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SOME MEASURABILITY AND CONTINUITY
PROPERTIES OF ARBITRARY REAL FUNCTIONS

VITTORINO PATA - ALFONSO VILLANI

Given an arbitrary real function f, the set Oy of all points where f
admits approximate limit is the maximal (with respect to the relation of inclu-
sion except for a nullset) measurable subset of the real line having the prop-
erties that the restriction of f to &y is measurable, and f is approximately
continuous at almost every point of &y . These results extend the well-known
fact that a function is measurable if and only if it is approximately continuous
almost everywhere. In addition, there exists a maximal Gs-set Cy (which
can be actually constructed from f) such that it is possible to find a function
g = f almost everywhere, whose set of points of continuity is exactly Cy.

1. Introduction and Notation.

This paper is devoted to the investigation of some properties of real
functions with respect to Lebesgue measure. We shall denote Lebesgue measure
and Lebesgue outer measure by u and u*, respectively. Recall that, for any
subset A of the real line R, the outer measure of A is given by

w*(A) = inf{u(0): O D A, O open}.
For ¢ > 0 and / € R we introduce the sets

I.H)={xeR:|x -1 < ¢} and A(D)={xeR:|x =[] = ¢}.
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Also, for any A, B C R we agree to denote the complement of A by A€, the
characteristic function of A by x4, and the difference of A and B by A \ B.
Given an arbitrary set A C R, the Lebesgue upper density W(A) of A is
defined as follows:
W (Isx) N A°) }

W(A) = {xeR:lim—:O
§—0 I}

In literature it is usually preferred the Lebesgue lower density ®(A) of A,
defined by
*
B(A) = {xeR: fim (B0 A) 1}.
6—0 26

Both ®(A) and W(A) are measurable. Moreover, the inclusions ®(A) D A D
W (A) hold except for a nullset. In fact, ®(A) and W(A) are, respectively, the
smallest (except for a nullset) measurable set containing A, and the largest
(except for a nullset) measurable set contained in A (see, e.g., Theorem 2.9.11 in
[1]). In particular, A is measurable if and only if ®(A) = A = W(A) neglecting
nullsets. This fact is known as the Lebesgue density theorem.

Throughout the paper we consider functions f : R — R everywhere
defined. On occurence, we shall highlight the possibility of extending the
results for functions defined on certain subsets of R. If f is summable in a
neighborhood of x € R (which implies that f is measurable in a neighborhood
of x) and there exists / € R such that

x+6
lim—f |f(@)—1ldt =0,
g x—6

then x is said to be a Lebesgue point of f. In that case, we denote [ = Lf (x). If
f is locally summable on R, then the function Lf equals f almost everywhere
(so, in particular, it is defined almost everywhere). For a detailed presentation
of the subject, the reader is referred to any classical textbook of measure theory.
See, for instance, [2,5], or [1,3,4,6] for more selected topics.

Definition 1.1. Given f : R — R,x,/ € R, and ¢ > 0 we introduce the
quantity

* I -1 .
Mol = timsup - (150 N XA )

We say that f has M-limit (or approximate limit) | at x, and write | =
M-limy_,, f(y),if
M S, L,x]=0 Ve > 0.



SOME MEASURABILITY AND CONTINUITY ... 65

If f(x) = M-lim,_,, f(y), then we say that f is M-continuous (or approx-
imately continuous) at x. We denote by D, the subset of R consisting of all
points where f admits M -limit. Also, we introduce the function

M-1lim f(y) ifxe€ Dy
Mf(x)= s
fx) otherwise .

One could think of a different definition of “approximate” limit. Namely,
f has P-limitl at x if

i w*(Is(x) N 71 10))
1m
50 28

=1 Ve > 0.

Analogously, f is P-continuous at x if f(x) = P-lim,_,, f(y). However, this
definition turns out to be of little interest. Indeed, Sierpinski proved that every
function f (measurable or not) is P-continuous almost everywhere (see [3],
Theorem 2.6.2).

Definition 1.2. We say that f has C-limit [ at x if for every ¢ > 0 there exists
8 > 0 such that

w(Isx) N f71(A1) = 0.

We denote by C; the subset of R consisting of all points where f admits C-
limit.

It is apparent that &y D Cp. It is also clear that if ¢ = f almost
everywhere, then &y = D,, and Cy = C,. Notice that if x is a continuity
point of g, for some g = f almost everywhere, then x € C, and conversely.
Thus, for each function g lying in [ f], the equivalence class of all functions
equal almost everywhere to f, the set of of all continuity points of g is a subset
of Cy. We shall see that in fact [ ] contains an element g such that C is exactly
the set of continuity points of g.

2. Lebesgue Measurability of Real Functions.

The aim of this section is to find a relation between the measurability
properties of a function f : R — R and the set Dy of its M-limit points.
We begin with a well-known result, whose proof is almost immediate.

Proposition 2.1. Let f : R — R. Then if x is a Lebesgue point of f it follows
that x € Dy, and Mf(x) = Lf(x). Moreover if f is measurable and bounded
in a neighborhood of x the reverse implication holds too.
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The following result is classical (see [1], Theorem 2.9.13). For the reader’s
convenience we provide a simple proof of one implication (which differs from
the classical one and relies on Proposition 2.1).

Theorem 2.2. A function f : R — R is measurable if and only if f is M-
continuous almost everywhere.

Proof. We only show that, if f is measurable, then ;L(ch-) =0and Mf(x) =
f(x) almost everywhere. For every n € N, let

fux) = {f(x) if |[f(x)|<n

n otherwise .

Since f, € L}OC(R) then almost every point of R is a Lebesgue point of f,, thus,
by Proposition 2.1, ;L(JDJ?”) =0 and f, = Mf, almost everywhere. Denote

A=(lxeDy, : f,(x) = Mf (X)),

Notice that £(A€) = 0. Let now x € A be fixed, and choose n > | f(x)|. Then
fx) = fulx) = Mf,(x). Select ¢ < n — | f(x)|. The equality

LN AfE) = FHALFX)

holds, which yields

ML f, f(x), x]= M fu, f(x), x] =0,

ie,x€Drand Mf(x) = f(x). U

If f is measurable but not bounded in a neighborhood of x it can happen
that M f (x) exists, but x is not a Lebesgue point. Indeed, there exist measurable
functions (hence having M -limit almost everywhere) with no Lebesgue points,
as the following (classical) example shows.

Example 2.3. Let {J,},cn be the rational endpoint intervals contained in R.
Then it is possible to find a sequence {7},},cn of pairwise disjoint set of positive
measure such that 7, C J, for every n € N. This can be done by recalling
that for every interval / C R there exists a compact set of positive measure
T C J \ Q. Notice that any interval / C R contains infinitely many sets 7},.
The function

if xeT,

n
Jx) =1 ()

0 otherwise



SOME MEASURABILITY AND CONTINUITY ... 67

is clearly measurable, and, in force of the preceding result, almost every x € R
belongs to Dy. On the other hand, fixed any interval / C R, and any n € N,
there exists ng > n such that 7,,, C I. Thus

[1swiar= [ 1@ =n > n.
I Too
Letting n — oo we realize that f is not summable on any interval /, and
therefore no point of R is a Lebesgue point of f.

‘We now state the main result of this section.

Theorem 2.4. For any function f : R — R the set Dy is measurable and the
restriction of f to Dy, denoted by f|p,, is a measurable function. Moreover,
f = Mf almost everywhere.

To prove the above result, we shall make use of the following two technical
lemmas.

Lemma 2.5. Let f and ¢ be two real functions on R and let h denote the
composite function ¢ o f. If ¢ is continuous and strictly monotonic, then

Dy ={xeD,:y <Mh(x) <T},

where y = infp(R), I' = sup p(R). Moreover, the following implication holds
true:
M-lim f(y) =2 =— M-limh(y)=pQ).
y—=x y—=x

Proof. 'We first show the latter assertion. Assume that M-lim,_,, f(y) = A.
Then, owing to the continuity of ¢ at the point A, for each o > 0 there exists
e > 0 such that I,(A) C ¢~ '(I,(p(1))), hence f~1(A. (L)) D A~ (Ays(p(R1)))
and consequently

“(Lx)N F~U(A(x “(Is(x) Nh~ YAy (@A
(1) N f (A )))Zu(s(X) (As(p(1))) V6 > 0.
8 8
Letting § — 0, we get M-1lim,_, ; h(y) = @(A).
To complete the proof it is now sufficient to show that also the implication

M-limh() =wep@®) = M-lim f(y)=¢ "(w)
y—>x y—=x

is true. Indeed, if M-lim,_,, h(y) = w € ¢(R) and we assume, for instance,
that ¢ is strictly increasing, then for each ¢ > 0, denoting

M=@ lw)—e, l=¢ '(w)te, o =minfw—pi), p(h) —w},
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we have

{teR:x < f() < i} ={teR: () < h(t) < p(A2)}
D{teR:w—U <h(t)<w+a}

and consequently

u (G 0 f‘;(Ae(w‘l(w)))) _w(ben Z_I(A"(w))) V5> 0.

So, letting § — 0, we get M-lim,_., f(y) = ¢~ (w). O

Lemma 2.6. Let a function h : R — R and a number B € R be given. If
N ={xeR: h(x) = B} is a nullset, then also L = {x e R : Mh(x) = B} isa
nullset.

Proof. Clearly, it is enough to prove that for every ¢ > 0 and every bounded
open interval / C Rtheset LN I N{x eR : |h(x) — B| > ¢} is a set of zero
measure.

We will make use of the Vitali Covering Lemma.

Let any n > 0 be fixed. Then for each x € L N [ there exists a §, > 0 such
that for every § € (0, §,] we have

Is(x)cC I
and also
w* (Is(x) N h=1(AL(B)))
<n,
)
that is,

1
(L5 NR™HAB)) < 2 s (x)).-

Now it is apparent that the family V = {ls(x) : x e LN 1, 0 < § < §,} covers
L N I in the sense of Vitali, thus there is a countable subfamily {,} C V, with
I,, N1,, =¥ for n| # n,, such that

u*(LﬂI\(UI,,)) —0.

n
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It follows that

w*(LNIN{x eR: |h(x) — B| = &})
:;L*(Lﬂ]ﬂ{xeR: Ih(x) — B ze}ﬂ(UI,,))

n

= M*(Lm {xeR:|h(x)—B| =¢e}N (Uln))
<> W (L NLN{xeR: |h(x) — | = £})
<> W (LN (2B

<32 ully) < S,

2
thus
p(LNIN{xeR: |h(x)—pl=¢e})=0
since > O is arbitrary. (]

Proof of Theorem 2.4. We first show that f = Mf almost everywhere. To this
aim we use Sierpinski’s theorem ([3], Theorem 2.6.2), already quoted in the
introduction. According to that theorem, there exists a nullset N such that

* -1
R R T C1COIAW A CIWACOY))
§—0 28

=1 Ve>0.

It is easily seen that {x € Dy : f(x) # Mf(x)} C N. Indeed, if we assume by
contradiction the existence of a point x € {x € Dy : f(x) # Mf(x)} \ N, then,
denoting / = M f(x),for0 < ¢ < %ll — f(x)], since I.(f(x)) C A.(), we get

I w L) N f NI (X)) _
im =
§—0 26

0,
contrary to the fact that ¥ € N¢. Thus also {x € Dy . f(x) # Mf(x)}isa
nullset, thatis, f = M f almost everywhere.

Next, we prove that the measurability of the restriction f|p, is a direct
consequence of the measurability of ;. It is sufficient to consider the case
f > 0. Indeed, the general case will follow from this by considering the
function e/, taking into account that Dy C D,r and w(D,s \Dy) = 0, by virtue
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of the previous lemmas and of the obvious remark that Me/® > 0 Vx € R, and
making use of the subsequent argument:
D; measurable =—  D,.r measurable — efl D, measurable
= flp,, measurable =  f|p, measurable.

Thus, assume f > 0 and define g = fxop, — X We will prove that

the function g is M-continuous almost everywhere. By Theorem 2.2 this
implies that g is measurable, hence also the restriction g|p,, namely, flo,,
is measurable as well. Given x, € JDJ? N \II(JDJ?) and 0 < & < 1, we have

g (Ae(g(x0)) = g7 (A(=1)) = Dy
and consequently
lim w* (I5(x0) N g~ (A(8(x0)))) — lim w* (Is(xo0) N Dy)
5—0 1) §—0 1)

On the other hand, for xg € {x € Dy : f(x) = Mf(x)} NV (D) and0 < ¢ < 1,
we have the set-theoretical inclusion

g (Ac(g(x0)) = g (A(f(x0)) C f ™ (Ae(f (x0))) U Df

and since
* -1 *(] C
i A BEOOFNAL ) (@) N DF)

5—0 8 §—0 8

=0.

it follows that also in this case we have

i w* (Is(x0) N g~ (A(g(x0))))
m
5—0 )

=0.

In conclusion, the above limit holds for each € € (0, 1) (hence for each ¢ > 0)
and each point xy belonging to the set

G = (:oﬁ n \1/(1)]?)) U ({x €Dy : f(x) = MfF(x)} N \11(1),-)).
The complement of this set, that is,
G =(DF\G) U (Dy\ G)
- (@ﬁ\(@ﬁ N \If(i)fc.))) U (:of\({x € Dy: f)=Mf(x)} N \p(:o,-)))

=(D\W@D) U (tre Dy : £0) # MFOOIU (Df \ (D)),
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is a set of zero measure, because we are assuming that Dy is a measurable set
and we already proved that f = M f almost everywhere. It follows that g is
M -continuous almost everywhere, so this step of the proof is concluded.
We are left to show the measurability of the set Dy.
We first consider the case of a function f : R — R whose range is a closed
discrete set:
f®) =B =la:jelJ),

f= Z%’XA,

jeJ

so that

having denoted A; = f~'({e;}), j € J. It is easily seen that if & € BC then it is
impossible that M f(x) = « for some x € Dy. It follows that

o, =J¢ .
jeJ

where
§={xeDr :Mfx)=0o;} V jel.

Then it is sufficient to show that every set &;, j € J, is measurable. Indeed, if
& > 0 is small enough (to be precise, less than the distance of the point «; from
the set B \ {«;}), we have the equality

I (@A) = £ (e }6) = AS,
from which the equivalence

x -1 ) *(Is(x) N A¢
lim n (Ig(X)m f (AS(O[]))) -0 <= lim M ( 5(x) J ) -0

5—0 o) 5—0 o)

follows. This implies that & = W(A;), hence &; is measurable.
To complete the proof we consider an arbitrary function f : R — R. Let
{a,}.en be a sequence such that, for every n € N,

<a, <1

n+1

and a, /a,+ is irrational. Set then, for every n € N and j € Z,

n_ @n(2j—1)
aj = -

- and Ul = (o, o]y ).
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Finally, introduce the sequence of functions { f},},cn as follows: for all n € N,
let

Lo ifxe f7'UN, JjeZ

PEO=V g itre ), ez

J

Since f, is of the form considered before, we have that Dy, is measurable.
Consider now the measurable set

D= m (Dy, UDy,,,).
n

We first show that D D Dy. Let
W, = {x eDf: Mf(x)= oz;’ for some j EZ}.

Then Dy, D Dy \ W, for all n € N. Indeed, if x € Dy \ W, then Mf(x) e Uj"
for some j € Z. Choosing ¢ > 0 so small that I, (M f(x)) C U j", it is clear that

FHAMfx)) D £ {jan/n}) D £ (AyGan/m) Vi >0,

which implies at once that x € Dy, and M f,(x) = ja,/n. Thus,
i)ﬂ U ‘i)ﬁvH D) i)f N (Wn N Wn+1)C = Df VneN.

Last equality comes from the fact that W,,\W,,.; = @. Indeed, if the intersection

were not empty, there would exist i, [ € Z such that a = o'*', i.e.,

a, n 21— 1

apyr n+1 2i—1°

which is impossible since the left-hand side of the above equality is irrational.
Hence, taking the intersection over n,

D=((2,YD;,) D Dy

Finally denote
D' =D\ {xeDy, forsomeneN: f,(x)# Mf,(x)}.

Recalling the first part of the proof, (D \ H’) = 0. We prove the inclusion
D' C Dy. Let x € D'. Then there exists a sequence {k, },en, such that k, = n
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ork, =n+1forany n €N, x € Dy, , and fi, (x) = Mf;, (x). Select & > 0.
Since fi, — f uniformly, choose n large enough such that f and f;, differ
less than &/3. If y € fi'(I.3(fi, (x))), it follows that

) = FEOI = 1) = fo, DI Lo, ) = S, GO+ [ S, (0) = fO)] <&,

which yields the inclusion

F (Aepa(fi, ) D FH(A(F (),

and therefore M,[f, f(x),x] = 0. We conclude that £ is measurable, and
this finishes the proof. (]

A straightforward consequence of Theorem 2.4 is a sufficient condition for
a function f : R — R in order to be measurable.

Corollary 2.7. If;L(DfC-) = 0 then f is measurable.

Notice that, if f is approximately continuous almost everywhere, then
,u(DfC-) = 0; so the above corollary is a little bit stronger than the “ if ”
implication of Theorem 2.2.

Finally we show that the set D, is the maximal measurable set (with
respect to the relation “inclusion except for a nullset”) where f is measurable.
Thus the set Dy gives an estimate of the measurability degree of f. Of
course Dy might be an emptyset. In this case the function f is completely
nonmeasurable.

Theorem 2.8. Let f : R — R be given. For any measurable set A C R such
that f 5 is measurable, we have that u(A \ Dy) = 0.

Proof. 1f A is measurable and f|4 is measurable, then also the function
el |4 1s measurable. Moreover, we have that Oy = D,s \ L, where L is a
nullset, as we already pointed out in the proof of Theorem 2.4. Thus, if the
theorem is true for e/, it is true for f as well. So we assume without loss of
generality f > 0. Introduce now & = (f 4+ 1)x4. Then A is measurable,
and from Theorem 2.2, u(D$) = 0 and h = Mh almost everywhere. Set
C={xeAND,: Mh(x) = 1}. Observe that u(A \ C) = 0. We finish the
proof by proving that C C Dy . Indeed, let x € C, and select ¢ < 1. Then

R (Ao(MA(x) D 7 (A(Mh(x) — 1)
which bears
ML f, MA(x) — 1, x] < Mc[h, Mh(x), x] =0
that is, f admits M-limit at point x and Mf(x) = Mh(x) — 1. O
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Remark 2.9. The results established in this section for real functions defined
on the whole real line R actually extend to any real function f, whose domain
is an arbitrary subset of R, not necessarily measurable.

To see this extension we first need the appropriate notion of M-limit and
the definitions of O and of Mf in this more general setting.

Let f : E — R be any function, with £ C R. Given x, [ € R, we say that
f has M-limit [ at the point x provided that

* —1
lim X (I \ ' U(D)

§—0 )

=0

for every ¢ > 0 (see [1], p. 158). Also, we denote by Dy the set of all points
x € R where the M-limit of f does existand by Mf the real functionon Dy UE
defined according to the following rule:

M-1lim f(y) ifxe Dy
Mf(x) = { & S

f(x) iftxeE\ Dy.
It is apparent that these definitions generalize the ones already introduced when
E =R.

Now, we can state the above mentioned general result.

Theorem 2.10. For any function f : E — R, E C R, the following statements
hold true:
1) the sets Dy and Dy N E are measurable and n(Dy \ E) =0;
ii) the restriction of f to Dy N E is a measurable function;
iii) for any measurable set A C E having the propertythat f4 is a measurable
function, we have that u(A \ (Dy N E)) =0;
iv) f = Mf almost everywhere, thatis {x € E : f(x) # Mf(x)} is a set of
zero measure.

Proof. We first assume that f satisfies f(x) > 1 for every x € E. Then, it is
an obvious remark that also M f satisfies M f(x) > 1 for every x € Dy U E.
Let g : R — R be the following extension of f to the whole R:

f(x) ifxeE

g@):{o ifx € EC.

Then, it is apparent that the implication

M-lim f(y) =1 =— M-limg(y)=1
y—>x y—Xx
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holds true. As a consequence of this fact and of the previous remark we get the
set-theoretical inclusion Dy C D, N {x € R : Mg(x) > 1} . Furthermore, since
for/ > 1and 0 < ¢ < 1 we have f~'(I.(1)) = g~ '(I:(])), it is clear that also
the reverse inclusion holds, so

Dr=D,N{xeR: Mg(x)>1}.

Now, by Theorem 2.4, D, is a measurable set, g p, is a measurable function
and g = Mg almost everywhere. Having this in mind, we immediately deduce
from the above equality that Dy is measurable. Moreover, we have that D, \ E
is a set of zero measure, since

DINE=D,N{xeR: Mgx)>1}\{xeR:gx)>1}
C{reR:Mg(x)#gx)}.

It follows that also &y N E is a measurable set and consequently we have that
the restriction fip,ng is a measurable function, since fip,ne = g o,ne and
Dy N E C D,. Thus, we have shown facts i) and ii).

To prove iii), notice that if A C E is measurable and f, is measurable,
then also g4 is measurable, hence u(A \ D,) = 0 by Theorem 2.8, that is
A C Dy UN, where N is a nullset. It follows that

AC(DUN)NE
c [i)gﬂ{xeR: Mg(x):g(x)}ﬂE] UfxeR: Mg(x) # g(x)] UN
hence (A \ (Dy N E)) =0, since

DeN{xeR: Mgx)=gx)}NE
CD,N{xeR: Mgx)=1}NE=D;NE

and since {x e R : Mg(x) # g(x)} U N is a set of zero measure.
Finally, to show iv), it is enough to observe that by virtue of the implication

M-lim f(y)=1 = M-limg(y)=1,
y—>Xx y—=>x
we have

{xeE:Mf(x)# f(0)} C {xeR: Mg(x) # g(x)} .

Next, we prove the theorem in general. Givenany f : E — R, we consider
the function i = e/ + 1. By the preceding part of the proof all statements i)—iv)
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are true for such a function 4. Also, it is obvious that for every measurable set
A C E we have the equivalence:

fla measurable <=  h|4 measurable .

We first show the measurability of &©,. To this aim, we notice that
Lemma 2.5 is still true, just by the same proof, even if the domain of the function
f, there considered, is assumed to be a subset of R. Thus, coming back to our
functions f and h, we get the following expression for Oy :

Dy = {xeDy: Mh(x) > 1},
which implies

Dy = [{x €Dy Mh(x) > 1} N {x € E : Mh(x) = h(x)}]

U[{x e : Mh@) > 1)\ [x € B Mh() = hn)}]

whence the measurability of Dy follows, since both members of the above
written union are measurable sets by the properties of /. In fact, the first set
can be written as

{xeDyNE:h(x)>1}\ {x € E: Mh(x) # h(x)},
while the second one is contained in the nullset
(Dy \E)U{x € E: Mh(x) # h(x)} .

The above expression of D, also implies that Dy \ E C Dy \ E, thus
Dy \ E isanullsetand Oy N E is measurable, and that Dy N E C O, N E, thus
h|p,ne is a measurable function, hence f|p,ng is measurable too.

Now, we prove iii). We observe that also Lemma 2.6 is true, by the same
argument, for functions defined on subsets of R, thus we have that L = {x €
E : Mh(x) = 1} is a nullset. Let A be any measurable subset of E such that
f1a is measurable. Then k|, is measurable too, hence w(A \ (D, N E)) = 0.
On the other hand, we have Dy N E = D, N E \ L, hence

AN(D NE)= A\ (DyNE\L) C A\ (DyNE)| UL,

thus also A \ (i)f N E) is a nullset.
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Finally, to prove iv), we observe that by Lemma 2.5, generalized, we have
the implication

M-1lim f(y) =1 = M-limh(y)=¢ +1
y—>x y—x

and hence

{xeE: Mf(x)# f(x)} C{x€E: Mh(x) # h(x)} ,

from which the result follows. O

3. Continuity of Real Functions.

Given a function f : R — R, it is interesting to see if it is equal
almost everywhere to a continuous function. The problem is not trivial, since,
as everybody knows, strange things may happen. For instance, the Dirichlet
function is nowhere continuous, but it is in the same equivalence class of the
null function. On the other hand, the Heaviside step function is continuous
everywhere except in zero, but no representatives of its equivalence class
exhibits continuity at zero. If one knows from the beginning that f is equal
almost everywhere to a continuous function, then a continuous representative
of [ f] is given by Lf. The converse, however, is not true, namely, as we will
show in the following example, there are equivalence classes not containing
any continuous representative, for which Lf is defined everywhere. It is then
a natural question to ask whether, given f, it is possible to find the “most” (if
any) continuous representative of the class [ f].

Example 3.1. Define

1 if x € (—o0, 0]
2% (x — 27 ifxe[27,27"(1+2™), neN, n>2
)1 ifxe[27"(1 427,27 1-2),
fx)= neN, n>2
221t —x) ifxe[27(1 = 27,27, neN, n>2
0 if x €[1/2, 00).

Notice that f is continuous except in zero. Therefore Lf is defined in every
point except at most zero. We show that Lf(0) = 1. Set§ > 0, and let n = n(§)
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the smallest n € N such that 27"~! < §. Select ¢ > 0. Then, for § < 1/2 we
have

u(I;00) N F71 (A1)

< 2" (.27 N f{19)

8
oo
<2 N 4
j=n+1
< 2—n+2'
Since n — o0 as § — 0, we conclude that Mf(0) = 1, and thus from

Proposition 2.1 Lf(0) = 1.

We remarked in the introduction that no point of continuity of g € [ f] can
be in @J?. Here we show the converse, namely, we exhibit a function g € [ f]
whose set of points of continuity is exactly Cy. We need two preliminary
lemmas.

Lemma 3.2. Given f : R — R, the function M f|p, is continuous on Cy.

Proof. Suppose the lemma is not true. Then there exist x € Cy, ¢ > 0 and a
sequence {x, },en of elements of Dy converging to x such that M f(x,,) € A (),
having set [ = M f(x). Since f has C-limit/ at x, there exists § > O such that

w(Isx 0 (A p0)) =0.

Choose n large enough so that x,, € I5(x). Denote [, = Mf(x,). Then there
exists 8, > 0 such that /5, (x,) C I5(x), and

1 (15, () N 71 (Ae2(n)) < B
Hence
W (s, en) O f 7~ Ue o (1)) = 280 — (I, (xn) O 71 (A1) > B
On the other hand, 7, >(1,) C A¢ (1), thus
(L) N (A (0)) = w1 (I, en) N 7 U2 (n))) > 8,

which leads to a contradiction. O

Lemma 3.3. Given f : R — R, there exists D C R such that D D Cy,
w(DC) =0 and M f\ o is continuous on Cy.
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Proof. Since C; depends only on [ f], in force of Theorem 2.4 we can (and do)
assume that f = Mf. Fix n € N. Then for every x € C; there exists 6, , < 1/n
such that
w(LE)N T A(fE)) =0 V8 <8,

The family V, = {Is_,(x) : x € Cr} is an open cover of C;. Since R is second
countable, any open cover of a subset of R admits a countable subcover. Thus
there exists a countable subset {x;’}jE 5,» with J, C N, of G such that the
countable family {I(;jvn(x;’)} jes, (where we write for simplicity §; , in place of
ijn,,,), of (not necessarily disjoint) elements of V,, is a cover of C. Further,
denote

Po=J (I, 0 £ Ay (f])) and P =P
jed, n
and set
D= Dy U PC.
We claim that fq is continuous on C;. Thus let x € C and select € > 0. Then
by Lemma 3.2 there exists § > 0 such that

F(Is()NDy) C Lpp(f(x)).

{2 2]
n> maxi-—, —¢.
e 4

Then there exists x;' (which may coincide with x) such that
X € I(;jvn(x;’) C Ii(x).

Letye I(gjv”(x;’) ND. If y € Dy then f(y)e L(f(x)). If ye i)f N P¢, then in
particular we have y € P¢, and since y € Is;,, (x}), it follows that

Choose

&

O = ol <= < 5.

Therefore

1FO) = FOI < Q) = FEDI+ &) — f@)] < e

Thus, if we choose n > 0 such that 7, (x) C I5;,, (x;’), we conclude that

f(x)N D) C L(f(x)),

as claimed. O

Notice that, in order to prove Lemma 3.3, it would have been enough to
prove a weaker version of Lemma 3.2, namely, to show that M fje ’ 1s continuous
on C;. However, if f is measurable, then u(i)f) = 0 and Lemma 3.2, as stated,
immediately implies Lemma 3.3.
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Theorem 3.4. Given f : R — R, there exists g € [ f] whose set of points of
continuity is exactly Cy.

Proof. Again, we assume that f = Mf. Then from previous Lemma 3.3,
there exists & C R such that D D Cy, w(DF) = 0 and fio 1s continuous
on C;. For every n € N and every j € Z define the half-open interval
O/ = 1[j/n,(j + 1)/n). Then, forevery n € N, R = Uj O;. Furthermore,
select xj’.’ € 0;’ N D (which always exists since (D) = 0). Finally define

fx) ifxedD
fa) = { Fxn) itxenCnor,

and let ) o
limsup f,(x) if limsup f,(x) e R
g (x) = n— 00 n— 00
0 otherwise .

It is apparent that g = f on D (so g = f almost everywhere) and g|p is
continuous on Cr. We claim that g is continuous on Cy. Indeed, let x € C; and
select ¢ > 0. Then there exists § > 0 such that, if y € I5(x) N D, it follows
that |g(y) — g(x)| < &/2. On the other hand, if y € I;(x) N D¢ then there is a
sequence {j,},en C Z such that f,(y) = f(x}i) = g(x}i) for all n € N. Since
y € I5(x), we have also x}i € I5(x), and hence

/() — g0l = |g(x?) — g(x)] < g

for all n large enough. This implies that lim sup,_, ., f,(y) € R and that

lg(y) — g(x)| = [ limsup f,(y) — g(x)| < limsup|f,(y) — g(x)| < % <e.

n—oQ n—oQ

We have then proved that g(/5(x)) C I.(g(x)), that is, g is continuous at x.
O

Since Cy is the set of points of continuity of a function g, we can also
conclude that it is a Gs-set (see, for instance, [4]).

It is worth observing that M f may not be continuous on C;. This justifies
the rather indirect proof of Theorem 3.4.

Example 3.5. Define
0 if x € (—00,0] U1, c0)
fx)y=431/n ifxe(ld/(n+1),1/n), nelN
1 ifx=1/n, nelN.
It is clear that f has C-limit 0 at x = 0 (so 0 € Cf). On the other hand, since
f does not have M-limit at 1/n, it follows that Mf(1/n) = f(1/n) = 1. Thus
Mf is not continuous at x = 0.
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In force of Theorem 3.4 we can provide a characterization of classes of
functions containing a continuous representative.

Corollary 3.6. A function f : R — R, is equal almost everywhere to a
continuous function if and only if Cy = R.

Remark 3.7. The result expressed by Theorem 3.4 actually holds for a function
f:E CR — R, provided that d E N E is a closed discrete set.

In this case we still define C; as the subset of E consisting of all points x
which are continuity points for some g : £ — R, g = f almost everywhere.
Equivalently, a point x € E belongs to Cy if there exists a (possibly nonunique)
I € R such that for every & > 0 it results u(I5(x) N f~'(A4(1))) = O for some
§ > 0.

To get the above claimed extension of Theorem 3.4 one has simply to
consider any function 4 : R — R, continuous at every point x € 0E N E N Cy
and such that 1|z = f almost everywhere, and apply Theorem 3.4 to /. Notice
that the construction of such a function 4 is possible since the set dE N E is
cluster-point free.
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