” was proved by Nagel, Stein and Wainger in [12].
Namely, in that paper, the authors introduced the exponential map related with
an n-tuple I = (i1, . . . , in) ∈ {1, . . . ,q}n in the form

ΦI,x(u) := exp
( n

∑
j=1

u jYi j

)
(x),

where u belongs to a neighborhood of the origin in Rn and exp(Z)(x) or eZx
denotes the value at time t = 1 of the integral curve of the vector field Z starting
from x ∈Rn at t = 0. Since we are interested in local estimates, we may without
loss of generality assume that eZx is well defined in all situations of our interest.

To give the statement of the Nagel–Stein–Wainger ball-box Theorem, we
introduce a definition.

Definition 2.1 (η-maximal triple). Let I = (i1, . . . , in) ∈ {1, . . . ,q}n, x ∈ Rn,
η ∈ ]0,1[ and r > 0. We say that (I,x,r) is η-maximal if

|λI(x)|r`(I) > η max
K∈{1,...,q}n

|λK(x)|r`(K). (11)
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Define also for all I ∈ {1, . . . ,q}n

‖h‖I = max
j=1,...,n

|h j|1/`i j , QI(r) = {h ∈ Rn : ‖h‖I < r}. (12)

Then, in [12] the authors proved that if (I,x,r) is η-maximal, x belongs to a
compact set and r is sufficiently small, then we have the double inclusion

ΦI,x(QI(c1r))⊂ Bρ(x,r)⊂ΦI,x(QI(c2r)), (13)

where the constants c1 and c2 depend on η and on the compact set where x lies.
This estimate together with some Jacobian estimates have the consequence that

Ln(Bρ(x,r))' ∑
K∈{1,...,q}n

|λK(x)|r`(K), (14)

where the equivalence holds for compact sets and sufficiently small r. We have
presented the statements of this part in an informal way. Below we shall give
precise statements of similar results which are needed in this paper.

After [12], the analysis of the maps ΦI was carried out by several authors
in subsequent years. See [1, 15, 16]. Since `(I) ≥ n for all I, we always have
by (14) the local estimate Ln(Bρ(x,r))≤Crn, where x belongs to a bounded set
and r > 0 is sufficiently small.

Approximate exponentials of commutators and the corresponding ball-box
Theorem. In [12], the authors gave also a sketch of the proof of the fact that
the distance ρ is equivalent to d locally. This was done introducing a class of
maps which we are now going to call “approximate exponentials”.

Consider vector fields Xw1 , . . . ,Xw`
, and their commutator Xw, which has

length `= |w|. Let us define the approximate exponential expap(tXw). For τ > 0,
we define, as in [12], [11] and [9],

Cτ(Xw1) = exp(τXw1),

Cτ(Xw1 ,Xw2) = exp(−τXw2)exp(−τXw1)exp(τXw2)exp(τXw1),

...

Cτ(Xw1 , . . . ,Xw`
) =Cτ(Xw2 , . . . ,Xw`

)−1 exp(−τXw1)Cτ(Xw2 , . . . ,Xw`
)exp(τXw1).

Then let

expap(tXw) =

{
Ct1/`(Xw1 , . . . ,Xw`

), if t > 0,

C|t|1/`(Xw1 , . . . ,Xw`
)−1, if t < 0.

(15)

By standard ODE theory, if x belongs to a bounded set Ω0, there is r0 > 0 so
that if |t| ≤ r0 and x ∈Ω0 the approximate exponential is well defined.
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Let us assume that the system X1, . . . ,Xm has step κ ∈ N and introduce the
family Y1, . . . ,Yq of their nested commutators of length at most κ . Define, given
I = (i1, . . . , in) ∈ {1, . . . ,q}n, for x ∈ K and h ∈ Rn, h in a neghborhood of the
origin

EI,x(h) = expap(h1Yi1) · · ·expap(hnYin)(x). (16)

Theorem 2.2 (Ball-box). Let X1, . . . ,Xm be Hörmander vector fields of step κ

in Rn. Fix an open bounded set Ω0 ⊂ Rn. Then there is r0 > 0 such that for
all η ∈ ]0,1[ there are constants εη < 1 <Cη such that for any η-maximl triple
(I,x,r) with r ≤ r0 and x ∈Ω0, we have

(i) the map h 7→ EI,x(h) is one-to-one on the box QI(εηr) defined in (12);
(ii) we have the inclusion

EI,x(QI(εηr))⊇ Bρ(x,C−1
η r); (17)

(iii) The Jacobian of the map EI,x admits the following estimate

C−1
η |λI(x)|r`(I) ≤

∣∣∣det
∂EI,x(h)

∂h

∣∣∣≤Cη |λI(x)|r`(I) for all h ∈ QI(εηr).

Theorem 2.2 has been proved and used in various regularity conditions
in [9–11]. In this paper we will work in the smooth case and we shall choose
always η = 1

2 , to make statements clean.
A first consequence of Theorem 2.2 is the following volume estimate. For

all bounded set Ω⊂ Rn there is r0 > 0 and C > 0 such that

C−1Ln(B(x,r))≤ max
K∈{1,...,q}n

|λK(x)|r`(K) ≤CLn(B(x,r))

for all x ∈Ω and r < r0.
(18)

A couple of further consequences are the estimates

Ln(B(x,r))≤Crn for all x ∈Ω and r < r0;

d(x,y)≤C|x− y|1/κ for all x,y ∈Ω.
(19)

Remark 2.3. Let us observe the following consequence of Theorem 2.2 and
of the construction of the maps EI,x. Under the hypotheses of Theorem 2.2,
for any open bounded set Ω ⊂ Rn there are r0 > 0 and C0 > 0 so that any pair
of points x,y ∈ Ω with |x− y| < r0 can be connected with a piecewise integral
curve of the vector fields ±X1, . . . ,±Xm. The number of pieces is bounded by
an universal algebraic constant M depending on m and κ , while each piece has
length ≤Cρ(x,y). (Recall that by definition we always have ρ(x,y)≤ d(x,y)).

In the following remark, we go back briefly to the discussion of the intro-
duction, concerning estimate (8).
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Remark 2.4. Let Xw be any nested commutator of length |w| ≤ κ constructed
from a family X1, . . . ,Xm of Hörmander vector fields of step κ in Rn. Given a
bounded set Ω and Ω0 c Ω, there is r0 > 0 and a positive C such that

sup
x∈Ω, |τ|≤r0

| f (eτXwx)− f (x)|
|τ|1/|w|

≤C sup
y∈Ω0

m

∑
j=1
|X j f (y)|. (20)

To check (20), it suffices to observe that, by definition of ρ , we have that
eτXw(x) ∈ Bρ(x,2|τ|1/|w|) for all x ∈Rn and τ ∈R. Note explicitly that we must
use here the distance ρ defined using commutators. Then, by Remark 2.3, we
conclude that if x ∈Ω and |τ|< r0 for small r0,

| f (eτXwx)− f (x)| ≤C sup
Ω0

∑
j
|X j f | · |τ|1/|w|.

Informally speaking, if we choose r0 small enough, then Ω0 can be made a small
open neighborhood of Ω.

3. Anisotropic subelliptic estimates
In this section we prove inequality (4) and consequently Theorem 1.1. Namely
we show the local estimate

[ f ]W s,p
d (Ω) ≤C

( m

∑
j=1
‖X ju‖Lp(Ω0)+‖u‖Lp(Ω0)

)
, (21)

for all f ∈C1. Here Ω is bounded, Ω0 ⊃Ω, p ∈ [1,+∞[ and s ∈ ]0,1[.

Remark 3.1. Let us look inequality (21) in the Euclidean case. Roughly speak-
ing, it says that derivatives of order s < 1 in Lp can be estimated with derivatives
of order 1 in Lp. The inequality is essentially trivial. Namely, in order to get the
estimate ∫

Ω×Ω

|x−y|<r0

|u(x)−u(y)|p

|x− y|n+ps dxdy≤C
∫

Ω0

|∇ f (x)|pdx,

where Ω0 is an open neighborhood of Ω depending on r0, it suffices to apply the
fundamental theorem of calculus and then Minkowski inequality∫

Ω

dx
∫ r0

0

dh
|h|n+ps |u(x)−u(x+h)|pdx

=
∫ r0

0

dh
|h|n+ps

∫
Ω

dx
∣∣∣∫ |h|

0

∣∣∣∇ f
(

x+ t
h
|h|

)∣∣∣dt
∣∣∣p

≤
∫ r0

0

dh
|h|n+ps

{∫ |h|
0

dt
[∫

Ω

∣∣∣∇ f
(

x+ t
h
|h|

)∣∣∣pdx
]1/p}p

≤C
∫ r0

0

dh
|h|n+psC|h|p

∫
Ω0

|∇ f (z)|pdz≤C
∫

Ω0

|∇ f |p,
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because the integral in dh converges for s < 1. The argument of the inequalities
above is based on integration of f along the curves t 7→ γ(t) := x+ t h

|h| , which
is not available in the Hörmander setting. The machinery of the approximate
exponentials EI,x makes possible to prove inequality (21) following the scheme
of the chain of inequalities above.

Proof. Before starting the proof, we recall some useful consequences of the
ball-box Theorem for vector fields stated in Section 2. We use below the state-
ment with η = 1

2 of Theorem 2.2 and we let Ĉ :=C1/2 and ε̂ := ε1/2.
Let Ω be a bounded open set and let r0 > 0 be a small number so that The-

orem 2.2 applies. Let us define, given x ∈Ω and I ∈ {1, . . . ,q}n, the set

MI,x :=
{

y ∈ Rn : d(x,y)< r0 and (I,x,Ĉd(x,y)) is
1
2

-maximal
}
.

It is easy to see that the set MI,x is a metric annulus of the form

MI,x =
{

y ∈ Rn : rI,x < d(x,y)< RI,x

}
.

We have defined for all I ∈ {1, . . . ,q}n and x an open set MI,x which can be
empty. Furthermore, different choices of I can give overlapping annuli. Finally,
∪IMI,x = B(x,r0). The radius RI,x satisfies also the condition

|λI(x)|(ĈRI,x)
`(I) ≥ 1

2
max

K∈{1,...,q}n
|λK(x)|(ĈRI,x)

`(K).

Therefore, Theorem 2.2 gives the estimates

1

Ĉ
|λI(x)| ≤

∣∣∣det
∂EI,x(h)

∂h

∣∣∣≤ Ĉ|λI(x)| if ‖h‖I ≤ ε̂ĈRI,x (22)

B(x,RI,x)⊂ EI,x(QI(Ĉε̂RI,x)) (23)

h 7→ EI,x(h) is one-to-one on QI(Ĉε̂RI,x). (24)

Recall again that QI(Ĉε̂RI,x) := {h ∈ Rn : ‖h‖I ≤ ε̂ĈRI,x}. On the set MI,x

we also have a lower estimate on the distance d(x,y) in terms of the variable
h. To get this bound, let us consider a point y ∈ MI,x and choose any number
ρ ∈ ]d(x,y),RI,x[. For any such choice of ρ , we have obviously y∈ B(x,ρ). Fur-
thermore, the triple (I,x,C̃ρ) is 1/2-maximal. Then we can write y = EI,x(h)
for a unique h = E−1

I,x (y) ∈ QI(Ĉε̂ρ). Therefore, given y ∈ B(x,ρ), the unique h
satisfying EI,x(h) = y belongs to QI(Ĉε̂ρ), i.e. satisfies ‖h‖I ≤ Ĉε̂ρ . Thus,

‖h‖I = ‖E−1
I,x (y)‖ ≤ C̃ε̃ρ,

for all y ∈MI,x and ρ ∈ ]d(x,y),RI,x[ = ]d(x,EI,x(h)),RI,x[.
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Letting ρ ↘ d(x,EI,x(h)), we get the useful lower bound

d(x,EI,x(h))≥ (Ĉε̂)−1‖h‖I for all h ∈ E−1
I,x (MI,x). (25)

Let now p ∈ [1,+∞[ and s ∈ ]0,1[. Then we start with the estimate

∫
Ω

dx
∫

B(x,r0)∩Ω

| f (x)− f (y)|p

d(x,y)psLn(B(x,d(x,y)))
dy

≤ ∑
I∈{1,...,q}n

∫
Ω

dx
∫

MI,x∩Ω

| f (x)− f (y)|p

d(x,y)psLn(B(x,d(x,y)))
dy.

By the change of variable y = EI,x(h) ∈MI,x∩Ω, the last integral is

∑
I

∫
Ω

dx
∫

E−1
I,x (MI,x∩Ω)

| f (x)− f (EI,x(h))|p

d(x,EI,x(h))psLn(B(x,d(x,EI,x(h))))

∣∣∣det
∂EI,x(h)

∂h

∣∣∣dh

≤C∑
I

∫
Ω

dx
∫

E−1
I,x (MI,x∩Ω)

| f (x)− f (EI,x(h))|p

‖h‖`(I)+ps
I

dh =: (∗)

where we have used the equivalence Ln(B(x,r)) ' maxK |λK(x)|r`(K), the 1
2 -

maximality of I and estimates (25) and (22). Note also that E−1
I,x (MI,x ∩Ω) ⊂

QI(Ĉε̂RI,x)⊂QI(Ĉε̂r0). In the previous chain of inequalities we denoted E−1
I,x =(

EI,x
∣∣
QI(Ĉε̂RI,x)

)−1

Next recall that we can write in an obvious way

EI,x(h) = expap(h1Yi1) · · ·expap(hnYin) =: γI,x,h(TI(h)), (26)

where the curve t 7→ γI,x,h(t) is parametrized on the interval [0,TI(h)] and by
construction of expap it is a concatenation of integral curves of the vector fields
X1, . . . ,Xm. Furthermore |TI(h)| ≤ C‖h‖I for some absolute constant C. The
map x 7→ γI,x,t is a change of variable by classical properties of flows of ODEs
(see the discussion in [7]) and

C−1 ≤
∣∣∣det

∂γI,x,h(t)
∂x

∣∣∣≤C,

uniformly in x on compact sets, |h|< r0 and t ∈ [0,TI(h)].
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Then, letting |X f |= |(X1 f , . . . ,Xm f )| we get

(∗)≤∑
I

∫
Ω

dx
∫

QI(Ĉε̂RI,x)

dh

‖h‖`(I)+ps
I

∣∣∣∫ TI(h)

0
|X f (γI,x,h(t))|dt

∣∣∣p
≤C∑

I

∫
QI(Ĉε̂r0)

dh

‖h‖`(I)+ps
I

∫
Ω

dx
∣∣∣∫ TI(h)

0
|X f (γI,x,h(t))|dt

∣∣∣p
≤C∑

I

∫
QI(Ĉε̂r0)

dh

‖h‖`(I)+ps
I

{∫ TI(h)

0
dt
[∫

Ω

|X f (γI,x,h(t))|pdx
]1/p}p

≤C∑
I

∫
QI(Ĉε̂r0)

dh

‖h‖`(I)+ps
I

‖h‖p
I

∫
Ω0

|X f (z)|pdz =C
∫

Ω0

|X f |p,

as required. We have used the fact that for all I ∈ {1,2, . . . ,q}n,∫
{‖h‖I<1}

dh

‖h‖`(I)+ps−p
I

< ∞, for all s < 1,

which can be proved by a standard decomposition as a disjoint union of sets of
the form {2−k < ‖h‖I ≤ 2−k+1} with k ∈ N.

4. Estimates along commutators

In this section we prove Theorem 1.2. Namely given Hörmander vector fields
of step κ , s < 1 and 1≤ p < ∞, we show the estimate∫ r0

0

dt
|t|1+ps/|w|

∫
Ω

∣∣ f (etXwx)− f (x)
∣∣pdx≤C

( m

∑
j=1
‖X j f‖Lp(Ω0)+‖ f‖Lp(Ω0)

)p
,

(27)
for any nested commutator Xw with |w| ≤ κ . Here, as usual Ω is a bounded open
set, r0 is a suitable small constant and Ω0 c Ω is an enlarged set. As we already
observed, we do not reach the optimal exponent s = 1. An estimate in the same
spirit was proved by Franchi and Lanconelli in [2, Theorem] for diagonal vector
fields.

The proof of the inequality (27) is an immediate consequence of Lemma 4.1
and of Theorem 1.1.

Lemma 4.1. Let p≥ 1. Given Hörmander vector fields X1, . . . ,Xm of step κ , for
any nested commutator Xw with |w| ≤ κ , for each s ∈ ]0,1[ and for any x0 ∈ Rn

there is a neighborhood Ω of x0 in Rn such that given Ω̃ c Ω there is r0 > 0 and
C > 0 such that∫ r0

0

dt
|t|1+ps/|w|

∫
Ω

∣∣ f (etXwx)− f (x)
∣∣pdx≤C

∫
Ω̃

dx
∫
Ω̃

dy
| f (x)− f (y)|p

d(x,y)psLn(B(x,d(x,y)))

(28)
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for any C1 function f .

This statement was proved in [11] for commutators Xw of length |w| = 1.
Here we provide a sketch of the proof and we show that the argument works for
any commutator Xw of any length 1≤ |w| ≤ κ .

The argument is based on the well known lifting procedure by Rothschild
and Stein, which we now briefly describe. Let X1, . . . ,Xm be vector fields of
step κ at any point of Rn. Let us fix a point x0 ∈ Rn. In [13] it was proved
that there exists a neighborhood U×V of (x0,0) ∈ Rn×Rd =: RN such that on
U×V 3 (x,τ) we can define new vector fields

X̃ j = X j +
d

∑
β=1

a j,β (x,τ)
∂

∂τβ

, where (x,τ) ∈U×V , (29)

which are free up to order κ in U×V . This means that the only linear relations
among commutators of order ≤ κ of the vector fields X̃ j have constant coeffi-
cients in U×V and are given by the antisymmetry and the Jacobi identity. Note
also that N is the dimension of the nilpotent free Lie algebra of step κ with
m generators. However, usually the Lie algebra generated by X̃1, . . . , X̃m is not
nilpotent.

Let us go back to the family Y1, . . . ,Yq introduced in the previous section
as an enumeration of the family Xw as 1 ≤ |w| ≤ κ . Note incidentally that it
is q > N for vector fields of step ≥ 2. For a given Yk = Xw with w = w(k) =
w1w2 . . .w` belonging to such family we define the lifted commutator Ỹj =

[X̃w1 , [X̃w2 , . . . , [X̃w`−1 , X̃w`
] . . . ]].

Up to reordering the commutators Ỹ1, . . . ,Ỹq we can assume that the subfam-
ily of the first N commutators,

Ỹ1 = X̃1,Ỹ2 = X̃2, . . . ,Ỹm = X̃m,Ỹm+1, . . . ,ỸN (30)

are linearly independent. The lifted vector fields define a distance d̃ whose
properties are established in [12, Lemma 3.2] and [6, Lemma 4.4]. Then we get
the following lemma.

Lemma 4.2 (See [11, Lemma 4.3]). Let x0 ∈ Rn and let U and V be the set
arising in the lifting procedure. Given compact sets E ⊂U and H ⊂V , there is
δ0 > 0 and C > 0 such that for all x,y ∈ E with d(x,y)< δ0, we have∫
{(τ,σ)∈H×H : d̃((x,τ),(y,σ))≤δ0}

dτdσ

d̃((x,τ),(y,σ))Q+ps
≤C

1
d(x,y)psLn(B(x,d(x,y)))

(31)
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where Q = `(Ỹ1)+ · · ·+ `(ỸN) is the homogeneous dimension of the free Carnot
group of step κ with m generators. 2

We do not include the proof of Lemma 4.2, whose argument is based on [12,
Lemma 3.2] or [6, Lemma 4.4]. See [11, Lemma 4.3] for the details.

Then we have the following Lemma.

Lemma 4.3. Let Ỹ1, . . . ,Ỹq be the commutators introduced in (30) and let U ×
V ⊂ Rn×Rd = RN be the sets appearing in (29). Then, given s ∈ ]0,1[ and
p ∈ [1,+∞[, fixed open sets G b G̃ b U ×V , and given a commutator Xw with
|w| ≤ κ , there are δ0 > 0 and α > 0 such that∫

G
dξ

∫
{|t|<δ

|w|
0 , eαtXw (ξ )∈G}

dt
|t|1+ps/|w| |u(e

tαXw(ξ ))−u(ξ )|p

≤C
∫

G̃×G̃

|u(ξ )−u(η)|pdξ dη

d̃(ξ ,η)Q+ps
.

In the statement we denoted with ξ = (x,τ) variables in the lifted space
Rn×Rd .

Sketch of the proof of Lemma 4.3. The argument is similar to the one appearing
in [11, Lemma 4.4]. We sketch it, because there are some slight differences of
notation and because here we consider commutators of any step. First of all, in
view of the discussion in [13, p. 272], we can rearrange the choice of the basis
Ỹ1, . . . ,ỸN in (30) in such a way that X̃w = Ỹj for some j ∈ {1, . . . ,N} with ` j =
|w|. Denote by Q := ∑

N
j=1 ` j the homogeneous dimension. Fix then an open set

G∗ such that G b G∗ b G̃ and define the exponential map Φ̃ξ (h) := exp(h1Ỹ1 +

· · ·+ hNỸN)(ξ ). Taking δ0 small enough we may assume that Φ̃ξ (h) ∈ G∗ if

‖h‖=max j≤N |h j|1/` j < δ0. In particular, if α ∈ [0,1] we also have eαh jỸj ξ ∈G∗,
if ‖h‖< δ0. Let us start from the inequality (44) in [11], which reads as∫

G
dξ

∫
{|t|<δ

|w|
0 , eαtX̃w (ξ )∈G}

dt
|t|1+ps/|w| |u(e

tαX̃w(ξ ))−u(ξ )|p

=
∫

G
dξ

∫
{|h j|<δ

` j
0 , eαh jỸ j (ξ )∈G}

dh j

|h j|1+ps/|w| |u(e
h jαỸj(ξ ))−u(ξ )|p

≤C
∫

G
dξ

∫
‖h‖≤δ0

dh
‖h‖Q+ps | f (e

h jαỸ j ξ )− f (ξ )|p = (∗).

2In our notation, the free Carnot group of step κ with m generators has topological dimension
N. The homogeneous dimension Q has the property that LN(Br) = CrQ, where Br is a Carnot–
Carathéodory ball of radius r > 0 centered at any point.
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We used the equivalence

∫
|h j|≤δ

` j
0

ψ(h j)dh j

|h j|1+ps/` j
'
∫
‖h‖<δ0

ψ(h j)dh
‖h‖Q+ps , (32)

valid for all ψ = ψ(h j) nonnegative and measurable, with h = (h1, . . . ,hN),
‖h‖= maxk=1,...,N |hk|1/`k . See [11, (40) and (41)]. To conclude the proof, intro-
ducing the exponential map Φ̃ξ (h) = eh1Ỹ1+···+hNỸN (ξ ), by the triangle inequal-
ity, we have

(∗)≤
∫

G
dξ

∫
‖h‖≤δ0

dh
‖h‖Q+ps | f (Φ̃ξ (h))− f (ξ )|p

+
∫

G
dξ

∫
‖h‖≤δ0

dh
‖h‖Q+ps | f (Φ̃ξ (h))− f (eh jαỸj ξ )|p.

To estimate the first term we just use the change of variable h 7→ Φ̃ξ (h) =: η ,
which is nonsingular because the vector fields Ỹ1, . . . ,ỸN are linearly indepen-
dent. To estimate the second one, we must choose a sufficiently small α > 0
so that, roughy speaking, eh jαỸj(ξ ) stays rather close to ξ and the second term
admits an analogous estimate

(∗)≤
∫

G̃×G̃

|u(ξ )−u(η)|p

d̃(ξ ,η)Q+ps
dξ dη . (33)

See [11] for a detailed explaination.

Proof of Lemma 4.1. We follow the argument of the proof of Proposition 4.2
in [11, p. 237-238]. Let X1, . . . ,Xm be a family of Hörmander vector fields of
step κ ∈ N. Let us choose a commutator Xw with length |w| ≤ κ . Fix x0 ∈ Rn

and introduce the vector fields X̃1, . . . , X̃m on the sets U ×V ⊂ RN appearing
in (29) and (30). Here N and Q are the topological and homogeneous dimension
of the free Carnot group of step κ with m generators. By properties of free Lie
algebras, see [13, p. 272], we may choose the vector fields Ỹ1, . . . ,ỸN in (30) in
the family Ỹ1, . . .Ỹq assuming that X̃w = Ỹj for some j ≤ N with ` j = |w|.

We apply first Lemma 4.3 to a set of the form G = O×H b Õ× H̃ bU×V ,
where H̃ is a small open neighborhood of the origin in RN−n. Recall also that
the function f does not depend on the additional variables in V . Then we get
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the inequality∫
O

dx
∫

|t|<δ
|w|
0 , eαtXw x∈O

dt
|t|1+ps/|w| | f (e

αtXw(x))−u(x)|p

≤C
∫

Õ×H̃

dxdτ

∫
Õ×H̃

dydσ
| f (x)− f (y)|p

d̃((x,τ),(y,σ))Q+ps

=C
∫

Õ×Õ

dxdy| f (x)− f (y)|p
∫

H̃×H̃

dτdσ
1

d̃((x,τ),(y,σ))Q+ps

≤C
∫

Õ×Õ

dxdy
| f (x)− f (y)|p

d(x,y)psLn(B(x,d(x,y)))
,

by Lemma 4.2.
Covering any given open bounded Ω set with a finite family of open sets

O of the form appearing in the discussion above, we obtain the proof of the
inequality (28) on Ω.
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