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COMPUTING INVARIANTS OF CUBIC SURFACES

ANDREAS-STEPHAN ELSENHANS - JÖRG JAHNEL

We report on the computation of invariants, covariants, and contravari-
ants of cubic surfaces. The approach is based on the Clebsch transfer
principle and transvection. All algorithms are implemented in the com-
puter algebra system magma. The code can be used to efficiently compute
invariants of surfaces definied over number fields and function fields.

1. Introduction

Given two hypersurfaces of the same degree in projective space over an alge-
braically closed field, one may ask for the existence of an automorphism of the
projective space that maps one of the hypersurfaces to the other. It turns out that
if the hypersurfaces are stable [11, Def. 1.7] in the sense of geometric invari-
ant theory, such an automorphism exists if and only if all the invariants of the
hypersurfaces coincide [10, Prop. 1.3.i)].

Aside from cubic curves in P2 and quartic surfaces in P3, an isomorphism
between smooth hypersurfaces of degree d ≥ 3 always extends to an automor-
phism of the ambient projective space [8, Th. 2]. Thus, the invariants may be
used to test abstract isomorphy.

If the base field is not algebraically closed, two varieties with equal invari-
ants can differ by a twist. A necessary condition for the existence of a non-trivial
twist is that the variety has a non-trivial automorphism.
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In this article, we focus on the case of cubic surfaces. For them, it was
proven by Clebsch [3] that the ring of invariants of even weight is generated by
five fundamental invariants of degrees 8, 16, 24, 32, and 40. Later, Salmon [14]
worked out explicit formulas for these invariants based on the pentahedral rep-
resentation of the cubic surface, introduced by Sylvester [18].

We describe an approach to compute the Clebsch-Salmon invariants, linear
covariants, and some contravariants of cubic surfaces, that does not rely on a
calculation of the pentahedron. Instead, it is based on the Clebsch transfer prin-
ciple. The algorithm works for any cubic surface with coefficients in a field of
characteristic not equal to 2, 3, or 5. Using this, we also compute an invariant
of degree 100 [5, Sec. 9.4.5] and odd weight that vanishes if and only if the
cubic surface has a non-trivial automorphism. The square of this invariant is a
polynomial expression in Clebsch’s invariants.

This can be used as an isomorphy test for all stable cubic surfaces over
algebraically closed fields and for all surfaces over non-closed fields, for which
the degree 100 invariant does not vanish.

All algorithms are available since December 2012 [2, Sec. 6.4] in the com-
puter algebra system magma [1]. We illustrate the computation of the invariants
and the discriminant by some examples:

> r<x,y,z,w> := PolynomialRing(Rationals(),4);

> ClebschSalmonInvariants(x^3+y^3+z^3+w^3);

[ 1, 0, 0, 0, 0 ]

-7625597484987

> Factorization(7625597484987);

[ <3, 27> ]

The function ClebschSalmonInvariants computes the five fundamental in-
variants and the discriminant of a cubic surface. As the discriminant is−327, the
diagonal surface has bad reduction only for p = 3. The function can handle sur-
faces with coefficients in any field, as long as the characteristic is different from
2, 3, and 5. Families of surfaces can be dealt with working over the function
field:

> r<t> := PolynomialRing(Rationals());

> r4<x,y,z,w> := PolynomialRing(FieldOfFractions(r),4);

> S := x^3+y^3+z^3+w^3+t*x*y*z;

> inv,disc := ClebschSalmonInvariants(S);

> Factorization(Numerator(disc));

[

<t + 3, 6>,

<t^2 - 3*t + 9, 6>
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]

This shows that the degenerated fibers of the family x3+y3+ z3+ txyz+w3 = 0
are located at t =−3 and t = 3±3

√
−3

2 . A more complex example is given by the
octanomial family [13]. The invariants of this family can be computed in the
same way as above within about 2 seconds of CPU time. They are polynomials
consisting of 49, 364, 1302, 3709, and 7689 terms, resprectively, in the eight
coefficients of the family.

Further, the functions

LinearCovariantsOfCubicSurface, SkewInvariant100,

ContravariantsOfCubicSurface, CubicSurfaceFromClebschSalmon

are available. They can be used to compute the covariants, the degree 100 in-
variant of odd weight, and the contravariants, described in this article. The last
function computes a cubic surface with prescribed invariants, as long as the last
invariant is not zero. It can be used as follows

r4<x,y,z,w> := PolynomialRing(Rationals(),4);

S := CubicSurfaceFromClebschSalmon([1,2,3,4,5]);

r4!MinimizeReduceCubicSurface(S);

to compute the model

−125x3 +320x2y+100x2z+94x2w−64xy2−470xyz+492xyw

+530xz2−886xzw+390xw2−79y3 +228y2z−197y2w−180yz2

−94yzw−242yw2−235z3 +526z2w−825zw2 +279w3 = 0

of a cubic surface with invariants 1, 2, 3, 4, and 5.

Earlier works

We would not be surprised if others implemented the computation of invariants
of cubic surfaces before. By personal communication we heard about an maple

implementation written by Andrew du Plessis. But, we are not aware of any
publication.

2. The Clebsch-Salmon invariants

The first part of this section presents the concepts of invariants, co- and con-
travariants. The second part describes the invariants and linear covariants of
cubic surfaces as introduced by Salmon [14].
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Let K be a field of characteristic zero and K[X1, . . . ,Xn]
(d) the K-vector space

of all homogeneous forms of degree d. Further, we fix the left group action

GLn(K)×K[X1, . . . ,Xn]→ K[X1, . . . ,Xn], (M, f ) 7→M · f ,

with (M · f )(X1, . . . ,Xn) := f ((X1, . . . ,Xn)M).
Finally, on the polynomial ring K[Y1, . . . ,Yn], we choose the action

GLn(K)×K[Y1, . . . ,Yn]→ K[Y1, . . . ,Yn], (M, f ) 7→M · f ,

given by (M · f )(Y1, . . . ,Yn) := f ((Y1, . . . ,Yn)
(
M−1

)>
).

Remark 2.1. In the actions above, the operation of a matrix M can be viewed
as a composition of maps, as follows,

(X 7→ (M · f )(X)) = (X 7→ f (X))◦ (X 7→ XM)

and
(Y 7→ (M · f )(Y )) = (Y 7→ f (Y ))◦ (Y 7→ Y

(
M−1)>) .

As we work with row vectors, in both cases, we get M1 · (M2 · f ) = (M1M2) · f ,
and indeed have group actions.

Definition 2.2. An invariant I of degree D and weight w is a map

K[X1, . . . ,Xn]
(d)→ K

that may be given by a homogeneous polynomial of degree D in the coefficients
of f and satisfies

I(M · f ) = det(M)w · I( f ),

for all M ∈ GLn(K) and all forms f ∈ K[X1, . . . ,Xn]
(d).

Definition 2.3. A covariant C of degree D, order p, and weight w is a map

K[X1, . . . ,Xn]
(d)→ K[X1, . . . ,Xn]

(p)

such that each coefficient of C( f ) is a homogeneous degree D polynomial in the
coefficients of f and that satisfies

C(M · f ) = det(M)w ·M · (C( f )),

for all M ∈ GLn(K) and all forms f ∈ K[X1, . . . ,Xn]
(d).
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Definition 2.4. A contravariant c of degree D, order p, and weight w is a map

K[X1, . . . ,Xn]
(d)→ K[Y1, . . . ,Yn]

(p)

such that each coefficient of c( f ) is a homogeneous degree D polynomial in the
coefficients of f and that satisfies

c(M · f ) = det(M)w ·M · c( f ),

for all M ∈ GLn(K) and all forms f ∈ K[X1, . . . ,Xn]
(d). Note that the right hand

side uses the action on K[Y1, . . . ,Yn].

Remark 2.5. The set of all invariants is a commutative ring and an algebra over
the base field. The set of all covariants (resp. contravariants) is a commutative
ring and a module over the ring of invariants.

Remark 2.6. Geometrically, the vanishing locus of f or a covariant C( f ) is
a subset of the projective space whereas the vanishing locus of a contravari-
ant c( f ) is a subset of the dual projective space. Replacing the matrix by the
transpose inverse matrix gives the action on the dual space in a naive way.

Example 2.7. The discriminant of binary forms of degree d is an invariant of
degree 2d−2 and weight d(d−1) [12, Chap. 2].

Example 2.8. Let f be a form of degree d > 2 in n variables. Then the Hes-
sian H, defined by

H( f ) := det
(

∂ 2 f
∂Xi ∂X j

)
i, j=1,...,n

,

is a covariant of degree n, order (d−2)n, and weight 2.

Example 2.9. Let a smooth plane curve V ⊂ P2 be given by a ternary form f of
degree d. Mapping f to the form that defines the dual curve [5, Sec. 1.2.2] of V
is an example of a contravariant of degree 2d−2 and order d(d−1).

Salmon’s formulas

Definition 2.10. A cubic surface given by a system of equations of the shape

a0X3
0 +a1X3

1 +a2X3
2 +a3X3

3 +a4X3
4 = 0, X0 +X1 +X2 +X3 +X4 = 0

is said to be in pentahedral form. The coefficients a0, . . . ,a4 are called the pen-
tahedral coefficients of the surface. The planes Xi = 0 are called the faces and
the intersection point of any three faces is called a vertex of the pentahedron.



462 ANDREAS-STEPHAN ELSENHANS - JÖRG JAHNEL

The set of all cubic surfaces that have a pentahedral form is Zariski open in
the Hilbert scheme of all cubic surfaces. Thus, it suffices to describe the invari-
ants for these surfaces. For this, we denote by σ1, . . . ,σ5 the elementary sym-
metric functions in the pentahedral coefficients. Then the Clebsch-Salmon in-
variants (as mentioned in the introduction) of the cubic surface are given by [14,
§ 467],

I8 = σ
2
4 −4σ3σ5, I16 = σ1σ

3
5 , I24 = σ4σ

4
5 , I32 = σ2σ

6
5 , I40 = σ

8
5 .

Further, Salmon lists four linear covariants of degrees 11, 19, 27, and 43 [14,
§ 468],

L11 = σ
2
5

4

∑
i=0

aixi, L19 = σ
4
5

4

∑
i=0

1
ai

xi,

L27 = σ
5
5

4

∑
i=0

a2
i xi, L43 = σ

8
5

4

∑
i=0

a3
i xi .

Finally, the 4×4 determinant of the matrix formed by the coefficients of these
linear covariants of a cubic surface in P3 is an invariant I100 of degree 100. It
vanishes if and only if the surface has Eckardt points or equivalently a non-
trivial automorphism group [5, Sec. 9.4.5, Table 9.6]. The square of I100 can be
expressed in terms of the other invariants above. For a modern view on these
invariants, we refer to [5, Sec. 9.4.5].

For a general cubic surface, the vertices of the pentahedron coincide with
the 10 singular points of its Hessian. Thus, using modern computer algebra,
one can compute the singular points of the Hessian and deduce the faces of
the pentahedron. Once the faces are found, the pentahedral coefficients can be
computed by solving a linear system of equations. Having done this, one can use
Salmon’s formulas to compute the invariants [6, Algo. A.4]. A second method
to compute the pentahedron, which is based on syzygies, was described in [9,
Algo. 3.1].

3. Transvection

One classical approach to write down invariants is to use the transvection (called
Überschiebung in German). This is part of the so called symbolic method [19,
Chap. 8, §2], [7, App. B.2]. We illustrate it in the case of ternary forms.

Definition 3.1. Let K[X1, . . . ,Xn,Y1, . . . ,Yn,Z1, . . . ,Zn] be the polynomial ring in
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3n variables. For i, j,k ∈ {1, . . . ,n}, we denote by (i j k) the differential operator

(i j k) := det


∂

∂Xi

∂

∂X j

∂

∂Xk
∂

∂Yi

∂

∂Y j

∂

∂Yk
∂

∂Zi

∂

∂Z j

∂

∂Zk

 .

Example 3.2. Using this notation, the Aronhold invariants S and T of the
ternary cubic form f are given by

S( f ) := (123)(234)(341)(412) f (X1,Y1,Z1) · · · f (X4,Y4,Z4),

T ( f ) := (123)(124)(235)(316)(456)2 f (X1,Y1,Z1) · · · f (X6,Y6,Z6) .

The first one is of degree and weight 4, the second one of degree and weight 6.
Using S and T , one can write down the discriminant of a ternary cubic as

∆ := S3−6T 2. The discriminant vanishes if and only if the corresponding cubic
curve is singular.

See [15, Sec. V] for a historical and [5, Sec. 3.4.1] for modern references
concerning invariants of ternary cubic forms.

Remark 3.3. One can use the transvection to write down invariants of quater-
nary forms, as well. For example, if f is a quartic form in four variables then

(1234)4 f (X1,Y1,Z1,W1) · · · f (X4,Y4,Z4,W4)

is an invariant of degree 4. Here, (1234) denotes the differential operator

(1234) := det


∂

∂X1

∂

∂X2

∂

∂X3

∂

∂X4
∂

∂Y1

∂

∂Y2

∂

∂Y3

∂

∂Y4
∂

∂Z1

∂

∂Z2

∂

∂Z3

∂

∂Z4
∂

∂W1

∂

∂W2

∂

∂W3

∂

∂W4

 .

For a quaternary cubic form, one can apply this to its Hessian to get an invariant
of degree 16. However, a direct evaluation of such formulas for forms in four
variables is too slow in practice. The reason is that both the differential operators
and the product f (X1,Y1,Z1,W1) · · · f (X4,Y4,Z4,W4) usually have many terms.

4. The Clebsch transfer principle

We refer to [5, Sec. 3.4.2] for a detailed and modern description of the Clebsch
transfer principle. The basic idea is to compute a contravariant of a form of
degree d in n variables out of an invariant of a form of degree d in (n− 1)
variables. In the case of cubic surfaces, this can be explained geometrically as
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follows. First, we intersect the cubic surface with a variable plane to get a cubic
curve. Then we evaluate an invariant of cubic curves on this intersection. This
construction gives a form on the dual projective space which turns out to be a
contravariant.

Definition 4.1. We consider the vector space V = Kn and choose the volume
form given by the determinant. We have the following isomorphism

Φ : Λ
n−1V →V ∗, v1∧·· ·∧ vn−1 7→ (v 7→ det(v,v1, . . . ,vn−1)) .

Definition 4.2. Let I be a degree D, weight w invariant on K[U1, . . . ,Un−1]
(d).

Then the Clebsch transfer of I is the contravariant Ĩ of degree D and order w

Ĩ : K[X1, . . . ,Xn]
(d)→ K[Y1, . . . ,Yn]

(w),

given by

Ĩ( f ) : (Kn)∗→ K, l 7→ I( f (U1v1 + · · ·+Un−1vn−1)) .

Here, v1, . . . ,vn−1 are given by v1 ∧ . . .∧ vn−1 = Φ−1(l). Note that Ĩ( f ), as
defined, is indeed a polynomial mapping and homogeneous of degree w.

Example 4.3. Denote by S and T the invariants of ternary cubic forms, intro-
duced above. Then S̃ is a degree 4, order 4 contravariant of quaternary cubic
forms. Further, T̃ is a contravariant of degree 6 and order 6.

The discriminant of a cubic curve is given by ∆ = S3− 6T 2. It vanishes if
and only if the cubic curve is singular. Thus, the dual surface of the smooth
cubic surface V ( f ) is given by ∆̃( f ) = S̃( f )3−6T̃ ( f )2 = 0.

By definition, the dual surface of a smooth surface V ( f ) ⊂ P3 is the set
of all tangent planes of V ( f ). A plane P ∈ (P3)∗ is tangent if and only it the
intersection V ( f )∩P is singular. Thus, P is a point on the dual surface if and
only if ∆̃( f )(P) = 0. Here, ∆ is the discriminant of ternary forms of the same
degree as f .

For a given cubic form f ∈ K[X ,Y,Z,W ], we compute S̃( f ) by interpolation
as follows:

1. Choose 35 vectors p1, . . . , p35 ∈
(
K4
)∗ in general position.

2. Compute Φ−1(pi), for i = 1, . . . ,35.

3. Compute si := S( f (U1v1 +U2v2 +U3v3)), for v1∧ v2∧ v3 = Φ−1(pi) and
all i = 1, . . . ,35.

4. Compute the degree 4 form S̃( f ) by interpolating the arguments pi and
the values si.

We can compute T̃ ( f ) in the same way. The only modification necessary is to
increase the number of vectors, as the space of sextic forms is of dimension 84.
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5. Action of contravariants on covariants and vice versa

Is was already known in the 19th century [16, Lesson XIV] that there is a con-
nection of co- and contravariants with differential operators. Here, we list what
will be used about it.

1. Recall that the rings K[X1, . . . ,Xn] and K[Y1, . . . ,Yn] are equipped with
GLn(K)-actions, as introduced at the beginning of Section 2.

2. The ring of differential operators

K
[

∂

∂X1
, . . . ,

∂

∂Xn

]
acts on K[X1, . . . ,Xn].

3. The GLn(K)-action on K
[

∂

∂X1
, . . . , ∂

∂Xn

]
given by

M ·
(

∂

∂v

)
:=

∂

∂ (v ·M−1)
for all v ∈ Kn

results in the equality

M ·
(

∂ f
∂v

)
=

(
M · ∂

∂v

)
(M · f ) ,

for all f ∈ K[X1, . . . ,Xn] and all v ∈ Kn.

4. The map

ψ : K[Y1, . . . ,Yn]→ K
[

∂

∂X1
, . . . ,

∂

∂Xn

]
, Yi 7→

∂

∂Xi

is an isomorphism of rings. Further, for each M ∈ GLn(K), we have the
following commutative diagram

K[Y1, . . . ,Yn]
ψ //

M

��

K
[

∂

∂X1
, . . . , ∂

∂Xn

]
M
��

K[Y1, . . . ,Yn]
ψ // K

[
∂

∂X1
, . . . , ∂

∂Xn

]
.

In other words, ψ is an isomorphism of GLn(K)-modules.
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5. Let C be a covariant and c a contravariant on K[X1, . . . ,Xn]
(d). Denote the

order of C by P and the order of c by p. For P≥ p, we define

c `C : K[X1, . . . ,Xn]
(d)→ K[X1, . . . ,Xn]

(P−p), f 7→ ψ(c( f ))(C( f )) .

The notation ` follows [7, p. 304].

6. Assume c `C not to be zero. If p < P then c `C is a covariant of order
P− p. If p = P then c ` C is an invariant. In both cases, the degree of
c `C is the sum of the degrees of c and C.

7. Similarly to ψ , one can introduce a map

ψ̂ : K[X1, . . . ,Xn]→ K
[

∂

∂Y1
, . . . ,

∂

∂Yn

]
, Xi 7→

∂

∂Yi
.

As above, ψ̂ is an isomorphism of rings and GLn(K)-modules. Let C a
covariant and c a contravariant on K[X1, . . . ,Xn]

(d). We define C ` c by

(C ` c)( f ) := ψ̂(C( f ))(c( f )) .

8. Assume c ` C not to be zero. If p > P then C ` c is a contravariant of
order p−P. If p = P then C ` c is an invariant. In both cases, the degree
of C ` c is the sum of the degrees of C and c.

6. Explicit invariants of cubic surfaces

We are now fully prepared for the computation of invariants of cubic surfaces.
In fact, this approach can be used to compute invariants of hypersurfaces of any
degree and dimension in projective space.

Remark 6.1. It is well known that the ring of invariants of quaternary cubic
forms is generated by the six invariants of degrees 8, 16, 24, 32, 40, and 100 [5,
Sec. 9.4.5]. The first five generators are primary invariants [4, Def. 2.4.6]. Thus,
the vector spaces of all invariants of degrees 8, 16, 24, 32 and 40 are of dimen-
sions 1, 2, 3, 5, and 7. In general, these dimensions are encoded in the Molien
series, which can be computed efficiently using character theory [4, Ch. 4.6].

In the lucky case that one is able to write down a basis of the vector space of
all invariants of a given degree d, one can find an expression of a given invariant
of degree d by linear algebra. This requires that the invariant is known for suf-
ficiently many surfaces. For cubic surfaces, this is provided by the pentahedral
equation.



COMPUTING INVARIANTS OF CUBIC SURFACES 467

Applying the methods above, we can write down many invariants for qua-
ternary cubic forms. We start with the form f , its Hessian covariant H( f ), and
the contravariant S̃( f ). Then we apply known covariants to contravariants and
vice versa. Further, one can multiply two covariants or contravariants to get a
new one. For efficiency, it is useful to keep the orders of the covariants and
contravariants as small as possible. This way, they will not consist of too many
terms.

Proposition 6.2. Let f be a quarternary cubic form. With

C4,0,4 := S̃( f ), C4,4 := H( f ),

C6,2 :=C4,0,4 ` f 2, C9,3 :=C4,0,4 ` ( f ·C4,4),

C10,0,2 :=C6,2 `C4,0,4, C11,1a :=C10,0,2 ` f ,

C13,0,1 :=C9,3 `C4,0,4, C14,2 :=C10,0,2 `C4,4,

C14,2a :=C13,0,1 ` f , C19,1a :=C13,0,1 `C6,2,

the following expressions

I8 :=
1

211 ·39C4,0,4 `C4,4,

I16 :=
1

230 ·322C6,2 `C10,0,2,

I24 :=
1

241 ·333C10,0,2 `C14,2,

I32a :=C10,0,2 `C2
11,1a,

I32 :=
2
5
(I2

16−
1

260 ·344 · I32a),

I40a :=C4,0,4 ` (C2
11,1a ·C14,2),

I40 :=
−1
100
· I8 · I32−

1
50
· I16 · I24−

1
272 ·353 ·52 I40a,
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give the Clebsch-Salmon invariants I8, I16, I24, I32, and I40. Further, with

C11,1 :=
1

220315C11,1a,

C19,1 :=
1

233 ·324 ·5
(C19,1a +232 ·324 · I8 ·C11,1a),

C27,1a :=
1

242333C13,0,1 `C14,2a,

C27,1 :=I16 ·C11,1 +
1

200
(C27,1a−2 · I2

8 ·C11,1−10 · I8 ·C19,1),

C43,1a :=
1

268 ·353C13,0,1 ` (C13,0,1 ` (C13,0,1 `C4,4)),

C43,1 :=
−1

1000
C43,1a−

1
200
· I2

8 ·C27,1 + I16 ·C27,1

+
1

1000
· I3

8 ·C19,1−
1

10
· I8 · I16 ·C19,1− I24 ·C19,1

+
1

200
· I2

8 · I16 ·C11,1 +
3
20
· I8 · I24 ·C11,1,

C11,1, C19,1, C27,1, and C43,1 are Salmon’s linear covariants. Here, we use the
first index to indicate the degree of an invariant, covariant, or contravariant.
The second index is the order of a covariant, whereas the third index is the
order of a contravariant. Finally, we can compute I100 as the determinant of the
4 linear covariants.

Proof. The following magma script shows in approximately one second of CPU
time that the algorithm as described above coincides with Salmon’s formulas
for the pentahedral family, as the last two comparisons result in true.

r5 := PolynomialRing(Integers(),5);

ff5<a,b,c,d,e> := FunctionField(Rationals(),5);

r4<x,y,z,w> := PolynomialRing(ff5,4);

lfl := [x,y,z,w,-x-y-z-w];

col := [ff5.i : i in [1..5]];

f := a*x^3 + b*y^3 + c*z^3 + d*w^3 + e*(-x-y-z-w)^3;

sy_f := [ElementarySymmetricPolynomial(r5,i) : i in [1..5]];

sigma := [Evaluate(sf,col) : sf in sy_f];

I_8 := sigma[4]^2 - 4 *sigma[3] * sigma[5];

I_16 := sigma[1] * sigma[5]^3;

I_24 := sigma[4] * sigma[5]^4;
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I_32 := sigma[2] * sigma[5]^6;

I_40 := sigma[5]^8;

L_11 := sigma[5]^2 * &+[ col[i] * lfl[i] : i in [1..5]];

L_19 := sigma[5]^4 * &+[ 1/col[i] * lfl[i] : i in [1..5]];

L_27 := sigma[5]^5 * &+[ col[i]^2 * lfl[i] : i in [1..5]];

L_43 := sigma[5]^8 * &+[ col[i]^3 * lfl[i] : i in [1..5]];

inv := ClebschSalmonInvariants(f);

cov := LinearCovariantsOfCubicSurface(f);

inv eq [I_8, I_16, I_24, I_32, I_40];

cov eq [L_11, L_19, L_27, L_43];

7. Performance test

Computing the Clebsch-Salmon invariants, following the approach above, for
100 cubic surfaces chosen at random with two digit integer coefficients takes
about 3 seconds of CPU time in total. Most of the time is used for the direct
evaluation of the invariant S of ternary cubics by transvection. Note that comput-
ing the contravariant S̃ by interpolation requires 35 evaluations of the invariant
S of a ternary cubic.

Computing both contravariants S̃ and T̃ and the dual surface takes about 18
seconds of CPU time for the same 100 randomly chosen surfaces. The computa-
tions are done on one core of an Intel i5-2400 processor running at 3.1GHz. For
comparison, the computation of the pentahedral form by inspecting the singular
points of the Hessian takes about 10 seconds per example [6, Sec. 5.11].
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