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CUBIC SURFACES ON THE SINGULAR LOCUS OF THE
ECKARDT HYPERSURFACE

HANIEH KENESHLOU

The Eckardt hypersurface in P19 is the closure of the locus of smooth
cubic surfaces with an Eckardt point, which is a point common to three
of the 27 lines on a smooth cubic surface. We describe the cubic surfaces
lying on the singular locus of the model of this hypersurface in P4, ob-
tained via restriction to the space of cubic surfaces possessing a so-called
Sylvester form. We prove that, inside the moduli of cubics, the singu-
lar locus corresponds to a reducible surface with two rational irreducible
components intersecting along two rational curves. The two curves inter-
sect at two points representing the Clebsch and the Fermat cubic surfaces.
We observe that the cubic surfaces parameterized by the two components
or the two rational curves are distinguished by the number of Eckardt
points and automorphism groups.

Introduction

The moduli of cubic surfaces Mcub is defined as the geometric invariant quo-
tient of the space of quaternary cubics P19 ∼= P(H0(P3,OP3(3))) by the induced
action of the special linear group SL(4). The classical description of this space
is due to G. Salmon [11] and A. Clebsch [1]. They provedMcub is isomorphic to
the weighted projective space P(1,2,3,4,5) by showing that the corresponding
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graded ring of invariants is generated by six homogeneous invariant polynomi-
als Īn of degrees n = 8,16,24,32,40,100. The first five polynomials are alge-
braically independent, however Ī2

100 can be expressed as a polynomial in terms
of the other invariants. In fact, they described a birational model of Mcub as
the quotient space of P4, the parameter space of cubic surfaces with a so-called
Sylvester form, by the action of the Symmetric group S5. Under this birational
equivalence, each SL(4)-invariant polynomial Īn can be regarded as continua-
tion of an S5-invariant polynomial In of the same degree in the coordinate ring
of P4.

One can use these invariants to describe further interesting subspaces of the
space of cubic surfaces. By classical results ([12], App. III), the vanishing of
Ī32 is a necessary and sufficient condition for a cubic surface to be singular. In
this line, the famous discriminant hypersurface V (Ī32) parameterizes singular
cubic surfaces generically having a node. Turning to smooth cubic surfaces
equipped with 27 lines, a point common to three lines is called an Eckardt point.
The Salmon invariant Ī100 vanishes on the closure of the locus of smooth cubic
surfaces with an Eckardt point. We call V (Ī100)⊂ P19 the Eckardt hypersurface.

Let E = V (I100) be the model of the Eckardt hypersurface in P4, parame-
terizing the cubic surfaces in Sylvester form having an Eckardt point. By abuse
of language, we may refer to E as Eckardt hypersurface as well. Motivated by
question 13 in [9], the main contribution of this paper is to study the cubic sur-
faces determined by the singular locus of this hypersurface. We prove (Theorem
2.1), up to linear change of coordinates in P3, the singular locus determines two
2-dimensional rational families of cubic surfaces intersecting along two rational
curves. The two curves intersect at two points which correspond to the Clebsch
and the Fermat cubic surfaces possessing respectively 10 and 18 Eckardt points.
The generic elements of the two families are smooth cubic surfaces with respec-
tively 2 and 3 Eckardt points. Moreover, the two rational curves parameterize
the cubic surfaces with respectively 4 and 6 Eckardt points. The difference in
number of the Eckardt points implies further difference in the automorphism
group of the cubic surfaces parameterized in different families.

The paper is structured as follows. In the first section, we recall the construc-
tion of the moduli of cubic surfaces as a weighted projective space. Section 2
deals with the general description of the singular locus of the Eckardt hyper-
surface E corresponding to a reducible surface with two components inside the
moduli of cubics. In Section 3, we investigate the geometric features and the
differences of the cubic surfaces lying on the two components and the two ratio-
nal curves. Our results rely on the computations done by the computer algebra
system Macaulay2 [6], and uses the supporting functions in [7].
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1. Preliminaries

In this section we briefly review the construction of the moduli spaces of cubic
surfaces using the Sylvester forms and the Salmon invariants.

Let P19 = P(V ) be the parameter space of cubic forms V = C[x0, . . . ,x3](3)
in four variables. One considers the induced action of G := SL(4) on P19, from
the standard action on P3. The geometric invariant quotient

Mcub := P19 //G

is called the moduli space of cubic surfaces. By the following result,Mcub is a
projective variety.

Proposition 1.1. There is an isomorphism Mcub ∼= Proj(RG), where R is the
coordinate ring of P19 and RG is the ring of invariants.

Proof. See [3], Proposition 8.1.

The computation from classical invariant theory due to Salmon [11] and
Clebsch [1] shows that the graded ring of invariants is generated by homoge-
neous polynomials Īn of degrees

n = 8,16,24,32,40,100

such that the first five invariants are algebraically independent. Since 100 is not
divisible by 8 and there is a relation expressing Ī2

100 as a polynomial in terms
of the remaining invariants, the graded subalgebra generated by elements of
degree divisible by 8 is freely generated by the first five invariants, and Mcub
has structure of the weighted projective space

Mcub ∼= Proj(RG)∼= Proj(
⊕
k∈Z

RG
8k)
∼= P(1,2,3,4,5).

See [10] for a modern proof of this isomorphism. One can restrict the invariants
to an open subset of cubic surfaces with somewhat easier form, that is the set of
the cubic surfaces with Sylvester forms. This then would allow to express the
invariants in terms of symmetric functions of the coefficients of the Sylvester
representation.

Theorem 1.2. A general cubic surface is projectively isomorphic to a surface
in P4 given by equations

a0z3
0 +a1z3

1 +a2z3
2 +a3z3

3 +a4z3
4 = 0, z0 + z1 + z2 + z3 + z4 = 0. (∗)

The coefficients a0, . . . ,a4 are determined uniquely up to permutation and a
common scaling.
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Proof. See [4], Corollary 9.4.2.

Definition 1.3. The equations (∗) in above theorem is called a Sylvester form
of a cubic surface. The Sylvester form is non-degenerate if ai 6= 0 for all i =
1, . . . ,4. Otherwise, it is called degenerate.

Let σi be the elementary symmetric polynomial of degree i in a0, . . . ,a4.
Then, Salmon’s computations ([11], p.197) provide the following easy formu-
lation of the invariants for cubic surfaces possessing a Sylvester representation:

I8 = σ
2
4 −4σ3σ5, I16 = σ1σ

3
5 , I24 = σ4σ

4
5 , I32 = σ2σ

6
5 , I40 = σ

8
5 , (?)

and

I100 = σ
18
5 .det

1 a0 a2
0 a3

0 a4
0

...
. . .

...
1 a4 a2

4 a3
4 a4

4

 .

One can use the Algorithm 3.1 in [8] to compute the coefficients ai’s and to eval-
uate these invariants for a general quaternary cubic. Moreover, one can consider
the divisors of the zero sets of the invariants inside the moduli of cubics [2].
The invariant I32 defines the boundary divisor inMcub as the locus of singular
cubic surfaces. The invariant I40 restricts to (a0a1a2a3a4)

8, and vanishes on the
closure of the locus of smooth cubic surfaces with a degenerate Sylvester form.
The invariant I100 vanishes on the closure of the locus of smooth cubic surfaces
with an Eckardt point. This is a point common to three of the 27 lines on a
smooth cubic surface. In particular, a general cubic surface with such a point
has a Sylvester form in which at least two of the ai coincide.

We observe that in the above formulation (?), the G-invariant polynomials
can be viewed as invariants under the action of the Symmetric group S5. Fur-
thermore, let P4 //S5 be the quotient of the parameter space P4 of Sylvester
forms by the action of the symmetric group S5. This quotient space is iso-
morphic to the weighted projective space P(1,2,3,4,5)σ equipped with natural
coordinates σ1, . . . ,σ5. Following [2], the above formulas defines a birational
map

P4 //S5 ∼= P(1,2,3,4,5)σ

Φ //Mcub ∼= P(1,2,3,4,5)I

(σ1 : σ2 : σ3 : σ4 : σ5) 7−→ (I8 : I16 : I24 : I32 : I40).

with base locus V (σ4,σ5). Note that considering the symmetric polynomials as
polynomials in coordinates ai’s, the base locus V (σ4,σ5) ⊂ P4 is the union of
the loci V (ai,a j) for all i 6= j. On the other hand , we have

σ1 =
I16

σ3
5
, σ2 =

I32

σ6
5
, σ3 =

I2
24− I8I40

4σ9
5

, σ4 =
I24I40

σ12
5

, σ5 =
I2
40

σ15
5

(∗∗)
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which defines the birational inverse map

(I8 : I16 : I24 : I32 : I40) 7−→
(
I16 : I32 : I2

24− I8I40 : I24I40 : I2
40
)
.

Considering the coordinates I8d’s as polynomials in terms of ai’s and formulas
in (∗∗) shows that this map is not defined at the points for which σ5 = 0. This
is the point Q = (1 : 0 : 0 : 0 : 0). It is shown in [2], Theorem 6.6, that inside the
moduli of cubics, Q stands for the Fermat cubic surface given by

S f : (z3
0 + z3

1 + z3
2 + z3

3 = 0)⊂ P3.

2. The singular locus of the Eckardt hypersurface

A point where three lines on a smooth cubic surface intersect is called an Eckardt
point. In this case, the three lines are cut out by the intersection of the cubic
surface with the tangent plane at this point. The Eckardt hypersurface V (Ī100)⊂
P19 is the closure of the locus of smooth cubic surfaces with an Eckardt point.
Let E :=V (I100)⊂ P4 be the model of the Eckardt hypersurface inside the space
of cubic surfaces possessing a Sylvester form. The following theorem describes
a general cubic surface (up to linear change of coordinates in P3) lying on the
singular locus Γ⊂ E of this hypersurface. More precisely, let

Ψ : P4 −→ P(1,2,3,4,5)σ

(a0 : · · · : a4) 7→ (σ1 : σ2 : σ3 : σ4 : σ5)

be the quotient map from P4, and set ∆ := Φ(Ψ(Γ)\ [V (σ4,σ5)∩Ψ(Γ)]), then
we have:

Theorem 2.1. With the above notation, ∆ is the union of two rational irreducible
surfaces S[2,2,1] and S[3,1,1], as the two irreducible components of ∆. A general
point of each component is a smooth cubic surface with the Sylvester form as
follows, respectively:

S[2,2,1] : az3
0+bz3

1+bz3
2+cz3

3+cz3
4 = 0, z0+z1+z2+z3+z4 = 0, a,b,c∈C

S[3,1,1] : az3
0+bz3

1+bz3
2+bz3

3+cz3
4 = 0, z0+z1+z2+z3+z4 = 0, a,b,c∈C.

The two components intersect along two rational curves, and the two curves in
turn intersect at two points which represent the Clebsch and the Fermat cubic
surfaces.

Remark 2.2. We remark that, as it is suggested by naming of the two surfaces,
and in shadow of Theorem 1.2, one can consider other possible permutations of
the three coefficients a,b,c in Sylvester presentation of a general element on the
two components.
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Proof. An explicit computation (see VerifyAssertion1, [7]) of the singular
locus Γ and its decomposition into irreducible components shows that Γ has 30
irreducible linear components as follows:

• 5 irreducible components corresponding to the coordinate hyperplanes

V (ai)⊂ P4, i = 0, . . . ,4.

Therefore, under the map Ψ, the five components parameterizing the cubic sur-
faces with a degenerate Sylvester form are mapped to the hypersurface V (σ5)
which is contacted to the point Q via the map Φ. Therefore, the five components
correspond to the Fermat cubic surface.

• 15 irreducible components as copies of P2 given by

Vi jkl =V (ai−a j,ak−al)⊂ P4, i 6= j 6= k 6= l

for (i, j,k, l) among

(2,3,1,4), (1,4,0,2), (1,4,0,3), (2,4,1,3), (1,3,0,2)

(1,3,0,4), (3,4,1,2), (3,4,0,1), (3,4,0,2), (2,3,0,1)

(2,3,0,4), (1,2,0,3), (1,2,0,4), (2,4,0,1), (2,4,0,3)

Since for a pair of 4-tuples (i, j,k, l),(i′, j′,k′, l′), one can map the corresponding
components Vi jkl,Vi′ j′k′l′ , one to another, by a permutation of the coordinates in
P4, under the map Ψ, the two components, and therefore all the components
Vi jkl’s are mapped to a rational surface S1⊂P(1,2,3,4,5)σ , whose general point
is a cubic surface with Sylvester form:

az3
0 +bz3

1 +bz3
2 + cz3

3 + cz3
4 = 0, z0 + z1 + z2 + z3 + z4 = 0, a,b,c ∈ C.

In particular, under the birational map Φ, the surface S1 has a birational model
S[2,2,1] ⊂Mcub whose general point is a smooth cubic surface with Sylvester
form as above. In fact,

S[2,2,1] = Φ(S1 \ [V (σ4,σ5)∩S1]).

More precisely, choosing the coordinate (a : b : c) for P2, as the representative
of the components Vi jkl , we have

P2 \V (abc)−→ S1 \ [V (σ5)∩S1]−→ S[2,2,1] \{Q}.
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• 10 irreducible components as copies of P2 given by

Vi jk =V (ai−a j, ak−a j)⊂ P4, i 6= j 6= k

for (i, j,k) among the triples

(2,4,1), (3,4,2), (3,4,1), (3,4,0), (1,4,0)

(2,3,0), (2,3,1), (1,2,0), (1,3,0), (2,4,0)

With the same argument as above, for two choices of (i, j,k), the points on
the corresponding components differ only by a coordinate permutation of P4,
and hence they correspond to an another rational surface S[3,1,1] ⊂Mcub whose
general point is a cubic surface of type:

az3
0 +bz3

1 +bz3
2 +bz3

3 + cz3
4 = 0, z0 + z1 + z2 + z3 + z4 = 0, a,b,c ∈ C.

The two surfaces S[2,2,1] and S[3,1,1] inside Mcub intersect along two rational
curves C[3,2] and C[4,1], arised by the images of the two lines `1 : P1 ∼=V (a−c)⊂
P2 and `2 : P1 ∼= V (b− c) ⊂ P2, respectively. Therefore, they parameterize the
cubic surfaces with the Sylvester forms as follows:

C[3,2] : az3
0+bz3

1+bz3
2+bz3

3+az3
4 = 0, z0+z1+z2+z3+z4 = 0, a,b∈C.

C[4,1] : az3
0+bz3

1+bz3
2+bz3

3+bz3
4 = 0, z0+ z1+ z2+ z3+ z4 = 0, a,b ∈C

In particular, the two curves intersect at two points, Q which comes by the
choice of one of the coordinates a,b,c to be zero, and the point arised by a= b=
c which represents the Clebsch cubic surface given by the following equations:

Sc : z3
0 + z3

1 + z3
2 + z3

3 + z3
4 = 0, z0 + z1 + z2 + z3 + z4 = 0.

3. How different are the two components?

In this section, we study the geometric nature and the differences of the cubic
surfaces lying on the two components or the two curves. Look at the table 1 for
a quick overview of the data of a general point on S[2,2,1],S[3,1,1],C[3,2] and C[4,1],
as well as that of the Clebsch and the Fermat cubic surfaces. In the rows ”no.
Epts” and ”Aut”, we have marked respectively the number of the Eckardt points
and the automorphism group.

As the first step of our study, an explicit examination demonstrates that the
two components stand for two different types of singularities of E. In fact,
identifying each of the components with its possible birational model as an ir-
reducible component of Γ we have:
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Theorem 3.1. A general point of S[2,2,1] (resp. S[3,1,1]) corresponds to an ordi-
nary double (resp. triple) point on E. Moreover, a general point of each of the
two rational curves corresponds to an ordinary triple point on E.

Proof. See (VerifyAssertion2, [7]) for the explicit computation.

The nicely prescribed Sylvester forms of the cubic surfaces on the two com-
ponents and the curves reveal the number of Eckardt points and their arrange-
ments. More precisely, let π ⊂ P3 be the pentahedron with faces

πi := (zi = 0), i = 0, . . . ,3

π4 :=−(z0 + z1 + z2 + z3)

where z0, . . . ,z3 are considered as the coordinates of P3. The two faces πi,π j

intersect along the edge ei j := (πi = π j = 0), and the vertex Ai j is the intersec-
tion point of the three faces with indices different from i, j. This is the so-called
Sylvester pentahedron associated to a cubic surface with Sylvester representa-
tion as in (∗). We remark that, as followed from the Theorem 1.2, for a general
cubic surface given by a homogeneous cubic form F , there are five linear forms
`i’s in four variables of P3 such that any four of them are linearly independent
and such that

4

∑
i=0

`i = 0, F =
4

∑
i=0

ai`
3
i .

Therefore, and more generally, one can consider the Sylvester pentahedron of
F as the pentahedron associated to these five linear forms, similarly. Note that
the five linear forms are uniquely determined by F (up to permutations and a
common non-zero scaling). See ([12], page 125-137) for more details on this.

Let π be the pentahedron defined above, and for a cubic surface with Sylvester
representation as (∗), consider its equations in P3 obtained by substituting z4
with −(z0 + z1 + z2 + z3) in (∗). We choose the remaining coordinates z0, . . . ,z3
as the coordinates of P3. By classical results ([12], page 148), one can see that,
with this notation, a general cubic surface S lying on

• S[2,2,1] has 2 Eckardt points A12,A34 such that the joining line (z1 + z2 =
z0 = 0) is contained in S.

• S[3,1,1] has 3 Eckardt points given by the vertices A12,A23,A13, which are
collinear and the common line (z0 = z1 + z2 + z3 = 0) is not contained in
the surface S.

• C[3,2] has 4 Eckardt points A12,A23,A13 which are collinear and the point
A04, which is joined to the former points by the three lines (through it) cut
out by the tangent hyperplane at this point.
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• C[4,1] has 6 Eckardt points. The 6 points are the 6 vertices of the quadri-
lateral intersected on π0 by four other faces of the pentahedron, that is
A12,A23,A13,A14,A24,A34. Naturally, in this case the hyperplane π0 cuts
out a cubic curve on the surface passing through the 6 points.

In particular, the Clebsch cubic surface has 10 Eckardt points as the 10 vertices
of the pentahedron π . The Fermat cubic surface possesses 18 Eckardt points.

The diversity in number of Eckardt points causes further difference of cubic
surfaces in terms of the automorphism group. An automorphism of the projec-
tive space P3 fixing a hyperplane and a point is called a homology. The single
point is called the center of homology. In terminology of classical projective
geometry, a homology of order 2 is usually referred to as an involution. There
is a one-to-one correspondence between the set of Eckardt points of a smooth
cubic surface and the set of involutions of P3 keeping the surface invariant ([5],
Theorem 9.2).

To avoid iteration, let S denote the cubic surface corresponding to a general
point of one of the two surfaces or the two curves. By classification of the pos-
sible groups of automorphisms of a smooth cubic surface [5], a general cubic
lying on S[2,2,1] has automophism group generated by the two involutions asso-
ciated to the two Eckardt points and Aut(S) ∼= (Z2)

2. On the other hand, the
automorphism group of a general cubic surface lying on S[3,1,1] is generated by
involutions permuting the three Eckardt points and keeping the common line in-
variant, that is Aut(S) = S3. For a general cubic surface on the curves C[3,2] and
C[4,1], one has Aut(S) ∼= S3×S2 and Aut(S) ∼= S4, respectively. The Clebsch
cubic surface has the automorphism group Aut(Sc) ∼= S5 acting by permuta-
tions of the coordinates in P4. Up to isomorphism, the Clebsch surface is the
only cubic surface with this automorphism group. The automorphism group of
the Fermat cubic surface is isomorphic to H oS4 where the subgroup H acts
by multiplying the coordinates by a primitive third root of unity and S4 acts by
permuting the coordinates in P3. For more on automorphism group of cubic
surfaces classified in any characteristic, we refer the reader to the recent paper
[5].

S[2,2,1] S[3,1,1] C[3,2] C[4,1] Sc S f

no. Epts 2 3 4 6 10 18

Aut (Z2)
2 S3 S3×S2 S4 S5 H oS4

Table 1: The data of a general cubic surface on different components
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[1] C. Clebsch, Über eine Transformation der homogenen Functionen dritter Ord-
nung mit vier Veränderlichen, J. für die Reine und Angew, Math.58 (1861),
109–126.

[2] E. Dardanelli, B. van Geemen, Hessians and the moduli space of cubic surfaces,
Trans. Amer. Math. Soc. 422 (2007), 17–36.

[3] I. Dolgachev, Lectures on invariant theory, volume 296 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, (2003).

[4] I. Dolgachev, Classical Algebraic Geometry : A Modern View. Cambridge Uni-
versity Press, Cambridge, (2012).

[5] I. Dolgachev, A. Duncan, Automorphisms of cubic surfaces in positive character-
istic. Izv. Russian Acad. Sciences: Ser. Mat. 83:3 (2019), 5-82.

[6] D.R. Grayson and M. Stillman, Macaulay2, a software system for research in
algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[7] H. Keneshlou, SingularLocusOfEckardtHypersurface.m2, a Macaulay2
file, Available at https://github.com/Hanieh14/CubicSurfaces/blob/
master/SingularLocusOfEckardtHypersurface.m2.

[8] M. Michałek, M. Moon, Spaces of sums of powers and real rank boundaries,
Contributions to Algebra and Geometry, Vol. 59 (2018), pp 645–663.

[9] K. Ranestad, B. Sturmfels, Twenty-seven questions about the cubic surface. this
volume

[10] E. Reinecke, Moduli spaces of cubic surfaces, A master thesis, Rheinischen
Friedrich-Wilhelms-Universität Bonn, (2012).

[11] G. Salmon, A treatise on the Analytic Geometry of three dimensions, Fourth
edition, Hodges, Figgis, and Co., Dublin (1882).

[12] B. Segre, The non-singular cubic surfaces, Clarendon press, Oxford, (1942).

HANIEH KENESHLOU
Max-Planck Institute for Mathematics in Sciences, Leipzig

e-mail: hanieh.keneshlou@mis.mpg.de

http://www.math.uiuc.edu/Macaulay2/
https://github.com/Hanieh14/CubicSurfaces/blob/master/SingularLocusOfEckardtHypersurface.m2
https://github.com/Hanieh14/CubicSurfaces/blob/master/SingularLocusOfEckardtHypersurface.m2

	Preliminaries
	The singular locus of the Eckardt hypersurface
	How different are the two components?

