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VARIETIES OF SIMULTANEOUS SUMS OF

POWER FOR BINARY FORMS

ENRICO CARLINI

The problem of simultaneous decomposition of binary forms as sums
of powers of linear forms is studied. For generic forms the minimal number
of linear forms needed is found and the space parametrizing all the possible
decompositions is described. More generally the variety parametrizing the
0-dimensional schemes apolar to a set of generic binary forms is described.
These results are applied to the study of particular secant spaces of rational
curves.

1. Introduction.

Let K be an algebraically closed �eld. Consider the polynomial ring
S = K [x0, . . . , xn] and a form f ∈ Sd . A well known problem deals with
the possible decompositions of f as a sum of powers of linear forms, that is

f = c1l
d
1 + . . .+ ckl

d
k

li ∈ S1, ci ∈ K .

In geometric terms the problem reads as follow: given a point [ f ] ∈ PSd �nd
points [ld1 ], . . . , [ldk ] on the Veronese variety νd (PS1) such that the k-secant
space they span contains [ f ].
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We can ask for the minimal number of linear forms needed to decompose
a given f ∈ Sd . De�ne this number as

kmin( f ) = min

�

k : ∃∃ l1, . . . , lk ∈ S1, f =

k�

i=1

ci l
d
i

�

.

When a decomposition exists this is usually not unique, so it is interesting to
study all possible ways of decomposing a form f ∈ Sd using exactly k linear
forms. With this in mind we set

V SP( f ; k) =

�

{L1, . . . , Lk} ∈Hilbk ˇPS1 : Li �= Lj , f =

k�

i=1

ci l
d
i

�

where Li is the hyperplane of PS1 de�ned by li = 0 and Hilbk ˇPS1 is the Hilbert
scheme of length k subschemes of ˇPS1.

Both kmin( f ) and V SP( f, k) were classically studied, but much remains
unknown about them. An expected value for kmin was obtained by a naive
parameters count, but only recently it was proved that this value is exact for a
generic form f , see [1]. The study of the variety V SP( f, k) is still challenging
and only few results are known in general. For more on this see [7].

A straightforward generalization is the study of the simultaneous decom-
positions of a set of forms f1, . . . , fr ∈ Sd , that is

fi = ci1l
d
1 + . . . cik l

d
k , i = 1, . . . , r

involving the same linear forms lj .
In this case also we have a geometric interpretation: given points [ f1], . . .,

[ fr ] ∈ PSd �nd points [ld1 ], . . . , [ldk ] on the Veronese variety νd (PS1) such that
the k-secant space they span contains the linear space < [ f1], . . . , [ fr ] >.

This problem was classically studied by means of polar polyhedra, e.g.
see [6] for n = 2 and d = 3, and in a more general setting by Terracini. In
[8] a solution for the case n = 2, r = 2 is claimed and a general criterion is
stated. For a rigorous proof and a generalization of Terracini�s result see [3]. For
an exposition in modern terms and an interesting interpretation of Terracini�s
criterion see [2].

As in the case of one form, there are two main objects of interest.

De�nition. Let f1, . . . , fr ∈ Sd . We de�ne

kmin( f1, . . . , fr ) = min

�

k : ∃∃ l1, . . . , lk ∈ S1, fi =

k�

j=1

ci j l
d
j i = 1, . . . , r

�

.
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De�nition. Let f1, . . . , fr ∈ Sd . We de�ne the Variety of Simultaneous Sums
of Powers of the fi �s with respect to k to be

V SSP( f1, . . . , fr ; k) =

=

�

{L1, . . . , Lk } ∈Hilbk ˇPS1 : Li �= Lj , fi =

k�

j=1

ci j l
d
j i = 1, . . . , r

�

,

where Li is the hyperplane of PS1 de�ned by li = 0 and Hilbk ˇPS1 is the Hilbert
scheme of length k subschemes of ˇPS1.

We notice that if f1, . . . , fr are linearly dependent, then the problem
reduces to the study of r � independent forms, r � < r . Therefore we may assume
the fi �s to be linearly independent.

As in the r = 1 case, there is an expected value for kmin obtained by a
parameters count: consider the incidence correspondence �

G(r, Sd)× Xk ⊃ � = {(�, P1 . . . Pk) :< P1 . . . Pk >⊇ �}

where G(r, Sd) is the Grassmannian of r dimensional subspaces of Sd and X is
the d -th Veronese embedding of PS1. The expected value for kmin is theminimal
k such that dim� ≥ dimG(r, Sd), i.e.

�
r

r + n

�
n + d

d

��

.

When r > 1 only few values of (n, d, r, k) are known for which kmin is not the
predicted value for a generic choice of forms, see [2]. The existence of these
exceptions can be proved by ad hoc methods but there are few general results.
The most general result about kmin asserts that, in the binary case n = 1, the
actual and the expected value of kmin( f1, . . . , fr ) are equal for generic forms.
This is proved in [2]. As far as we know there are almost no results about the
variety V SSP in the case r > 1.

In this paper we restrict our attention to the binary case S = K [x0, x1]. Our
main result is a complete description, for any k, of the variety parametrizing
the 0-dimensional length k schemes apolar to generic forms f1, . . . , fr . In
particular, when the schemes are smooth, we describe V SSP( f1, . . . , fr ; k).
As a byproduct we get a formula for kmin( f1, . . . , fr ) in a more direct way than
it was done in [2] (we don�t use the notion of grove and the splitting of line
bundles). In the last section we show an application of these results to the study
of particular secant spaces of rational curves.
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2. Apolarity and inverse systems.

Set S = K [x0, . . . , xn] and T = K [y0, . . . , yn] with K = K a �eld
of characteristic 0. We make S into a T -module via differentiation: given
monomials yα , xβ we de�ne

yα ◦ xβ =

�
0 if αi > βi for some i
α!

�
β

α

�
xβ−α otherwise

,

where the computations on the multi-indices are made componentwise, e.g.
α! = α0! · . . . · αn!.

We recall that:

• given f ∈ S we set f ⊥ = {D ∈ T : D ◦ f = 0}, this is an ideal in T and it
is called the orthogonal ideal of f ;

• given D ∈ T we set D−1 = { f ∈ S : D ◦ f = 0}, this is a graded T -
submodule of S and it is called the inverse system of D.

We will need some basic properties about orthogonal ideals and inverse systems:

Properties. (see [4], pp. 11�19)

1. if f ∈ Sd , then f ⊥ is a Gorenstein artinian ideal with socle degree d ;
2. if D ∈ Tk , d ≥ k, then dimK (D

−1)d =
�
n+d
n

�
−

�
d−h+n

n

�
;

3. if D,G ∈ Tk, d ≥ k, such that (D−1)d = (G−1)d , then [D] = [G] in PTk ;
4. if f1, . . . , fr ∈ Sd , then

�
r�

i=1

f ⊥i

�

k

= {D ∈ Tk : (D
−1)d ⊃< f1, . . . , fr >};

5. via apolarity we have a natural identi�cation ˇPSk = PTk .

Apolarity is a powerful tool in studying the decomposition of forms as
sums of powers because of the following (see [7], 1.3)
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Lemma 2.1. (Apolarity Lemma) Let f1, . . . , fr ∈ Sd , then the following facts
are equivalent:

1. ∃∃ ci j ∈ K , l1, . . . , lk ∈ S1, [la] �= [lb] in PS1 for a �= b, such that

fi =

k�

j=1

ci j l
d
j , i = 1, . . . , r;

2. ∃∃ L1, . . . , Lk ∈ PT1, Li �= Lj for i �= j , such that

I� ⊂

r�

i=1

f ⊥i

where I� is the ideal of the set of points � = {L1, . . . , Lk}.

The lemma leads our attention to the ideals contained in
�r

i=1 f ⊥i , so we
give the following de�nitions.

De�nition. Given f ∈ Sd and � ∈ Hilbk ˇPS1, � is apolar to f if I� ⊂ f ⊥.

De�nition. Given f1, . . . , fr ∈ Sd the Variety of Simultaneous Apolar Sub-
schemes of length k of the fi �s is

V SPS( f1, . . . , fr ; k) =

�

� ∈Hilbk ˇPS1 : I� ⊂

r�

i=1

f ⊥i

�

.

The Apolarity Lemma shows why the binary case is easier to treat. When
n = 1 the ideal of a set of points is a principal ideal and the generator is square
free if the points are distinct. Hence there is a natural identi�cation

Hilbk ˇPS1 = ˇPSk = PTk,

where the last equality comes from Property 5.
Finally, using Property 4 and Lemma 2.1, we get an useful description of

V SPS and of V SSP in the binary case.
Let S = K [x0, x1] and f1, . . . , fr ∈ Sd . Using the de�nition of V SPS and
recalling that the ideal of a set of k points in P1 is generated by a form of degree
k, we get:

V SPS( f1, . . . , fr ; k) =
�
[D]∈ PTk : D ∈ (∩r

i=1 f
⊥
i )k

�
(∗)

= P
� r�

i=1

f ⊥i
�
k

=
�
[D]∈ PTk : (D

−1)d ⊃< f1, . . . , fr >
�
.
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Using the de�nition of V SSP and recalling that the ideal of a set of k distinct
points in P1 is generated by a form of degree k without repeated roots, we get:

V SSP( f1, . . . , fr ; k) =
�
[D]∈ PTk : D ∈ (∩r

i=1 f
⊥
i )k , D /∈�k

�
(∗∗)

= P
� r�

i=1

f ⊥i
�
k
\�k ⊂ PTk

=
�
[D]∈ PTk : (D−1)d ⊃< f1, . . . , fr >, D /∈�k

�

where �k is the locus of polynomials of degree k with at least a repeated root.
We also notice that

kmin( f1, . . . , fr ) = min{k : ∃D ∈ Tk : (D
−1)d ⊃< f1, . . . , fr >, D /∈�k}.

It is useful to summarize these results.

Proposition 2.2. If S = K [x0, x1] and f1, . . . , fr ∈ Sd , then V SPS( f1, . . . ,
fr ; k) and V SSP( f1, . . . , fr ; k) are projective spaces for every k. Moreover

V SPS( f1, . . . , fr ; k) ⊇ V SSP( f1, . . . , fr ; k)

and they are equal whenever the latter is not empty.

Given explicit binary forms f1, . . . , fr we can actually determine kmin ,
V SSP and V SPS using (∗) and (∗∗). This requires an easy algorithm involv-
ing linear algebra (orthogonal ideals) and basic Gröbner basis computations (in-
tersection of ideals).
The really tough problem is deriving results holding for a generic choice of r
forms. Part of the dif�culty is related to the bad behavior of orthogonal ideals.
For example it easy to show that for any binary form f ∈ Sd

dimK ( f
⊥)k ≥ 2k − d,

but the actual value of the dimension depends on the particular form we choose.
The best result we can obtain for orthogonal ideals is an easy consequence

of the previous bound and of Grassmann�s formula for vector spaces.

Lemma 2.3. Let d, r, k be natural numbers and S = K [x0, x1]. If

k >
r(d + 1)− 1

r + 1
,

then for any choice of f1, . . . , fr ∈ Sd we have

( f ⊥1 ∩ . . . ∩ f ⊥r )k �= (0).
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Proof. Let Vi = ( f ⊥i )k and V = Sk , then Vi ⊆ V and dimV = k + 1.
Applying Grassmann�s formula and using the inequality dim Vi ≥ 2k − d , we
get

dim V1 ∩ V2 ≥ 2(2k − d)− (k + 1)

dim(V1 ∩ V2) ∩ V3 ≥ 3(2k − d) − 2(k + 1)

...

dim

r�

i=1

Vi ≥ r(2k − d)− (r − 1)(k + 1)

The last inequality gives the result. �

3. The geometric setting.

From now on we will consider only binary forms, so that S = K [x0, x1]
and T = K [y0, y1].

Consider the map

ψk : PTk → G(k, Sd)

[D] �→ (D−1)d
;

by Property 2 it is well de�ned when k ≤ d . Using Plücker coordinates and
Property 3 one veri�es that ψk is an isomorphism on its image, Gk = ψ(PTk),
for all k ≤ d . If we let �k ⊂ Tk be the locus of forms with repeated roots, then
we have

dimGk = dimG�k
+ 1,

where G�k
= ψk(P�k).

Now consider the following diagram

G(r, Sd)× G(k, Sd) ⊃ �k =
�
(�, �) : � ⊆ �, � ∈Gk

�
⊃ ��k

=

=
�
(�, �) : � ⊆ �, � ∈G�k

�

ϕk

��
G(r, Sd) ⊃ ��k

where ϕk is the projection on the �rst factor and ��k = ϕk(�k).
The study of the simultaneous decompositions of a set of forms f1, . . . , fr

is equivalent to the study of the map ϕk , as shown by the following
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Proposition 3.1. Let f1, . . . , fr ∈ Sd be linearly independent forms and let
� =< f1, . . . , fr >. Then

1. kmin ( f1, . . . , fr ) = min{k : ϕ
−1
k (�) \��k

�= ∅} ;

2. V SSP( f1, . . . , fr ; k) � ϕ−1
k (�) \��k

;
3. V SPS( f1, . . . , fr ; k) � ϕ

−1
k (�) .

Proof. First we compute the �ber of ϕk on �:

ϕ
−1
k (�) = {(�, (D−1)d ) : � ⊂ (D−1)d , [D]∈ PTk};

from this we immediately get part 1.
Now, using (∗∗), we notice that

ψ−1
k (ϕ−1

k (�) \��k
) = {[D]∈ PTk : � ⊂ (D−1)d , D /∈�k} = P(∩i f

⊥
i )k \�k .

Because ψk is an isomorphism we get part 2. The same argument and (∗) give
part 3. �

The map ϕk is useful in solving our problem also because of the properties
of the varieties �k and ��k

. In fact we have

Lemma 3.2. �k and ��k
are Grassmannian bundles on irreducible varieties.

In particular they are irreducible and we have

dim�k = dim��k
+ 1 = k + r(k − r).

Proof. It is enough to consider the projection maps

�k −→ Gk

��k
−→ G�k

and to notice that their �bers are the Grassmannians G(r, k). �

Finally we can state our main result.

Theorem 3.3. Let S = K [x0, x1]. Given natural numbers d, r set

kmin(d, r) = min

�

k : k >
r(d + 1)− 1

r + 1

�

.

There exists an open non-empty subset

Vd,r ⊂ G(r, Sd)
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such that, for all f1, . . . , fr ∈ Sd satisfying [< f1, . . . , fr >] ∈ Vd,r , the
following hold:

1. kmin( f1, . . . , fr ) = kmin(d, r);

2. V SSP( f1, . . . , fr ; k) =

�
P
k(r+1)−r(d+1) k ≥ kmin(d, r)
∅ k < kmin(d, r)

;

3. V SPS( f1, . . . , fr ; k) = ∅ if k < kmin(d, r).

Moreover

V SSP( f1, . . . , fr ; kmin(d, r)) =

�
P
r+1−ε ε �= 0

P0 ε = 0
.

where ε ≡ r(d + 1) mod (r + 1).

Proof. Set Zk = {� ∈ ��k : ϕ−1
k (�) ⊂ ��k

} and consider the following
diagram

�k

ϕk

��

⊃ ��k
⊃ ϕ−1

k (Zk)

��k ⊃ Zk

Set λ = min{dimϕ
−1
k (�) : � ∈ ��k}. Using Lemma 3.2 and the Fiber

Dimension Theorem (see [5], lecture 11) we get

dim�k = dim��k + λ,

dim��k
≥ dim Zk + λ.

Hence dim��k − dim Zk ≥ 1.
If ��k is dense, then dim�k ≥ dimG(r, Sd). This gives the condition

k ≥ k1 = min

�

k : k ≥
r(d + 1)

r + 1

�

.

By Lemma 2.3 we know that if k ≥ k2 = min{k : k >
r(d+1)−1

r+1
} then ϕk

is dominant. It is easy to check that k1 = k2 = kmin(d, r). For the sake of
simplicity set k̄ = kmin(d, r).

Finally we set

U = ��k̄ \ (Zk̄ ∪ ��k̄−1).
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By the preceding consideration U ⊂ G(r, Sd) is open and non-empty. More-
over, if �∈U then

ϕ
−1
k̄

(�) \ ��k̄
�= ∅,

ϕ−1
k (�) = ∅, k < k̄.

Using Proposition 3.1 we conclude that U satis�es part 1.

Proposition 2.2 yields

V SSP( f1, . . . , fr ; k) = V SPS( f1, . . . , fr ; k) = ∅, k < k̄ = kmin(d, r)

for f1, . . . , fr ∈ Sd such that < f1, . . . , fr > ∈U . This proves part 3.

By Propositions 2.2 and 3.1 we know that V SSP( f1, . . . , fr ; k), k ≥

kmin(d, r), is a projective space of dimension dimϕ
−1
k (< f1, . . . , fr >). As

the �ber dimension is an upper semicontinuous function, there exists an open
non-empty subset U � ⊂ U such that

dim V SSP( f1, . . . , fr ; k) = dim�k − dimG(r, Sd) = k(r + 1)− r(d + 1)

for < f1, . . . , fr > ∈U �. This completes the proof of part 2.

To get the expression for dimV SSP( f1, . . . , fr ; kmin(d, r)) we only have
to use part 2 and to study the congruence class of r(d + 1)− 1 mod r + 1.

Letting Vd,r = U � completes the proof. �

Example. Using Theorem 3.3 we can recover a classical result of Sylvester
(1851). Given a generic binary form f ∈ Sd , i.e. f ∈ Vd,1, the minimal number
of linear forms needed to decompose it is

kmin ( f ) = min{k : k >
d

2
} =

�d

2

�
+ 1

and the possible decompositions are parametrized by

V SSP( f, kmin( f )) =

�
P
1 d even

P0 d odd
.
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4. Rational curves.

De�nition. A rational curve C ⊂ P
n is the image of a rational map α : P

1 →

Pn . We say that the curve is non-degenerate if it is not contained in a hyperplane.

Let S = k[x0, x1] and �x the standard lex ordered monomial basis, e.g.
with respect to x0 > x1, in each of the homogeneous pieces Sn , so we have the
identi�cations Pn = PSn for all n.

Let C ⊂ P
n be a rational curve of degree d , with d > n. There exists

a unique �C ∈ G(d − n − 1, Pd) = {� ⊂ Pd : � � Pd−n−1} such that the
following diagram commutes

P
d ⊃ Cd

π

��
P
1 ��

νd

��
�

�
�

�
�

�
�

P
n ⊃ C

where νd is the d -uple embedding of P
1, Cd is the rational normal curve of

degree d and π is the projection from �C . In particular π (Cd ) = C .

De�nition. Let C ⊂ P
n be a rational curve. We de�ne

Sa
b (C) = {� ∈G(a, P

n) : α−1(� ∩ C) has length b}

Sa
b (C)�= = {� ∈G(a, P

n) : α−1(� ∩ C) is smooth of length b}.

We notice that S0
b (C) is the set of b-uple points of C and S0

b(C)�= is the set
of b-uple points of C having b distinct tangent lines, e.g. if C is a plane cubic
with a node then S0

2 (C)�= = P0 while S0
2 (C

�)�= = ∅ if C � is a cusp.
If C is a smooth curve, then Sa

b (C)�= has a nicer geometric description:

Sa
b (C)�= = {� ∈G(a, P

n) : � ∩ C is a set of b distinct points }.

Let C ⊂ P
n be a rational non-degenerate curve of degree d . It is immediate to

verify the following:

• Sn−1
d (C) = P̌n as, taking multiplicities into account, any hyperplane

intersects C in d points;

• Sn−1
d (C)�= is dense in P̌n as a generic hyperplane intersects C in d distinct

points;

• Sn−1
d
� (C) = Sn−1

d
� (C)�= = ∅ if d

�

�= d .

We notice that Sa
b (C), Sa

b (C)�= are not interesting for all the values of a and
b, as shown by the following
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Lemma 4.1. Let C ⊂ Pn be a rational non-degenerate curve of degree d ,
d > n. If b − a > d − n + 1, then Sa

b (C) = Sa
b (C)�= = ∅.

Proof. Let � ∈ Sa
b (C); then choosing P ∈ C \ � we build �

�

=< �, P > ∈

Sa+1
b�

(C), b
�

≥ b + 1. Repeating the construction we get

� ∈ Sn−1

b
(C)

where b ≥ b + n − a − 1. As Sn−1

b
(C) �= ∅ we must have d − n + 1 ≥ b − a.

We have shown that Sa
b (C) �= ∅ implies d − n + 1 ≥ b− a and by negation we

get the thesis. �

We will describe Sa
b (C), Sa

b (C)�= in the extremal case b − a = d − n + 1.

Proposition 4.2. Let C ⊂ Pn be a rational non-degenerate curve of degree d ,
d > n, and a, b natural numbers such that b − a = d − n + 1. Then the
following isomorphisms hold

Sa
b (C) � V SPS( f1, . . . , fr ; b)

Sa
b (C)�= � V ⊂ V SSP( f1, . . . , fr ; b)

where V is dense and r = d − n.

Proof. Let �C =< f1, . . . , fr >, f1, . . . , fr ∈ Sd . As C is the projection of
Cd from �C we have

Sa
b (C) = {� ∈G(a, P

n) : α−1(� ∩ C) has length b}
� {� ∈G(a+ d − n, Pd) : � ⊃ �C , ν−1

d (� ∩ Cd ) has length b} = A

and

Sa
b (C)�= = {� ∈G(a, P

n) : α−1(� ∩ C) is smooth of length b}
� {� ∈G(a+d−n, Pd) : � ⊃ �C , ν−1

d (�∩Cd ) is smooth of length b}
= B

First we construct the isomorphism A � V SPS( f1, . . . , fr ; b).
Given � ∈ A consider the subscheme Y = ν−1

d (� ∩ Cd ) ⊂ P
1: it is de�ned by

the ideal
IY = (g1, . . . , gn−a)

where the gi �s are the pullbacks of the linear equations de�ning �, as the scheme
has length b they have a common factor of degree b. The gi �s are independent
so that the numerical condition on a and b implies that the saturation of IY is
the principal ideal (g), g = GCD(gi ) ∈ Sb. Let Gi(y0, y1) = gi(y0, y1) ∈ Tb
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and G(y0, y1) = g(y0, y1) ∈ Tb. By apolarity the hyperplanes (G−1
i )d de�ne

�. It is easy to verify that (G−1)d ⊃ �, i.e. G ∈ V SPS( f1, . . . , fr ; b), so we
have a map A → V SPS( f1, . . . , fr ; b). The inverse map is de�ned by sending
G ∈ VSPS( f1, . . . , fr ; b) to the linear space (G−1)d ∈ A.

Now we construct the isomorphism B � V , V a dense subset of
V SSP( f1, . . . , fr ; b). Let V be the dense subset of V SSP( f1, . . . , fr ; b) con-
sisting of square free polynomials. Then we de�ne the map V → B by
sending G ∈ V to the linear space (G−1)d . To de�ne the inverse map, given
� ∈ B , we consider the subscheme ν

−1
d (� ∩ Cd ) which is de�ned by the prin-

cipal ideal (g), g ∈ Sb : G(y0, y1) = g(y0, y1) is a square free polynomial and
G ∈ VSSP( f1, . . . , fr ; b). �

Example. Let f1 = −2x 5
0 + 2x 5

1 + (x0− x1)
5, f2 = −6x 5

0 + 3x 5
1 + 2(x0− x1)

5

and �C =< f1, f2 >. We want to study the rational curve C = π (C5) ⊂ P3

obtained as projection of the rational normal curve of P
5 from �C .

We know that
Sa
b (C) = Sa

b (C)�= = ∅

when b − a > 3. Hence the interesting cases are:

Sa
a+3(C), Sa

a+3(C)�= a = 0, 1, 2.

To apply Proposition 4.2 we need to determine I = f ⊥1 ∩ f ⊥2 . By direct
computation we get

I = (y0y1(y0 + y1), y
4
0 + y41 ) ∩ (y0y1(y0 + y1), y

4
0 + 2y41),

in particular

dimK I5 = 4, dimK I4 = 2, dimK I3 = 1, dimK Id = 0 for d < 3

It is possible to verify that each homogeneous piece of I is generated by forms
without common roots. Moreover the generator of I3 is square free. Hence,
using (∗∗) and Proposition 4.2, we obtain

S0
3 (C)�= = PI3 = P

0,

S1
4 (C)�= = PI4 = P

1,

S2
5(C)�= = PI5 = P

3.

We also have that Sa
a+3(C)�= is dense in Sa

a+3(C) for a = 0, 1, 2.
In particular

S0
3(C)�= = P

0

means that C has a unique triple point.
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We have shown how to use V SSP to study curves that are projection of
the rational normal curve: given the center of projection � =< f1, . . . , fr >

we have to investigate the decompositions of the f1, . . . , fr as sums of powers
of linear forms, so that each case has to be treated separately. To �nd general
results we have to exclude curves with a pathological behavior and this can be
done using Theorem 3.3.

De�nition. A rational curve C ∈ P
n of degree d , d > n, is said to be generic if

�C ∈ Vd,r , where r = dimK �C and Vd,r is as given by Theorem 3.3.

We notice that, because Vd,r is open and non-empty, almost all the rational
curves C ⊂ P

n of degree d , d > n, are generic.

An easy consequence of Theorem 3.3 and of Proposition 4.2 is the follow-
ing:

Corollary 4.3. Let C ⊂ P
n be a generic rational curve of degree d , d > n. If

b − a = d − n + 1 then, de�ning kmin(d, d − n) as in Theorem 3.3, we have

1. Sa
b (C) = Sa

b (C)�= = ∅ for b < kmin(d, d − n);

2. Sa
b (C) = Pb(d−n+1)−(d−n)(d+1) for b ≥ kmin(d, d − n);

3. Sa
b (C)�= is dense in P

b(d−n+1)−(d−n)(d+1) for b ≥ kmin(d, d − n).

Example. Let C ⊂ P
3 be a rational non-degenerate curve of degree 5. By

Lemma 4.1 we know that Sa
b (C) = Sa

b (C)�= = ∅ for b − a > 3.

If C is generic, then using Corollary 4.3 and the fact that kmin(5, 2) = 4 we
get

S0
3(C)�= = ∅

S1
4(C)�= = P

0

S2
5(C)�= = P

3.

In particular, because S0
3(C) = ∅, we conclude that C has no triple points. This

shows that the curve of the previous example is not generic.

If C is also smooth then the equality

S1
4(C)�= = P

0

means that there exists a unique 4-secant line to C .
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Example. Let C ⊂ P16 be a smooth generic rational curve of degree 19.
Because the curve is smooth we can get interesting geometric properties from
studying Sb

a (C)�= .
C is the projection of the rational normal curve C19 from �C =<

f1, f2, f3 > and, because the curve is generic, we know that kmin( f1, f2, f3) =
15. This means that

Sa
a+4(C)�= = V SSP( f1, f2, f3; a + 4) = ∅, for a = 0, . . . , 10.

We get that
S11
15(C)�= = P

0

so that there exists a unique 15-secant P
11 to C . We also have

S12
16(C)�= = P

4, S13
17(C)�= = P

8, S14
18(C)�= = P

12.
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