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SEQUENTIAL EFFICIENCY OPTIMALITY CONDITIONS FOR
MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS VIA

SEQUENTIAL SUBDIFFERENTIAL CALCULUS

M. B. MOUSTAID - M. LAGHDIR - I. DALI - A. RIKOUANE

The purpose of this paper is to establish sequential efficient optimality conditions,
without any constraint qualification, characterizing an efficient solution for multiobjec-
tive fractional programming problem. The approach used in this investigation is based
on sequential subdifferential calculus. By using the same approach, we establish the
standard optimality conditions under a constraint qualification. Finally, we present an
example illustrating the main result of this paper.

1. Introduction

In this paper, we consider the following multiobjective fractional programming problem

(P) inf
x∈C

h(x)∈−Y+

{
f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

}

where (X ,‖.‖X) and (Y,‖.‖Y ) are two Banach spaces, C is a nonempty convex subset of X ,
Y+ is a nonempty closed convex cone of Y, fi, gi : X −→ R, i = 1, . . . , p are proper convex
functions and h : X −→ Y ∪ {+∞Y} is a proper and Y+-convex mapping. Moreover, we
suppose that fi(x)≥ 0 and gi(x)> 0 for all x ∈C∩h−1(−Y+).

Fractional programming problems arise from many applied areas such as portfolio selec-
tion and game theory. So, in this paper, we consider solutions defined as follows: let x be a

Received on December 1, 2019

AMS 2010 Subject Classification: 90C32, 90C46
Keywords: Multiobjective fractional programming; Efficient solution; Subdifferential; Sequential optimality con-
ditions



80 M. B. MOUSTAID - M. LAGHDIR - I. DALI - A. RIKOUANE

feasible point of (P) i.e. x ∈C∩h−1(−Y+). The point x is called an efficient solution of (P)
if there is no x ∈C∩h−1(−Y+) such that

fi(x)
gi(x)

≤ fi(x)
gi(x)

, for all i ∈ {1, . . . , p}

with at least one strict inequality.
In order to investigate optimality conditions for a vector optimization, we often use a

parametric approach in order to formulate a corresponding equivalent scalar convex problem
and one needs to impose some kinds of constraint qualifications but the constraint qualifi-
cations do not always hold for finite-dimensional convex programs and frequently fail for
infinite-dimensional convex programs. These drawbacks lead many authors to derive op-
timality conditions for convex optimization problems without any constraint qualifications
(see [2–4, 6, 8, 10–13]).

The purpose of this paper is to establish sequential optimality conditions in the absence
of any constraint qualification for multiobjective fractional optimization problems character-
izing completely an efficient solution by using a new approach based on sequential subdif-
ferential calculus.

The paper is structured as follows. In Section 2, we recall some basic definitions, nota-
tions from convex analysis and auxiliary results describing important properties of conjugate
functions and subdifferentials that will be used later in the paper. Section 3, is devoted to pro-
vide sequential subdifferential calculus rule for the sums of p (p ≥ 2) scalar functions and
the composition of a scalar and vector mapping under convexity and lower semicontinuity
hypotheses without assuming qualification conditions. In Section 4, we develop sequential
efficiency optimality conditions for multiobjective fractional programming problem (P). In
Section 5, we establish the standard optimality conditions under a constraint qualification
and we present an example illustrating the main result of this paper.

2. Preliminaries

Let (X ,‖.‖X) and (Y,‖.‖Y ) be two Banach spaces and (X∗,‖.‖X∗) and (Y ∗,‖.‖Y ∗) be their
topological dual spaces paired in duality by 〈., .〉. Let Y+ ⊂ Y be a nontrivial convex cone.
The positive polar cone Y ∗+ of Y+ is the set of y∗ ∈ Y ∗ such that y∗(Y+)⊂ R+. The space Y is
ordered by the relation

y1, y2 ∈ Y, y1 ≤Y+ y2⇐⇒ y2− y1 ∈ Y+

and we adjoin to Y an element +∞Y , which is the supremum with respect to ≤Y+ . It holds
that y≤Y+ +∞Y for every y ∈ Y . The algebraic operations of Y are extended as follows

y+(+∞Y ) = (+∞Y )+ y =+∞Y , α.(+∞Y ) = +∞Y , ∀y ∈ Y, ∀α > 0.

For a given mapping f : X −→ Y ∪{+∞Y}, the sets

dom f := {x ∈ X : f (x) ∈ Y},
epi f := {(x,y) ∈ X×Y : f (x)≤Y+ y},
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are called respectively the effective domain and the epigraph of f . We say that f is proper if
its domain is a nonempty set. The mapping f is said to be Y+-convex if, for every λ ∈ [0,1],
x1, x2 ∈ X , we have f (λx1 +(1−λ )x2)≤Y+ λ f (x1)+(1−λ ) f (x2). Further, f is said to be
Y+-epi-closed, if its epigraph epi f is closed (see [1]).
A function g : Y −→ R∪{+∞} is said to be Y+−nondecreasing, if for each y1,y2 ∈ Y we
have

y1 ≤Y+ y2 =⇒ g(y1)≤ g(y2).

The composite function g◦ f : X −→ R∪{+∞} is defined by

(g◦ f )(x) :=


g( f (x)) if x ∈ domf

+∞ otherwise.

Let f : X −→ R∪{+∞} be a given function. The subdifferential of f at a point x ∈ dom f
defined as follows

∂ f (x) := {x∗ ∈ X∗ : 〈x∗,x− x〉+ f (x)≤ f (x), ∀x ∈ X}.

The ε-subdifferential (ε ≥ 0) of f at a point x ∈ dom f is given by

∂ε f (x) := {x∗ ∈ X∗ : 〈x∗,x− x〉+ f (x)− ε ≤ f (x), ∀x ∈ X}.

The conjugate function of f is defined by

f ∗ : X∗ −→ R
x∗ 7−→ f ∗(x∗) := sup

x∈X
{〈x∗,x〉− f (x)}.

The scalar indicator function of a nonempty subset C ⊂ X , denoted by δC, is defined as
δC : X −→ R∪{+∞}

δC(x) :=


0 if x ∈C

+∞ otherwise.

The normal cone of C at x is defined by

N(x,C) := {x∗ ∈ X∗ : 〈x∗,x− x〉 ≤ 0, ∀x ∈C}.

Lemma 2.1. Let y∗ ∈ Y ∗ and z∗ ∈ Z∗. We have

i) If y ∈ Y+, then

y∗ ∈ N(y,Y+)⇐⇒

{
y∗ ∈ −Y ∗+
〈y∗,y〉= 0.

ii) If y ∈ −Y+, then

y∗ ∈ N(y,−Y+)⇐⇒

{
y∗ ∈ Y ∗+
〈y∗,y〉= 0.
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iii) If y ∈ Y+ and z ∈ Z+ then

(y∗,z∗) ∈ N((y,z),Y+×Z+)⇐⇒

{
y∗ ∈ −Y ∗+, z∗ ∈ −Z∗+
〈y∗,y〉+ 〈z∗,z〉= 0.

iv) If y ∈ −Y+ and z ∈ −Z+ then

(y∗,z∗) ∈ N((y,z),−(Y+×Z+))⇐⇒

{
y∗ ∈ Y ∗+, z∗ ∈ Z∗+
〈y∗,y〉+ 〈z∗,z〉= 0.

Proof. i) We have
y∗ ∈ N(y,Y+)⇐⇒ 〈y∗,y− y〉 ≤ 0, ∀y ∈ Y+. (1)

As Y+ is a convex cone, we have for any y ∈Y+, y+y ∈Y+ and hence it follows from (1) that
〈y∗,y〉 ≤ 0, for any y ∈Y+ i.e. y∗ ∈−Y ∗+. By taking in (1) y := 0Y , we obtain 0≤ 〈y∗,y〉, then
we have 〈y∗,y〉= 0. Conversely, let y∗ ∈ −Y ∗+, we have{

〈y∗,y〉 ≤ 0, ∀y ∈ Y+
−〈y∗,y〉= 0.

By adding them up, we have 〈y∗,y− y〉 ≤ 0, for any y ∈ Y+ i.e. y∗ ∈ N(y,Y+).
ii) It is immediate from i) by taking the convex cone −Y+ instead of Y+.
iii) and iv) follow by using the same arguments used in the proof of i).

Let us recall a version of the Brondsted-Rockafellar theorem which was established in
[13].

Theorem 2.2. Let X be a Banach space and f : X −→ R∪{+∞} be a proper, convex and
lower semicontinuous function. Then for any real ε > 0 and x∗ ∈ ∂ε f (x), there exist x∈ dom f
and x∗ ∈ ∂ f (x) such that

i) ‖x− x‖ ≤
√

ε,

ii) ‖x∗− x∗‖ ≤
√

ε,

iii) | f (x)− f (x)−〈x∗,x− x〉| ≤ 2ε.

In what follows, we will need two important contributions by Hiriart-Urruty et al.[7].
The first is given by the following proposition

Proposition 2.3. ([7]) Let f be a proper, convex and lower semicontinuous function, assume
that x ∈ dom f and ε > 0, then we have

δ
∗
∂ε f (x)(d) = inf

t>0

{
f (x+ td)− f (x)+ ε

t

}
.
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The second expresses without qualification condition, the subdifferential ∂( f1+ f2)(x̄) of
two convex proper and lower semicontinuous functions where x̄ ∈ dom f1∩dom f2, in terms
of the approximate subdifferentials of f1 and f2, given by

∂ ( f1 + f2)(x̄) =
⋂
ε>0

clw∗ (∂ε f1(x)+∂ε f2(x))

where the notation clw∗ stands for the weak star closure.

In order to establish our main result, we will need to extend the above formula to the case
of p functions (p≥ 2).

Theorem 2.4. Let X be a locally convex vector space and f1, . . . , fp : X −→ R∪{+∞} be p

proper, convex and lower semicontinuous functions. Let x ∈
p⋂

i=1

dom fi, then we have

∂ (
p

∑
i=1

fi)(x̄) =
⋂
ε>0

clw∗ (∂ε f1(x)+ . . .+∂ε fp(x)) .

Proof. We use the same arguments used in the proof of [Theorem 3.1, [7]] for the case of two

convex functions. Suppose that x∗ ∈ ∂

(
p

∑
i=1

fi

)
(x̄) and x∗ /∈

⋂
ε>0

clw∗ (∂ε f1(x)+ . . .+∂ε fp(x))

then there exists ε > 0 such that x∗ /∈ clw∗ (∂ε f1(x)+ . . .+∂ε fp(x)) . By virtue of Hahn-
Banach theorem’s, there exists d ∈ X such that

< x∗,d > > δ
∗
clw∗ (∂ε f1(x)+...+∂ε fp(x)) (d) =

p

∑
i=1

δ
∗
∂ε fi(x̄)(d).

It follows from Proposition 2.3 that there exist strictly positive numbers t1, . . . , tp such that

< x∗,d > >
p

∑
i=1

fi(x̄+ tid)− fi(x̄)+ ε

ti
.

By taking η = min
1≤i≤p

ti and τ = max
1≤i≤p

ti, we have

fi(x̄+ tid)− f (x̄)
ti

≥ fi(x̄+ηd)− f (x̄)
η

and
ε

η
≥ ε

ti
, ∀i ∈ {1, . . . , p}.

Hence

< x∗,d > >
p

∑
i=1

fi(x̄+ηd)− fi(x̄)
η

+
pε

τ
,

which yields

< x∗,ηd > >
p

∑
i=1

fi(x̄+ηd)−
p

∑
i=1

fi(x̄),
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this contradicts the fact that x∗ ∈ ∂ (
p

∑
i=1

fi)(x̄).

The reverse inclusion is easy to prove, since it suffices to observe that

∂ε f1(x)+ . . .+∂ε fp(x)⊂ ∂ f1(x)+ . . .+∂ fp(x)⊂ ∂(
p

∑
i=1

fi)(x)

for any ε > 0 and ∂(
p

∑
i=1

fi)(x) is weak star closure. The proof is then complete.

Remark 2.5. When X is a reflexive Banach space and as ∂ε f (x) is convex, the above theorem
holds if we take the closure of the convex set

∂ε f1(x)+ . . .+∂ε fp(x)

with respect to the norm closure cl‖.‖X∗ instead of the weak star closure clw∗ .

3. Sequential subdifferential calculus

In this section, without considering any qualification condition, we establish sequential for-

mula for the subdifferential of the convex function (
p

∑
i=1

fi +g◦h) in terms of the subdiffer-

entials of the data functions at nearby points, where fi : X −→ R∪{+∞} (i = 1, . . . , p) are
proper convex functions, g : Y −→R∪{+∞} is a proper convex and Y+-nondecreasing func-
tion and h : X −→ Y ∪{+∞Y} is a proper and Y+-convex mapping. On X ×Y we use the

norm ‖ (x,y) ‖X×Y=
√
‖ x ‖2

X + ‖ y ‖2
Y , for (x,y) ∈ X ×Y. Similarly, we define the norm on

X∗×Y ∗. Let us consider the following auxiliary functions defined by

Fi : X×Y −→ R∪{+∞}
(x,y) −→ Fi(x,y) := fi(x),

(i = 1, . . . , p)

G : X×Y −→ R∪{+∞}
(x,y) −→ G(x,y) := g(y),

H : X×Y −→ R∪{+∞}
(x,y) −→ H(x,y) := δepih(x,y).

Lemma 3.1. ([9]) For any (x,y) ∈ (dom fi×domg)∩ epih, (i = 1, . . . , p). We have

i) ∂Fi(x,y) = ∂ fi(x)×{0}, (i = 1, . . . , p).

ii) ∂G(x,y) = {0}×∂g(y).
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iii)

(x∗,y∗) ∈ ∂H(x,y)⇐⇒


(x,y) ∈ epih

x∗ ∈ ∂(−y∗ ◦h)(x)

y∗ ∈ N(y−h(x),Y+).

Theorem 3.2. Let X and Y be two reflexive Banach spaces. Let f1, . . . , fp : X −→R∪{+∞}
be p proper, convex and lower semicontinuous functions, g : Y −→ R∪{+∞} be proper,
convex, lower semicontinuous and Y+-nondecreasing function and h : X −→ Y ∪ {+∞Y}

be proper, Y+-convex and Y+-epi-closed mapping. Let x ∈ (
p⋂

i=1

dom fi)∩domh∩h−1(domg).

Then, x∗ ∈ ∂

(
p

∑
i=1

fi +g◦h

)
(x) if and only if there exist xi,n ∈ dom fi, x∗i,n ∈ X∗ (i = 1, . . . , p),

yn ∈ domg, (un,vn) ∈ epih, u∗n ∈ X∗, y∗n ∈ Y ∗ and v∗n ∈ −Y ∗+, satisfying

xi,n
‖.‖X−−→ x (i = 1, . . . , p), un

‖.‖X−−→ x, yn
‖.‖Y−−→ h(x), vn

‖.‖Y−−→ h(x)

x∗i,n ∈ ∂ fi(xi,n) (i = 1, . . . , p), y∗n ∈ ∂g(yn) u∗n ∈ ∂(−v∗n ◦h)(un),

〈v∗n,h(un)− vn〉= 0

and 

(
p

∑
i=1

x∗i,n)+u∗n
‖.‖X∗−−−→ x∗, y∗n + v∗n

‖.‖Y∗−−−→ 0

fi(xi,n)−〈x∗i,n,xi,n− x〉 −→ fi(x) (i ∈ {1, . . . , p})
g(yn)−〈y∗n,yn−h(x)〉 −→ g(h(x))

〈u∗n,un− x〉+ 〈v∗n,vn−h(x)〉 −→ 0.

Proof. (=⇒) For any x ∈ X , one has(
p

∑
i=1

fi +g◦h

)
(x) = inf

y∈Y

{
p

∑
i=1

Fi(x,y)+G(x,y)+H(x,y)

}
.

Then, it is not difficult to see for x ∈ (
p⋂

i=1

dom fi)∩domh∩h−1(domg), that

x∗ ∈ ∂

(
p

∑
i=1

fi +g◦h

)
(x)⇐⇒ (x∗,0) ∈ ∂(

p

∑
i=1

Fi +G+H)(x,h(x)). (2)
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The functions Fi (i = 1, . . . , p) and G are proper, convex and lower semicontinuous and as
epih is nonempty, convex and closed, it follows that H is proper, convex and lower semi-

continuous. The condition x ∈ (
p⋂

i=1

dom fi)∩domh∩h−1(domg) can be written equivalently

as (x,h(x)) ∈ (
p⋂

i=1

domFi)∩ domG∩ domH. Thus, the functions Fi (i = 1, . . . , p), G and H,

satisfy together all the assumptions of Theorem 2.4 and hence it follows from (2) that

(x∗,0) ∈
⋂

n∈N∗
cl‖.‖X∗×Y∗

{
∂ 1

n
F1(x,h(x))+...+∂ 1

n
G(x,h(x))+∂ 1

n
H(x,h(x))

}
and therefore, there exist (x∗i,n,y

∗
i,n) ∈ ∂ 1

n
Fi(x,h(x)) (i = 1, . . . , p), (x∗n,y

∗
n) ∈ ∂ 1

n
G(x,h(x)) and

(u∗n,v
∗
n) ∈ ∂ 1

n
H(x,h(x)), satisfying

p

∑
i=1

(x∗i,n,y
∗
i,n)+(x∗n,y

∗
n)+(u∗n,v

∗
n)
‖.‖X∗×Y∗−−−−−→ (x∗,0). (3)

According to Theorem 2.2, there exist (xi,n,yi,n) ∈ domFi (i = 1, . . . , p), (xn,yn) ∈ domG,
(un,vn) ∈ domH, (x∗i,n,y

∗
i,n), (x

∗
n,y
∗
n), (u

∗
n,v
∗
n) ∈ X∗×Y ∗ such that

(x∗i,n,y
∗
i,n) ∈ ∂Fi(xi,n,yi,n), (x∗n,y

∗
n) ∈ ∂G(xn,yn), (u∗n,v

∗
n) ∈ ∂H(un,vn) (4)

‖ (xi,n,yi,n)− (x,h(x)) ‖X×Y≤
1√
n

(5)

‖ (xn,yn)− (x,h(x)) ‖X×Y≤
1√
n

(6)

‖ (un,vn)− (x,h(x)) ‖X×Y≤
1√
n

(7)

‖ (x∗i,n,y∗i,n)− (x∗i,n,y
∗
i,n) ‖X∗×Y ∗≤

1√
n

(8)

‖ (x∗n,y∗n)− (x∗n,y
∗
n) ‖X∗×Y ∗≤

1√
n

(9)

‖ (u∗n,v∗n)− (u∗n,v
∗
n) ‖X∗×Y ∗≤

1√
n

(10)

| Fi(xi,n,yi,n)−〈(x∗i,n,y∗i,n),(xi,n,yi,n)− (x,h(x))〉−Fi(x,h(x)) |≤
2
n

(11)

| G(xn,yn)−〈(x∗n,y∗n),(xn,yn)− (x,h(x)〉−G(x,h(x)) |≤ 2
n

(12)

| H(un,vn)−〈(u∗n,v∗n),(un,vn)− (x,h(x))〉−H(x,h(x)) |≤ 2
n
. (13)

By applying Lemma 3.1, the expression (4) can be expressed by means of data functions fi,
g and h as follow 

x∗i,n ∈ ∂ fi(xi,n), y∗i,n = 0, (i = 1, . . . , p)

y∗n ∈ ∂g(yn), x∗n = 0

u∗n ∈ ∂(−v∗n ◦h)(un), v∗n ∈ N(vn−h(un)),Y+).
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By letting n−→+∞, we get from (5), (6), (7), (11), (12), (13) that
xi,n

‖.‖X−−→ x (i = 1, . . . , p), un
‖.‖X−−→ x, yn

‖.‖Y−−→ h(x), vn
‖.‖Y−−→ h(x)

fi(xi,n)−〈x∗i,n,xi,n− x〉 −→ fi(x) (i = 1, . . . , p)

g(yn)−〈y∗n,yn−h(x)〉 −→ g(h(x))

〈u∗n,un− x〉+ 〈v∗n,vn−h(x)〉 −→ 0.

Moreover, since

‖
p

∑
i=1

x∗i,n +u∗n− x∗‖X∗

= ‖
p

∑
i=1

x∗i,n−
p

∑
i=1

x∗i,n +u∗n−u∗n− x∗n + x∗n +
p

∑
i=1

x∗i,n +u∗n− x∗‖X∗

≤
p

∑
i=1
‖x∗i,n− x∗i,n‖X∗+‖u∗n−u∗n‖X∗+‖

p

∑
i=1

x∗i,n + x∗n +u∗n− x∗‖X∗+‖x∗n‖X∗ ,

and

‖y∗n + v∗n‖Y ∗ = ‖y∗n− y∗n + v∗n− v∗n−
p

∑
i=1

y∗i,n +
p

∑
i=1

y∗i,n + y∗n + v∗n‖Y ∗

≤ ‖y∗n− y∗n‖Y ∗+‖v∗n− v∗n‖Y ∗+
p

∑
i=1
‖y∗i,n‖Y ∗+‖

p

∑
i=1

y∗i,n + y∗n + v∗n‖Y ∗ ,

it follows from (8), (9) and (10), by letting n−→+∞, that

(
p

∑
i=1

x∗i,n)+u∗n
‖.‖X∗−−−→ x∗, y∗n + v∗n

‖.‖Y∗−−−→ 0.

By applying Lemma 2.1 to v∗n ∈ N(vn−h(un),Y+), we get

v∗n ∈ −Y ∗+, 〈v∗n,h(un)− vn〉= 0,

and hence we obtain the desired result.
(⇐=) Assume that the preceding conditions holds. Then, we have

〈x∗i,n,x− xi,n〉+ fi(xi,n) ≤ fi(x), ∀x ∈ X , (i = 1, . . . , p)

〈y∗n,y− yn〉+g(yn) ≤ g(y), ∀y ∈ Y

〈u∗n,u−un〉− (v∗n ◦h)(un) ≤ −(v∗n ◦h)(u), ∀u ∈ X

〈v∗n,h(un)− vn〉 = 0.

By summing the terms of the above inequalities, we obtain
p

∑
i=1
〈x∗i,n,x− xi,n〉 + 〈y∗n,y− yn〉+ 〈u∗n,u−un〉+ 〈v∗n,h(un)− vn〉

+
p

∑
i=1

fi(xi,n)+g(yn)− (v∗n ◦h)(un)

≤
p

∑
i=1

fi(x)+g(y)− (v∗n ◦h)(u), ∀x,u ∈ X , ∀y ∈ Y.
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The above inequality may be rewritten as

p

∑
i=1

[ fi(xi,n)−〈x∗i,n,xi,n− x〉] + g(yn)−〈y∗n,yn−h(x)〉 (14)

− [〈u∗n,un− x〉+ 〈v∗n,vn−h(x)〉]

+
p

∑
i=1
〈x∗i,n,x− x〉+ 〈y∗n,y−h(x)〉+ 〈u∗n,u− x〉

+ 〈v∗n,h(un)−h(x)〉+(v∗n ◦h)(u)− (v∗n ◦h)(un)

≤
p

∑
i=1

fi(x)+g(y), ∀x,u ∈ X , ∀y ∈ Y.

By taking in (14) u = x and y = h(x), we obtain

p

∑
i=1

[ fi(xi,n)−〈x∗i,n,xi,n− x〉]+g(yn)−〈y∗n,yn−h(x)〉−〈u∗n,un− x〉

+〈v∗n,vn−h(x)〉+ 〈
p

∑
i=1

x∗i,n +u∗n,x− x〉+ 〈y∗n + v∗n,h(x)−h(x)〉

≤
p

∑
i=1

fi(x)+g(h(x)), ∀x ∈ X .

Thus, by taking the limit in both terms (n−→+∞) of the above inequality, we deduce that

〈x∗,x− x〉+
p

∑
i=1

fi(x)+g(h(x))≤
p

∑
i=1

fi(x)+g(h(x)), ∀x ∈ X ,

i.e.

x∗ ∈ ∂

(
p

∑
i=1

fi +g◦h

)
(x).

The proof is complete.

4. Sequential efficient optimality conditions

In this section, by applying the previous results we present, without any constraint qual-
ification, sequential efficient necessary and sufficient optimality conditions characterizing
completely an efficient solution for multiobjective fractional programming problem (P). The
following notation will be considered in what follows

νi := fi(x)
gi(x)

.

We associate to problem (P) the scalar convex minimization problem (x ∈ X)

(Sx) inf
x∈C∩S(x)
h(x)∈−Y+

p

∑
i=1

( fi(x)−νigi(x))
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where
S(x) := {x ∈ X : fi(x)−νigi(x)≤ 0, ∀i ∈ {1, , . . . , p}}.

We will need the following lemma

Lemma 4.1. A point x ∈ C∩ h−1(−Y+) is an efficient solution of (P) if and only if x is a
solution of (Sx).

Proof. (⇐=) Assume that x is not an efficient solution of (P), then there exists x ∈ C ∩
h−1(−Y+) such that

fi(x)
gi(x)

≤ fi(x)
gi(x)

, ∀i ∈ {1, . . . , p}, (15)

f j(x)
g j(x)

<
f j(x)
g j(x)

for some j ∈ {1, . . . , p}. (16)

Since gi(x)> 0, it follows from (15) and (16) that
fi(x)−νigi(x)≤ 0 = fi(x)−νigi(x), ∀i ∈ {1, , . . . , p}

f j(x)−ν jg j(x)< 0 = f j(x)−ν jg j(x), for some j ∈ {1, . . . , p},

which means that x ∈ S(x) and adding them up, we get
p

∑
i=1

[ fi(x)−νigi(x)]<
p

∑
i=1

[ fi(x)−νigi(x)]

this leads to a contradiction.

(=⇒) Conversely, assume that x is not a solution of (Sx). Then, there exists x ∈C∩ S(x)∩
h−1(−Y+) such that

p

∑
i=1

[ fi(x)−νigi(x)]< 0 =
p

∑
i=1

[ fi(x)−νigi(x)]. (17)

Using the fact that x ∈ S(x) we have fi(x)−νigi(x)≤ 0, for any i ∈ {1, . . . , p} and according
to (17), it follows that there exists some j ∈ {1, . . . , p} such that f j(x)− ν jg j(x) < 0. As
gi(x)> 0, we obtain 

fi(x)
gi(x)
≤ fi(x)

gi(x)
, ∀i ∈ {1, . . . , p}

f j(x)
g j(x)

<
f j(x)
g j(x)

for some j ∈ {1, . . . , p}

x ∈C∩h−1(−Y+).

This contradicts the fact that x is an efficient solution of (P).
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Using Theorem 3.2 and Lemma 4.1, we obtain the following result

Theorem 4.2. Let X and Y be two reflexive Banach spaces. Let h : X −→ Y ∪{+∞Y} be a
proper, Y+-convex and Y+-epi-closed mapping. Let fi and −gi : X −→ R be 2p convex and
lower semicontinuous functions such that fi(x)≥ 0 and gi(x)> 0 for any x ∈C∩h−1(−Y+)
(i = 1, . . . , p). Then, x ∈ C ∩ h−1(−Y+) is an efficient solution of (P) if and only if there
exist xi,n ∈ dom fi = X , wi,n ∈ dom[νi(−gi)] = X , cn ∈ domδC =C, x∗i,n ∈ X∗, w∗i,n ∈ X∗, (i =
1, . . . , p), c∗n ∈ X∗, yn ∈ −Y+, (α1,n, . . . ,αp,n) ∈ −Rp

+, (un,vn) ∈ epih, (β1,n, . . . ,βp,n) ∈ Rp,
u∗n ∈ X∗, y∗n ∈ Y ∗+, (γ1,n, . . . ,γp,n) ∈ Rp

+, v∗n ∈ −Y ∗+, and (λ1,n, . . . ,λp,n) ∈ −Rp
+, satisfying

xi,n
‖.‖X−−→ x, wi,n

‖.‖X−−→ x, cn
‖.‖X−−→ x, un

‖.‖X−−→ x, (i = 1, . . . , p)

yn
‖.‖Y−−→ h(x), vn

‖.‖Y−−→ h(x), αi,n −→ 0, βi,n −→ 0 (i = 1, . . . , p)

x∗i,n ∈ ∂ fi(xi,n), w∗i,n ∈ ∂(νi(−gi))(wi,n), c∗n ∈ N(cn,C), (i = 1, . . . , p)

〈y∗n,yn〉+
p

∑
i=1

γi,nαi,n = 0, u∗n ∈ ∂(−v∗n ◦h−
p

∑
i=1

λi,n fi +
p

∑
i=1

λi,nνigi)(un)

(v∗n ◦h)(un)+
p

∑
i=1

λi,n( fi(un)−νigi(un)−βi,n) = 0

and



p

∑
i=1

x∗i,n +
p

∑
i=1

w∗i,n + c∗n +u∗n
‖.‖X∗−−−→ 0, y∗n + v∗n

‖.‖Y∗−−−→ 0, λi,n + γi,n −→ 0 (i = 1, . . . , p)

fi(xi,n)−〈x∗i,n,xi,n− x〉 −→ fi(x) (i = 1, . . . , p)

νi(−gi)(wi,n)−〈w∗i,n,wi,n− x〉 −→ νi(−gi)(x) (i = 1, . . . , p)

〈c∗n,cn− x〉 −→ 0

〈y∗n,yn−h(x)〉+
p

∑
i=1

γi,nαi,n −→ 0,

〈u∗n,un− x〉+ 〈v∗n,vn−h(x)〉+
p

∑
i=1

λi,nβi,n −→ 0.

Proof. By virtue of Lemma 4.1, x is an efficient solution of (P) if and only if x is a solution
of (Sx). The product cone Y+×Rp

+ induce a partial preorder on the product space Y×Rp

defined by: (y1,α1, . . . ,αp), (y2,β1, . . . ,βp) ∈ Y×Rp

(y1,α1, . . . ,αp)≤(Y+×Rp
+)

(y2,β1, . . . ,βp)⇐⇒
{

y1 ≤Y+ y2
αi ≤ βi, ∀i = 1, . . . , p.
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We adjoint to Y ×Rp an element +∞Y×Rp which is the supremum with respect to ≤Y×Rp .
By introducing the following auxiliary mapping

H : X −→ (Y ×Rp)∪{+∞Y×Rp}
x −→ H(x) := (h(x), f1(x)−ν1g1(x), . . . , fp(x)−νpgp(x)),

the problem (Px) may be written equivalently as

inf
x∈C

H(x)∈−(Y+×Rp
+)

p

∑
i=1

( fi(x)−νigi(x)).

By using the scalar indicator functions δC and δ−(Y+×Rp
+)
, we transform the problem (Px) into

an unconstrained minimization problem

inf
x∈X

(
p

∑
i=1

fi +
p

∑
i=1

νi(−gi)+δC +δ−(Y+×Rp
+)
◦H)(x)

and hence x is an efficient solution of (P) if and only if

0 ∈ ∂ (
p

∑
i=1

fi +
p

∑
i=1

νi(−gi)+δC +δ−(Y+×Rp
+)
◦H)(x). (18)

Let us consider the following scalar functions li : X −→ R∪ {+∞}, (i = 1, . . . ,2p + 1),
defined by

li(x) :=


fi(x) if i ∈ {1, . . . , p}
νi−p(−gi−p(x)) if i ∈ {p+1, . . . ,2p}
δC(x) if i = 2p+1.

By means of these notations we can write

(18)⇐⇒ 0 ∈ ∂

(
2p+1

∑
i=1

li +δ−(Y+×Rp
+)
◦H

)
(x).

We endow the product space X×Y ×Rp with the norm

‖ (x,y,α1, . . . ,αp) ‖:=

√
‖ x ‖2

X + ‖ y ‖2
Y +(

p

∑
i=1

α
2
i )

1
2 ,

for (x,y,α1, . . . ,αp) ∈ X ×Y ×Rp. Let us note that the scalar functions li (i = 1, . . . ,2p+1)
are proper, convex and lower semicontinuous since C is a nonempty convex closed subset of
X , fi and −gi are proper, convex and lower semicontinuous. Furthermore, by using the fact
that epih is closed, it is easy to check that epiH is a closed subset of X×Y×Rp. Let us recall
that the indicator function δ−(Y+×Rp

+)
is (Y+×Rp

+)-nondecreasing (see [5]) and convex and as
H is (Y+×Rp

+)-convex, it follows that all the assumptions of Theorem 3.2 are satisfied, hence
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xi,n ∈ domli, x∗i,n ∈X∗, (i= 1, . . . ,2p+1), (yn,α1,n, . . . ,αp,n)∈ domδ−(Y+×Rp
+)
=−(Y+×Rp

+),
(un,vn,β1,n, . . . ,βp,n) ∈ epiH, u∗n ∈ X∗, (y∗n,γ1,n, . . . ,γp,n) ∈ Y ∗×Rp and (v∗n,λ1,n, . . . ,λp,n) ∈
−(Y ∗+×Rp

+), satisfying

xi,n
‖.‖X−−→ x, un

‖.‖X−−→ x, yn
‖.‖Y−−→ h(x), vn

‖.‖Y−−→ h(x), (i = 1, . . . ,2p+1)

αi,n −→ 0, βi,n −→ 0 (i = 1, . . . , p)

x∗i,n ∈ ∂li(xi,n), (i = 1, . . . ,2p+1), (19)

(y∗n,γ1,n, . . . ,γp,n) ∈ N
(
(yn,α1,n, . . . ,αp,n),−(Y+×Rp

+)
)

(20)

u∗n ∈ ∂ (−(v∗n,λ1,n, . . . ,λp,n)◦H)(un) (21)

〈(v∗n,λ1,n, . . . ,λp,n),H(un)− (vn,β1,n, . . . ,βp,n)〉= 0

and



2p+1

∑
i=1

x∗i,n +u∗n
‖.‖X∗−−−→ 0, y∗n + v∗n

‖.‖Y∗−−−→ 0, λi,n + γi,n −→ 0 (i = 1, . . . , p)

li(xi,n)−〈x∗i,n,xi,n− x〉 −→ li(x), (i = 1, . . . ,2p+1) (22)

〈y∗n,yn−h(x)〉+
p

∑
i=1

γi,nαi,n −→ 0,

〈u∗n,un− x〉+ 〈v∗n,vn−h(x)〉+
p

∑
i=1

λi,nβi,n −→ 0.

For each i ∈ {1, . . . ,2p+ 1} the conditions xi,n ∈ domli, (19) and (22) can be rewritten by
means of data functions fi, gi (i = 1, . . . , p) and δC as follow

xi,n ∈ domli⇐⇒


xi,n ∈ dom fi = X if i ∈ {1, . . . , p}
wi,n := xi+p,n ∈ dom(νi(−gi)) = X if i ∈ {1, . . . , p}
cn := x2p+1,n ∈ domδC =C if i = 2p+1.

(19)⇐⇒


x∗i,n ∈ ∂ fi(xi,n) if i ∈ {1, . . . , p}
w∗i,n := x∗i+p,n ∈ ∂(νi(−gi))(wi,n) if i ∈ {1, . . . , p}
c∗n := x∗2p+1,n ∈ ∂δC(cn) = N(cn,C) if i = 2p+1
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and

(22)⇐⇒


fi(xi,n)−〈x∗i,n,xi,n− x〉 −−−→

n7−→+∞
fi(x) if i ∈ {1, . . . , p}

νi(−gi)(wi,n)−〈w∗i,n,wi,n− x〉 −−−→
n7−→+∞

νi(−gi)(x) if i ∈ {1, . . . , p}

〈c∗n,cn− x〉 −−−→
n7−→+∞

0 if i = 2p+1.

The condition (21) is equivalent to

u∗n ∈ ∂

(
−v∗n ◦h−

p

∑
i=1

λi,n fi +
p

∑
i=1

λi,nνigi

)
(un).

From Lemma 2.1, the condition (20) may be rewritten as
y∗n ∈ Y ∗+, (γ1,n, . . . ,γp,n) ∈ Rp

+

〈y∗n,yn〉+
p

∑
i=1

γi,nαi,n = 0

which completes the proof.

5. Optimality conditions of problem (P) under a constraint qualification

In order to establish the standard necessary and sufficient optimality conditions for a feasible
point x to be an efficient solution for problem (P) under a constraint qualification, we shall
need a formula in [5] by Combari et al., concerning the computation of the subdifferential of
the composite of a nondecreasing convex function with a convex mapping taking values in a
partially ordered topological vector space. For this, let us consider the following constraint
qualification called usually Moreau-Rockafellar qualification condition

(C.Q.M.R)



X and Y are locally convex spaces

f : X −→ R∪{+∞} is convex and proper

g : Y −→ R∪{+∞} is convex, proper and Y+−nondecreasing

h : X −→ Y ∪{+∞Y} is Y+−convex and proper

∃a ∈ dom f ∩domh such that g is finite and continuous at h(a).

Theorem 5.1. [5] If the condition (C.Q.M.R) holds, then we have

∂ ( f +g◦h)(x) =
⋃

y∗∈∂g(h(x))

∂ ( f + y∗ ◦h)(x)

for any x ∈ X .

Remark 5.2. Notice that in [1] one can find more general qualification conditions for this
result.
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Now, we use Lemma 4.1 to derive necessary and sufficient optimality conditions for a
feasible point x to be an efficient optimal solution for (P)

Theorem 5.3. Let h : X −→Y ∪{+∞Y} be a proper and Y+-convex mapping. Let fi and−gi

: X −→R be 2p convex functions such that fi(x)≥ 0 and gi(x)> 0 for any x∈C∩h−1(−Y+)
(i = 1, . . . , p). Let us consider the following constraint qualification

(C.Q.M0.R0)


X and Y are locally convex spaces

∃a ∈C∩domh such that

h(a) ∈ −intY+, fi(a)−νigi(a)< 0, ∀i ∈ {1, . . . , p}.

Suppose that intY+ 6= /0 (intY+ stands for the topological interior of Y+) is nonempty and
the constraint qualification (C.Q.M0.R0) is satisfied. Then x ∈C∩ h−1(−Y+) is an efficient
optimal solution to (P) if and only if there exist y∗ ∈ Y ∗+ and λi ≥ 0 (i ∈ {1, . . . , p}) such that
〈y∗,h(x)〉= 0 and

0 ∈ ∂ (
p

∑
i=1

(1+λi)( fi−νigi)+δC + y∗ ◦h)(x).

Proof. Following the proof of Theorem 4.2, we have x is an efficient optimal solution of (P)
if and only if

0 ∈ ∂ (
p

∑
i=1

( fi−νigi)+δC +δ−(Y+×Rp
+)
◦H)(x).

It was mentioned in this proof that the function δ−(Y+×Rp
+)
◦H is convex. The constraint

qualification (C.Q.M0.R0) show that H(a) = (h(a), f1(a)−ν1g1(a), . . . , fp(a)−νpgp(a))∈
− intY+× (]0,+∞[)p = −int(Y+×Rp

+), which yields that the indicator function δ−(Y+×Rp
+)

is continuous at H(a) and hence according to Theorem 5.1 there exist (y∗,α1, . . . ,αp) ∈
∂δ−(Y+×Rp

+)
(H(x)) = N(H(x),−(Y+×Rp

+)) such that

0 ∈ ∂ (
p

∑
i=1

(1+λi)( fi−νigi)+δC + y∗ ◦h)(x).

By virtue of Lemma 2.1 iv), the condition (y∗,α1, . . . ,αp) ∈ N(H(x),−(Y+×Rp
+)) is equiv-

alent to 
y∗ ∈ Y ∗+, λi ≥ 0, ∀i ∈ {1, . . . , p}

〈y∗,h(x)〉+
p

∑
i=1

λi( fi(x)−νigi(x)) = 0 (23)

and then the expression (23) is reduced to 〈y∗,h(x)〉 = 0, since fi(x)− νigi(x) = 0 for any
i ∈ {1, . . . , p}. The proof is complet.

In the sequel we present an example of multiobjective fractional programming problem,
where the standard optimality condition can not be derived due to the lack of constraint qual-
ification and the sequential optimality conditions hold.
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Example. Consider the following multiobjective fractional problem (Q).

(Q)


inf
(

x
2
,

x
2(y+1)

)
√

x2 + y2− y≤ 0

(x,y) ∈C :=
{
(x,y) ∈ R2,x = 0,y≥ 0

}
.

Let f1 (x,y) = f2 (x,y) = x
2 ,g1 (x,y) = 1,g2 (x,y) = y+ 1, and h(x,y) =

√
x2 + y2− y. Let

(x,y) = (0,1) be a feasible point. Since ν1 =
f1(x,y)
g1(x,y)

= 0, ν2 =
f2(x,y)
g2(x,y)

= 0, then

S(x,y) =
{
(x,y) ∈ R2 : ( f1−ν1g1)(x,y)≤ 0, ( f2−ν2g2)(x,y)≤ 0

}
=

{
(x,y) ∈ R2 : x≤ 0

}
.

Observe that C⊂ S(x,y) and hence the corresponding equivalent scalar minimization problem
to (Q) is given by

(S(x,y))


inf x

h(x,y)≤ 0

(x,y) ∈C.

It is easy to check that the feasible point (x,y) is an optimal solution of (S(x,y)). Observe
that h(x,y) = 0, for any (x,y) ∈C, which yields that the constraint qualification (C.Q.M0.R0)
does not hold. For each n ∈ N, if we take (for i = 1,2), xi,n = wi,n = cn = un = (0,1),
yn = vn = h(0,1) = 0, x∗i,n ∈ ∂ fi(xi,n) = {(1

2 ,0)}, w∗i,n ∈ ∂(νi(−gi))(wi,n) = {(0,0)}, c∗n =
(−1,0) ∈ N(cn,C) =R×{0}, αi,n = βi,n = 0, u∗n = (0,0), y∗n = v∗n = 0, γi,n = λi,n = 0. Hence
the sequential optimality conditions of Theorem 4.2, hold.
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