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TOWARDS CLASSIFYING TORIC DEGENERATIONS
OF CUBIC SURFACES

MARIA DONTEN-BURY - PAUL GÖRLACH - MILENA WROBEL

We investigate the class of degenerations of smooth cubic surfaces
which are obtained from degenerating their Cox rings to toric algebras.
More precisely, we work in the spirit of Sturmfels and Xu who use the
theory of Khovanskii bases to determine toric degenerations of Del Pezzo
surfaces of degree 4 and who leave the question of classifying these de-
generations in the degree 3 case as an open problem. In order to carry
out this classification we describe an approach which is closely related to
tropical geometry and present partial results in this direction.

1. Introduction

We work over the field of rational functions K :=K(t), where K is any field of
characteristic zero. Our main objects are smooth cubic surfaces in P3 that arise
as the blow up of P2 in six points in general position. We store the coordinates
of these points in a matrix A and denote the corresponding cubic surface with
XA. In this article we investigate toric degenerations of these varieties, i.e. flat
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families with general fiber XA such that the special fiber is a toric variety. De-
generations are a powerful tool in algebraic geometry as they allow to deduce
geometric properties of the general fiber, as for example the Hilbert function,
from the special one.

Our approach to find degenerations is based on the article [15] of Sturmfels
and Xu who consider degenerations of the spectrum of the Cox ring

R(XA) =
⊕

[D]∈Cl(XA)

Γ(XA,OXA(D)),

of varieties XA arising as the blow up of P2 in at most 8 points in general position,
where A is as before the matrix storing the coordinates of these points. Note
that one can regain XA as a GIT-quotient of its total coordinate space, i.e. the
spectrum of its Cox ring. The crucial property of the Cox rings of these varieties
is that due to a result of Nagata [12] they are isomorphic to an invariant ring of
a certain group action, the so called Cox-Nagata ring RA, see Section 2 for the
construction.

In particular we obtain a realization of R(XA) as a subalgebra of a poly-
nomial ring over the field K. This allows us to find toric degenerations of
SpecR(XA) via the theory of Khovanskii bases. (Note that not all toric de-
generations arise in this way.) The notion of Khovanskii bases was developed in
[13] by Robbiano and Sweedler, where they are referred to as sagbi bases, and
was generalized and made applicable in a much broader setting in the article [9]
of Kaveh and Manon.

Let us fix the setting: For every p ∈ K(t) let ωp be the unique integer such
that t−ωp p(t) has neither a pole nor a zero at t = 0. Consider the valuation

ν : K(t)∗→ Z, p 7→ ωp.

Then for each f ∈ K[x1 . . . ,xr] we define its initial form to be

in( f ) := (t−ω f )|t=0 ∈K[x1 . . . ,xr],

where ω is the minimum of ν on the coefficients of all monomials of f . For a
K-subalgebra U ⊆ K[x1, . . . ,xr] we define its initial algebra in(U) to be the K-
subalgebra of K[x1, . . . ,xr] generated by in( f ), where f runs over all elements
of U .

Definition 1.1. In the above setting we call a subset F := { f1, . . . , fm} ⊆ U
moneric of weight (ω1, . . . ,ωm) if in( fi) = (t−ωi fi)|t=0 is a monomial for all i.
If furthermore the initial algebra in(U) is generated by the set {in( f ); f ∈ F}
we call F a Khovanskii basis of U .
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Having a finite Khovanskii basis on hand one obtains a degeneration of Spec(U)
to the toric variety Spec(in(U)), see e.g. [2, Thm.3.3]. Note that the set of
degenerations arising this way strictly contains the set of Gröbner degenerations
to a prime ideal, see [9, Thm. 1] and [4, Sect. 1]. See [15, Ex. 3.3] for an
example of a degeneration arising via the above construction but which cannot
be obtained as a Gröbner degeneration.

As by construction, the Cox ring and therefore the Cox-Nagata ring con-
tains information about all possible embeddings of XA into projective space and
XA can be regained as a GIT-quotient out of its total coordinate space one can
deduce degenerations of XA from that of its Cox-Nagata ring. More precisely,
in [2] Bernal et al. show that starting with a suitably high multiple of a very
ample line bundle of XA the toric degeneration of the Cox-Nagata ring provides
a toric degeneration of XA such that the special fiber and XA are embedded into
the same projective space PN .

The original motivation of Sturmfels and Xu to study this type of degenera-
tions was the following: Any toric degeneration of the total coordinate space of
XA yields an Erhart-type formula for the Hilbert function of the Cox ringR(XA).
This means that it can be read off in purely combinatorial terms by counting lat-
tice points in slices of the rational polyhedral cone describing the special fiber.
Moreover, fixing an embedding of XA into projective space the formula for the
Hilbert function of the Cox ring induces a realization of the Hilbert function
of X with respect to the given embedding as the Ehrhart function of an explicit
rational convex polytope, see [2, Chap. 4].

As the Hilbert functions of the Cox rings R(XA) for generically chosen
points coincide, the following natural question arises:

Question: Which choice of points on P2 is the optimal one for computing an
Ehrhart-type formula for the Hilbert function of the Cox-Nagata ring RA, i.e.
which of the corresponding cones of the special fiber is defined by the smallest
number of linear inequalities?

Sturmfels and Xu answer this question in the case of total coordinate spaces
of blow ups of P2 in five points and leave the question in the cubic surface
case as an open problem, which is the starting point of this article. It is worth
noting that toric degenerations and related Ehrhart-type formulas may be used
to investigate certain properties of the Cox-Nagata ring. For example, in [15],
they are the key ingredient in the proof of the Batyrev–Popov conjecture that
Cox rings of del Pezzo surfaces are presented by ideals of quadrics.

We now describe the organization of this article and summarize the main
results: In Section 2 we give the necessary background on Cox-Nagata rings
and explain the previous results of [2] and [15] on this topic. Moreover we de-
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scribe an ad hoc approach to answer the above question. As it turns out that
this approach is computationally too expensive to finish in a reasonable time
we describe in Section 3 an alternative approach for finding a computable fan
parametrizing moneric and Khovanskii subspaces. The idea is to split the prob-
lem into two steps. The first step gives rise to a partial classification of the possi-
ble degenerations and is treated in Section 4. Here we obtain 78 moneric classes
38 of which are Khovanskii; see Theorems 4.1 and 6.1 for the precise result. The
second step is more elaborate and ends up in a serious case by case study. We
present the main ideas and state a complete result for one of seven possible cases
in Section 5 Theorem 5.1. In order to obtain these results we make extensive use
of the computer algebra system Singular [5] and, for the results of Section 6,
Macaulay2 [6]. The code, extensive classification output and supplementary
material is made available at https://software.mis.mpg.de.

2. Earlier results
In this section we give the general construction of the Cox-Nagata ring which
represents the Cox ring of a projective space Pr blown up in n points in general
position. We recall how this ring was used in [15] to compute toric degenera-
tions of smooth del Pezzo surfaces and to give an Erhart-type formula for the
Hilbert polynomial. Moreover, we introduce the tropical Grassmannian and re-
call the results of [2], where it is shown that this natural candidate is insufficient
for our task.

Let us recall how to compute the Cox ring of projective r-space blown up
in n points in general position: Let A := (a1, . . . ,an) be an (r+1)×n matrix of
full rank over K with pairwise linearly independent columns and denote by XA

the blow up of Pr in the corresponding points. Denote with D1, . . . ,Dn ⊆ X the
exceptional divisors and let D0 ⊆ X be the proper transform of a hyperplane.
Then the subgroup D ⊆ Div(XA) generated by the Di projects isomorphically
onto the free abelian group Cl(XA) and the Cox ring of XA is given as

R(XA) =
⊕
D∈D

Γ(XA,OXA(D)).

As shown by Nagata in [12] this Cox ring has an especially nice interpretation
in terms of the invariant ring of the following group action: Let G ⊆ Kn be the
nullspace of A. Then G is an (additive) unipotent group and setting λ · z :=
(λ1z1, ...,λnzn), for a point z ∈ Kn we obtain an action

G× (Kn×Kn)→ (Kn×Kn) (λ ,(z,w)) 7→ (z,w+λ · z).

We set R := K[x1, . . . ,xn,y1, . . . ,yn] for the polynomial ring whose variables xi

resp. y j correspond to the coordinates zi resp. w j. Then the ring of invariants
RA := RG is called the Cox-Nagata ring and the following statement holds:

https://software.mis.mpg.de
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Theorem 2.1. Assume r ≥ 2 holds. Then the Cox ring R(XA) is isomorphic to
the Cox-Nagata ring RA.

In [11] Mukai explicitely describes the isomorphism of Theorem 2.1. More-
over, in [3] Castravet and Tevelev give an explicit set of generators of the Cox
ring of a projective space Pr blown up in at least r+3 points lying on a rational
normal curve of degree r. This generalizes a result of Batyrev and Popov [1]
who show that the Cox ring of a smooth del Pezzo surface of degree at least 2
arising as a blown up P2 is generated by global sections corresponding to the ex-
ceptional curves. Using this, we obtain a distinguished set of generators of RA,
which is up to scalar multiples determined by the linear subspace G⊆Kn. In the
following we will always assume RA to be represented by this set of generators
F and call the defining linear subspace G⊆ Kn moneric (Khovanskii) subspace
if the corresponding set of generators is a moneric (a Khovanskii basis). This
enables us to reformulate our aim as follows, see Problem 5.4 in [15]:

Aim: Determine all equivalence classes of 3-dimensional Khovanskii subspaces
of K6, where two subspaces G and G′ are called equivalent if the corresponding
initial algebras in(RG) and in(RG′) coincide.

Let us explicitly look at the generators of the Cox-Nagata ring of the smooth
cubic del Pezzo surfaces. Let G and A be as before with n = 6 and r = 3 and
assume that the points in P2 corresponding to the columns of A are in general
position, i.e. no three of them lie on a line and no six of them on a conic. Denote
by pi jk the Plücker coordinates of G. Then the set of generators F of RA ⊆
K[x1, . . . ,x6,y1, . . . ,y6] consists of the following elements:

• 6 generators corresponding to the exceptional divisors: Ei = xi.

• 15 generators corresponding to the lines through pairs of points, e.g. we
have

F12 = p123y3x4x5x6 + p124x3y4x5x6 + p125x3x4y5x6 + p126x3x4x5y6. (1)

• 6 generators G1, . . . ,G6 corresponding to the quadrics through any five of
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the points, e.g. we have

G1 = p234 p235 p236 p456 · y2y3x4x5x6x2
1 + p234 p246 p245 p356 · y2y4x3x5x6x2

1

+p235 p245 p256 p346 · y2y5x3x4x6x2
1 + p236 p246 p256 p345 · y2y6x3x4x5x2

1

+p234 p345 p346 p256 · y3y4x2x5x6x2
1 + p235 p345 p356 p246 · y3y5x2x4x6x2

1

+p236 p346 p356 p245 · y3y6x2x4x5x2
1 + p245 p345 p456 p236 · y4y5x2x3x6x2

1

+p246 p346 p456 p235 · y4y6x2x3x5x2
1 + p256 p356 p456 p234 · y5y6x2x3x4x2

1

+(p235 p346 p124 p256− p234 p356 p125 p246) · y2y1x3x4x5x6x1

+(p235 p246 p134 p356− p234 p256 p135 p346) · y3y1x2x4x5x6x1

+(p245 p236 p134 p456 + p234 p256 p145 p346) · y4y1x2x3x5x6x1

+(p235 p246 p145 p356− p245 p236 p135 p456) · y5y1x2x3x4x6x1

+(p236 p245 p146 p356− p246 p235 p136 p456) · y6y1x2x3x4x5x1

+(p235 p246 p134 p156− p234 p256 p135 p146) · y2
1x2x3x4x5x6. (2)

Note that all the other generators can be obtained out of the ones given above
by permuting the indices.

To compute the initial forms of this set of generators we use the following
observation regarding the isomorphism given in [2, Sect. 2.3]: Fixing a linear
subspace G ∈Gr(n− r,n) the coefficients of the monomials in the generators of
RA are always given as polynomials in the Plücker coordinates of G. Moreover
for generic G none of these coefficients equals zero. Now set N :=

( n
n−r

)
, let

p1, . . . , pN denote the Plücker coordinates ordered lexicographically and let Ipl
be the ideal generated by the Plücker relations. Then we may regard the gener-
ators of RA as elements of the ring S := K[x1, . . . ,xn,y1, . . . ,yn, p1, . . . , pN ]/Ipl ,
evaluated at the Plücker coordinates of A. If it is clear from the context we will
use in the following the term ”generator” as well for the elements in S as for
their evaluation at a point.

Recall that the value of a product is the sum of the values of its factors.
In particular, given the distinguished set of generators of RA, the values of the
Plücker coordinates together with the values of all coefficients of the generators
of RA that are not monomials in Plücker coordinates uniquely determine the
initial forms of the generating set.

To determine the initial forms of the generators F of RA we need to know
all values of the occurring coefficients. Recall that the value of a product is the
sum of the values of its factors. In particular, values of coefficients which are
monomials in the Plücker coordinates pi are already determined by the values
of the pi themselves. In contrast, the values of the coefficients that are not
monomials in Plücker coordinates are not uniquely determined by the values of
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the pi. Hence we need to treat them separately and will denote them with ci for
short. In the case that RA is the Cox-Nagata ring of a cubic surface, the ci are
precisely the binomial coefficients occurring in the generators Gi.

We deduce the following ad hoc approach for finding moneric or Khovanskii
subspaces for Cox-Nagata rings RA. Consider the map

G 7→ (ν(p1), . . . ,ν(pN),ν(c1), . . . ,ν(cs)), (3)

and proceed as follows:

(i) Determine the image of the above map.
(ii) Subdivide the image into sets of points that give rise to the same initial

forms of the generators.
(iii) Identify those sets of points that arise from moneric or Khovanskii sub-

spaces G⊆ Kn.

We will see that the image of the above map consists of integer points of a
certain tropical variety, a reembedding of the so-called tropical Grassmannian.
Let us recall the necessary notions on tropical varieties: Let k be a field with
valuation val : k∗ → R and let X be a closed subvariety of the algebraic torus
TN(k). Then the Bieri-Groves set A(X) of X is

A(X) :=
{
(val(x1), . . . ,val(xN)) ∈ RN ; (x1, . . . ,xN) ∈ X

}
.

Let L be any algebraically closed field extension of k with a nontrivial valua-
tion extending the valuation on k. Then due to the Fundamental Theorem of
Tropical Geometry and [10, Thm. 3.2.3] the closure of A(XL) in RN equals the
tropicalization or tropical variety trop(X), where XL denotes the extension of X
to a closed subvariety of TN(L).

We now specialize to the case of the tropical Grassmannian which will play
an important role in our further considerations. Let k = K, embed Gr(d,n) with
respect to the Plücker embedding into PN−1 and let Gr0(d,n) be the intersection
of the affine cone of Gr(d,n) with the canonical torus of KN . Then the tropical
Grassmannian is the tropicalization trop(Gr0(d,n)) which we will refer to as
TGr(d,n) for short. In the following we will assume the tropical Grassmannian
TGr(d,n) to be endowed with the fan structure given in [14], compare Section 4.

For our approach we will use the following slight modification of the trop-
ical Grassmannian: Consider the embedding of Gr(d,n) into projective space
given by the map

G 7→ [p1, . . . , pN ,c1, . . . ,cs] ∈ PN+s−1. (4)

Then, intersecting the affine cone over Gr(d,n) with respect to this embedding
with the canonical torus of KN+s we can form its tropicalization, which we will
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refer to as T (c1, . . . ,cs) in the following. The image of the generic subspaces
G ∈ Gr(d,n) under the map (3) as above turns out to be the Bieri-Groves set
of this very affine variety. Even more, the subdivision of the image into sets
of points that give rise to the same initial forms can be obtained by endowing
T (c1, . . . ,cs) with a sufficiently fine fan structure and looking at the set of integer
points in the relative interior of its maximal cones. Here and in the following
a cone is always a convex polyhedral cone and a fan a polyhedral fan, where
we allow the cones to be non-pointed. Note that in case that there are no non-
monomial coefficients c1, . . . ,cs the above map is the usual Plücker embedding
and the tropicalization T (c1, . . . ,cs) is the tropical Grassmannian.

The latter case shows up when considering smooth del Pezzo surfaces XA

that arise as blow ups of P2 in five points in general position. It was treated in
[15, Sect. 4], where Sturmfels and Xu show that the collection of all possible
initial forms for the generating set of RA gives rise to a subdivision of the tropical
Grassmannian TGr(2,5) into 2400 maximal cones. 600 of these cones come
from moneric subspaces and all but 60 of these are even Khovanskii. Modulo
permuations of the indices of the Plücker coordinates, the number of moneric
classes turns out to be seven and the number of Khovanskii classes is six. Now
calculating the corresponding cones of the toric degenerations they show that
the optimal number of linear inequalities for computing the Hilbert function is
12. Moreover, they conjecture that in the case of del Pezzo surfaces of degree 3
the optimal number is 21. Classifying all equivalence classes of 3-dimensional
Khovanskii subspaces of K6 would enable us to prove this conjecture.

The first step of our agenda turns out to be the task of computing the integer
points of a tropical variety in R56: The embedding of Gr(3,6) as described in (4)
is given by the Plücker coordinates and the coefficients of the monomials of the
generators Ei,Fi j and Gi of RA that are not monomials in Plücker coordinates.
The latter ones are exactly the 36 binomial coefficients in the generators Gi.
Unfortunately, our experiments suggest that this approach is computationally
infeasible, which leads to the task of finding a computable fan parameterizing
moneric and Khovanskii subspaces. In [2] the tropical Grassmannian and the so
called Naruki fan are investigated in order to attack this problem but turn out to
be insufficient for this task: In their Example 5.3 they give two threedimensional
linear subspaces of K6 having the same values in their Plücker coordinates. But
whereas the one is moneric the other one has a binomial as initial form of one
of its generators. Similarly they proceed for the Naruki fan.

3. Idea behind the classification

From now on we work on the case of smooth del Pezzo surfaces of degree 3.
While in the previous section we claim that TGr(3,6) is not suitable for a direct
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use in the classification of Khovanskii bases of RA, here we argue that it still
contains a lot of information on these bases and can play a very important role
in the solution of this problem.

We compare the structure of TGr(3,6) with the structure of the tropical
variety T (c1, . . . ,c36) ⊆ R56 arising via the embedding of Gr(3,6) in P55 as
in (4), where the ci are the binomials appearing in the generators of RA. We set
TB := T (c1, . . . ,c36) for short and consider the map

π : TB−→ TGr(3,6) (5)

which comes from a projection to Plücker coordinates. Since this projection
restricts to a monomial map of big tori, by [10, Cor. 3.2.13] we know that π is
well-defined and surjective. Moreover, note that the inverse image of any cone
of TGr(3,6) under π is a fan, as it is an intersection of a rational polyhedral
cone with a fan structure on TB.

The idea behind using π is that since TGr(3,6) does not have enough data
and TB does, but is currently uncomputable, we investigate both at the same
time. We try to obtain as much of the classification as possible from TGr(3,6),
but look for help at π

−1(C) for all subcones C of TGr(3,6) which do not con-
tain the full information on Khovanskii bases of RA corresponding to its points.
Moreover, we hope that understanding the structure of π may possibly give us
some insight into the cardinality of its fibers over such subcones C, even without
determining π

−1(C) explicitly.

3.1. Plan for the classification

The reason for the fact that TGr(3,6) is insufficient for parametrizing all Kho-
vanskii bases of RA is the possibility of a cancellation in a binomial. If the value
of ν is the same for both monomials in a binomial b = m1 +m2, their leading
terms may cancel and ν(b) may be bigger than ν(m1) = ν(m2). In particular,
ν(b) cannot be determined by the values ν(m1),ν(m2) (in which case we could
treat b as a monomial for the purpose of determining Khovanskii bases). On
the level of Bieri-Groves sets, this is the only possible cause for the presence
of non-trivial fibers of π – either positive dimensional or consisting of several
isolated points.

As shown by [2, Ex. 5.3], TGr(3,6) contains a locus where some binomial
coefficients of generators G1, . . . ,G6 may cancel and π actually has a non-trivial
fiber. A condition for a binomial having equal values of monomials is a linear
form in ν(p1), . . . ,ν(pN). Hence the locus LBC where a cancellation of at least
one binomial coefficient is possible can be easily determined as an intersection
of the fan TGr(3,6) with a union of finitely many hyperplanes. This construc-
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tion shows also that LBC has a fan structure. Our situation can be summarized
as follows.

Remark 3.1. Over TGr(3,6)\LBC the map π is one-to-one. That is, outside LBC

the leading terms of elements ofF are uniquely determined by ν(p1), . . . ,ν(pN)
and thus are parametrized by integral points of TGr(3,6). Over LBC the fibers
of π may, but do not have to, be non-trivial.

Hence we intend to classify Khovanskii bases of RA for G corresponding
to points of TGr(3,6) \LBC using TGr(3,6), and investigate fibers of π to find
Khovanskii bases for A coming from points of LBC. We proceed along the fol-
lowing lines.

Algorithm 3.2. Start with a cone C in TGr(3,6), not necessarily maximal. The
output is the set of all Khovanskii bases corresponding to points of π

−1(C) ⊂
TB.

1. Using generators corresponding to lines. Subdivide C according to the
generators Fi j of RA. Cones C1, . . . ,Cn in the subdivision are in one-to-
one correspondence with all possible (moneric) choices of leading terms
of all of the generators Fi j.

Our computations in the proof of Theorem 4.1 show that such a choice
contains already a lot of information on the relation between values of ν

for the Plücker coordinates. That is, for each Ci there is not much freedom
in choosing leading terms of G1, . . . ,G6.

2. Using generators corresponding to conics. Subdivide each of the Ci

according to choices of leading monomials of G1, . . . ,G6. While investi-
gating possible values of binomial coefficients one should be able also to
describe LBC ∩Ci.

3. Investigating π over LBC. Take all subcones for which it is not clear
whether there is a single choice of leading monomials of G1, . . . ,G6, and
investigate the fibers of π over them. If for a fixed subcone there are only a
few binomials that can cancel, one may try to compute the tropicalization
of an embedding of TGr(3,6) via Plücker relations and these binomials,
and use the result to understand fibers of π .

We test this approach in Section 4, where we compute the tropicalization
of the embedding of Gr(3,6) in R21 given by Plücker coordinates and one
binomial c to prove that over one cone in the subdivision fibers of π are
trivial despite the fact that c may cancel.
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4. Locating Khovanskii bases. Decide which moneric bases found by the
algorithm are Khovanskii bases. We deal with this question in Section 6
using the idea explained in [15, Sect. 4,5].

This general scheme will be modified and extended in order to reduce the
complexity of the necessary computations. For the first modifications see Sec-
tion 3.2.

Remark 3.3. Note that we have to consider also non-maximal cones of TGr(3,6),
because they can lie in the image of a maximal cone of TB. However, most of
the faces of cones obtained in the process of subdividing do not have to be an-
alyzed. A face between two cones in the subdivision related to a generator f
of RA is, by definition, the locus between regions corresponding to different
choices of leading monomials of f . Thus, it consists of points for which two
monomials of f have coefficients with the same value, i.e. f is not moneric.
Only if such a face lies in LBC, it has to be taken into consideration.

3.2. Reducing the complexity

Here we present two important observations which simplify the realization of
Algorithm 3.2: reduce the computational complexity and give a better descrip-
tion of LBC.

First, we consider the action of S6 on Gr(3,6) coming from permuting
columns of the matrix A, or coordinates in the subspace G. Note that a del Pezzo
surface XA is not affected by this action, because permuting columns of A is just
permuting the set of points in P2 which are blown up. This action can be real-
ized as signed permutations of the Plücker coordinates {pi jk : 1≤ i< j < k≤ 6}
coming from permutations of the 6 indices, which preserve Plücker relations.
Thus it extends from the Plücker embedding of the affine cone over Gr(3,6) to
the linear automorphism of its ambient affine space. This action, in turn, induces
an action on TGr(3,6) (also on the fan structure), and the tropicalization map is
S6-equivariant.

Lemma 3.4. If P1,P2 ∈ TGr(3,6) are in the same orbit of the S6 action then the
integer points in the fibers π

−1(P1) and π
−1(P2) correspond to the same choices

of leading terms of generators of RA up to a permutation of variables.

Proof. The generating set F ⊂K[pi jk : 1≤ i < j < k ≤ 6][x1, . . . ,x6,y1, . . . ,y6]
is invariant (up to signs and Plücker relations) under the S6-action. (This can
be checked either by direct computation or, more geometrically, by referring to
the Cox ring structure.) We conclude that S6 acts also on the set of binomial
coefficients of generators G1, . . . ,G6 up to signs. This allows us to define the
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S6-action on TB. Note that π becomes an equivariant map, which ends the
proof.

Corollary 3.5. We may restrict to applying Algorithm 3.2 to representatives of
S6-orbits in TGr(3,6).

Using Lemma 3.4 reduces the number of cones to consider significantly.
For instance, instead of processing all 1005 maximal dimensional cones of
TGr(3,6) we have to deal with only 7 representatives of equivalence classes,
see Section 4.

The second observation concerns Plücker-equivalent polynomials: we say
that f1, f2 ∈K[pi jk : 1≤ i < j < k≤ 6] are Plücker-equivalent if their difference
belongs to the Plücker ideal. Note that if f1, f2 are Plücker-equivalent then we
have ν( f1) = ν( f2) on Gr(3,6), because by substituting all pi jk(G) ∈ K(t) for
any G ∈ Gr(3,6) into f1− f2 we get 0. This proves the following

Lemma 3.6. Instead of considering a single binomial we may look at a whole
class of Plücker-equivalent binomials (or even polynomials with more terms).
If for some G ∈ Gr(3,6) one of them may cancel, i.e. values of both monomials
are the same, we look for an equivalent one which cannot cancel at G. If we
find such a binomial, we can read out its value only from values of Plücker
coordinates, without passing to K(t).

The computations done so far (see Section 4) show that thanks to Lemma 3.6
we get significantly smaller LBC and therefore less lower-dimensional cones to
process. For every binomial coefficient of Gi one can find several other binomi-
als equivalent to it up to Plücker relations. It happens very often that even if one
binomial in a group of equivalent ones cancels there is one which does not.

4. Classification of moneric subspaces from TGr(3,6)\LBC

As explained in the previous section, the map π : TB→ TGr(3,6) is bijective
outside the locus LBC ⊆ TGr(3,6) given by possible cancellations of lowest or-
der terms in some binomial expressions. The locus where π is not one-to-one
induces subdivisions of the cones in TGr(3,6) and the resulting fan structure can
in turn can be refined further by choosing initial terms for each of the generators
in F . This refined fan structure on TGr(3,6) has the property that each maximal
cone gives rise to a class of moneric subspaces, while the non-maximal cones
contained in LBC require further investigation, see Remark 3.3.

This fan structure is combinatorially extremely large and carrying out the
corresponding subdivisions of cones in TGr(3,6) is computationally infeasi-
ble. However, the following observation helps: Often, when a cancellation in
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the lowest order terms of a binomial occurs, the leading monomial of the cor-
responding generator in F is independent of the exact value of the binomial
because there is another term of lower value. Systematically exploiting this ob-
servation leads to a unique coarsening of the described fan structure. We were
able to compute this coarsened fan structure and use it to classify all moneric
subspaces G whose corresponding tropical point ν(G) :=(ν(p123), . . . ,ν(p456))
in TGr(3,6) does not lie in LBC:

Theorem 4.1. There is a unique coarsest refinement Σ of the fan structure on
TGr(3,6) equipped with linear maps θC : C→ R27 for all maximal cones C in
Σ such that every subspace G ∈Gr0(3,6) tropicalizing to the relative interior of
C is moneric of weight θC(ν(G)). Its f -vector is

(0, 1, 987, 25605, 245280, 1195815, 3380380, 5827950, 6076590, 3524580, 870840)

and the maximal cones describe 32880 distinct moneric classes, which fall into
78 orbits under the S6-symmetry.

Proof. We denote by Rpl := K[p123, . . . , p456]/Ipl the homogeneous coordinate
ring of Gr(3,6) under its Plücker embedding. For any expression c ∈ Rpl , we
consider its tropical graph T (c) ⊆ R21, defined as the tropicalization of the
embedding of Gr(3,6) into K21 via its Plücker coordinates together with ex-
pression c. Moreover, by trop(c) we denote the piece-wise linear function
TGr(3,6)→ R, mapping (w123, . . . ,w456) to min{∑i jk α

(`)
i jk wi jk | ` = 1, . . . ,r},

where α(1), . . . ,α(r) are the exponents in c.
For convenience, we number the expressions for the generators of the Cox-

Nagata ring as F = { f1, . . . , f27} ⊆ Rpl[x1,y1, . . . ,x6,y6]. For each i = 1, . . . ,27,
let ci1, . . . ,cimi ∈ Rpl denote the coefficients of fi with respect to the variables
x1,y1, . . . ,x6,y6. Define Λi as the lower convex hull of T (ci1)∪ . . .∪ T (cimi)
in R21 and let Σi be the subdivision of TGr(3,6) induced from Λi under the
projection π : R21 � R20. Consider the fan structure Σ on TGr(3,6) arising as
the common refinement of the subdivisions Σ1, . . . ,Σ27.

Let C be any maximal cone of Σ. By construction, for i = 1, . . . ,27, the
lower convex hull Λi is linear over the relative interior of C, i.e.,

Relint(Λi∩π
−1(C)) = {(w,θi(w)) ∈ R21 | w ∈ Relint(C)}

for a uniquely determined linear map θi : C→R. Moreover, the explicit compu-
tation of Λi (as described below) reveals that the relative interior of any maximal
cone of Λi intersects only one of the tropical graphs T (ci1), . . . ,T (cimi). In par-
ticular, Relint(Λi∩π−1(C)) is contained in T (ci j) for exactly one j and does not
intersect T (cik) for k 6= j. This shows that for all G ∈ Gr0(3,6) tropicalizing to
w ∈ Relint(C), the j-th coefficient ci j is the unique term of smallest value θi(w)
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among all terms of fi. Defining θC := (θ1, . . . ,θ27) : C→R27, we conclude that
every G with ν(G) ∈ Relint(C) gives rise to a set RA that is moneric of weight
θC(w).

The direct calculation of Σ is a computationally difficult task, as evidenced
by its large f -vector. However, by exploiting symmetries at several stages and
making use of parallel computations, we were able to carry out the computation
with the computer algebra system SINGULAR [5] using its interface to GFAN

[7] and its library for computing tropical varieties [8].
We proceed as follows: We determine Σ by computing for every single max-

imal cone in TGr(3,6) its subdivision in Σ. Up to S6-symmetry, TGr(3,6)
consists only of seven maximal cones [14]. These seven cones themselves are
stabilized under a subgroup of S6 of order 48, 24, 8, 8, 4, 3 and 2, respectively.
In the following steps of the computation, we fix one of these seven maximal
cones C and its symmetry group S(C)⊆S6.

Most of the coefficients ci j ∈ Rpl in f1, . . . , f27 are monomial expressions in
the Plücker coordinates. For these ci j, the tropical graph T (ci j) is simply the im-
age of TGr(3,6) under the linear embedding R20 ↪→R21, w 7→ (w, trop(ci j)(w)).

The remaining coefficients can be expressed as ci j = u− v with u,v mono-
mials in K[p123, . . . , p456]. If the linear functions trop(u), trop(v) : R20→ R do
not coincide on the entire cone C for at least one of the equivalent binomial ex-
pressions for ci j (see Lemma 3.6), then the lower convex hull of T (ci j)∩π−1(C)
is the graph of the piece-wise linear function trop(u− v)|C : C→ R. This is in
fact always the case except for one special situation: For one of the seven cones
C, there exists one coefficient ci j for which all known expressions as binomials
u− v satisfy trop(u)|C = trop(v)|C. For this one choice of C, ci j, we computed
the tropical variety T (ci j) explicitly in SINGULAR and read off that the lower
convex hull of T (ci j)∩π−1(C) is in fact the graph of a linear function C→ R.

From these descriptions of the lower convex hulls of T (ci j)∩π−1(C) for all
ci j, we compute Λi∩π−1(C) for each i = 1, . . . ,27 and the induced subdivisions
Σi|C of C. Our next step is to compute the common refinement of Σ1|C, . . . ,Σ27|C,
which is combinatorially large, so we find it imperative to exploit symmetries
and use parallelization in the computation, as described in the following algo-
rithm. Here, each subdivision Σi|C is understood as a set of maximal cones.
Input: The subdivisions Σ1|C, . . . , Σ27|C and the symmetry group S(C)
Output: Σ|C, the common refinement of Σ1|C, . . . ,Σ27|C

1: Ω := {C}.
2: for i ∈ {1, . . . ,27} do
3: for all σ ∈ Σi|C do // To be carried out in parallel
4: Compute Ωσ := {σ ∩σ ′ | σ ′ ∈Ω such that dim(σ ∩σ ′) = dim(σ)}.
5: Ω := {τ1, . . . ,τk}, a set of representatives for the S(C)-orbits of

⋃
σ∈Σi|C Ωσ .

6: return
⋃

g∈S(C){g ·σ | σ ∈Ω}.
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With this common refinement algorithm, we were able to compute the max-
imal cones in the subdivision Σi|C for each of the seven maximal cones C rep-
resenting the S6-symmetry classes in TGr(3,6). After letting the symmetric
group S6 act on these results and computing the fan structure induced by the
set of maximal cones, we obtain Σ and read off the f -vector claimed above.

During the computation, we remember at every stage for each maximal cone
the choice of initial monomials it corresponds to. At the end, the computation
reveals that the 870840 maximal cones only describe 32880 distinct moneric
classes, and they fall into only 78 orbits under the S6-symmetry. More detailed
statistics on the subdivisions for each of the seven symmetry classes of cones are
presented in Figure 1 and an explicit description of the subdivision for one of the
maximal cones in TGr(3,6) is contained among the discussion in Section 5.

Type of cone C FFFGG EEEE EEFF1 EEFF2 EFFG EEEG EEFG

size of S6-orbit S6 ·C 15 30 90 90 180 240 360
order of symmetry group S(C) 48 24 8 8 4 3 2
#{cones in Σ|C} 1240 864 1248 860 806 830 812
#{cones in Σ|C}/S(C) 38 36 205 142 259 278 460
#{moneric classes from C}/S(C) 31 35 162 135 253 274 449
#{moneric classes from S6 ·C}/S6 25 17 45 47 60 37 64
#{moneric classes from S6 ·C} 11040 7080 16080 17880 24600 17040 26400

Figure 1: Statistics on moneric classes arising from Σ

5. A complete classification of monericity in EEEE-cones

In the previous section, we computed all moneric classes arising from maximal
cones of TB mapping injectively to TGr(3,6) under π . On the other hand, max-
imal cones of TB not mapping full-dimensionally to TGr(3,6) may also give
rise to moneric subspaces. To classify also such moneric classes, a more refined
approach is necessary. Here, we present partial results in this direction.

Recall that TGr(3,6) consists of 1005 maximal cones which fall into seven
orbits under the S6-action, see [14]. In the following, we focus our attention to
one of these seven symmetry classes, called EEEE in [14]. Going beyond The-
orem 4.1, we study all moneric subspaces arising from the relative interior of
cones of this symmetry class, also classifying the behaviour along LBC. We sus-
pect that a similar approach would be useful for treating all cones in TGr(3,6).

By [14], a cone C representing the symmetry class EEEE is given by the
image of the cone R6×R4

≥0 under the linear map ϕ : R6×R4 ↪→ R20,

ϕ(a,b) := ∑
i< j<k

(ai +a j +ak)ei jk +b1e123 +b2e145 +b3e246 +b4e356 ∈ R20.
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Its symmetry group S(C) ⊆ S6 is the subgroup of S6 of order 24 stabilizing
(e1∧ e6) · (e2∧ e5) · (e3∧ e4) ∈ Sym3∧2R6. In the following, let G ∈ Gr0(3,6)
be a moneric subspace such that its corresponding point in TGr(3,6) is ν(G) =
ϕ((a,b)) with (a,b) ∈ R6×R4

>0.
First, we observe that the coefficients in F16 are p126, p136, p146 and p156,

so their values are {a1 + a6 + ai | i = 2,3,4,5}. Since in(F16) is a monomial,
this implies that there is a unique smallest number among {a2,a3,a4,a5}. In
the same way, considering the coefficients of F25 and F34 reveals that both
{a1,a3,a4,a6} and {a1,a2,a5,a6} have a unique smallest element. Up to S(C)-
symmetry, we may assume that a1 < ai for i = 2, . . . ,5 and that a2 < a j for
j = 3,4,5. The coefficients of F14 have values a1 +a4 +{a2,a3,a5 +b2,a6}, so
a2 6= a6 holds, as otherwise in(F14) would not be a monomial. This leads to two
cases to consider: a6 < a2 and a2 < a6.

Case 1: a1 < a6 < a2 < ai for all i = 3,4,5.
Considering the expression (1) for Fi j, we observe that the four coefficients

of Fi j have values at least ai + a j + ak, where k ranges over {1, . . . ,6} \ {i, j},
with equality if and only if {i, j,k} 6= {1,2,3},{1,4,5},{2,4,6},{3,5,6}. In
particular, the above inequalities for a1, . . . ,a6 uniquely determine

in(Fi j) =
x2x3x4x5x6

xix j
y1 for 1 < i < j, (i, j) 6= (2,3),(4,5),

in(F1i) =
x2x3x4x5

xi
y6 for i = 2,3,4,5 and in(F16) = x3x4x5y2.

For F23 and F45, the coefficients have values a2 + a3 + {a1 + b1,a4,a5,a6} and
a4 +a5 +{a1 +b2,a2,a3,a6}, respectively, leading to the following four possi-
bilities for the initial monomials in(F23), in(F45):

b1 < a6−a1 b1 > a6−a1
b2 < a2−a1 x4x5x6y1, x2x3x6y1 x1x4x5y6, x2x3x6y1
b2 > a2−a1 x4x5x6y1, x1x2x3y6 x1x4x5y6, x1x2x3y6.

In the expression (2) for Gi, the monomials are of the form x1···x6xi
x jxk

y jyk,
where ( j,k) ranges over tuples with j 6= k or j = k = i. Examining the coeffi-
cient of such a monomial, we observe that it has value at least 2∑ 6̀=i a`+a j+ak.
From this, we see that in(Gi) = x2x3x4x5xiy1y6 for i = 2,3,4,5, as the corre-
sponding coefficients exactly attain this bound, while the inequalities among
a1, . . . ,a6 force the remaining coefficients of Gi to have higher value.

For G1, we observe that the coefficient of y2
1x2x3x4x5x6 is a binomial u− v

in the Plücker coordinates, where ν(v) = ν(u)+ b3. In particular, ν(u− v) =
ν(u) = 2∑i ai, which is smaller than the values of all other coefficients of G1.
Hence, in(G1) = x2x3x4x5x6y2

1. It remains to consider

G6 = (u1−u2)x2x3x4x5x6y1y6 +u3x3x4x5x2
6y1y2 +u4x1x2x3x4x5y2

6 + . . . ,
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where {u1,u2,u3,u4} are monomials in the Plücker coordinates of values

2a1 + . . .+2a5 +{a1 +a6 +b1, a1 +a6 +b2, a1 +a2 +b1, 2a6}

and the remaining terms of G6 are each of higher value than at least one of them.
Refining the conditions imposed by the four possibilities for in(F23), in(F45)
leads to the following possible leading monomials for G6:

conditions on a ∈ R6, b ∈ R4
>0 values of u1, . . . ,u4 in(G6)

b1 > a6−a1, b2 > a2−a1 ν(u4)< ν(u1),ν(u2),ν(u3) x1x2x3x4x5y2
6

b1 > a6−a1, b2 < a2−a1 ν(u2)< ν(u4)< ν(u1)< ν(u3) x2x3x4x5x6y1y6
b1 < a6−a1, b2 > a2−a1 ν(u1)< ν(u2),ν(u3),ν(u4) x2x3x4x5x6y1y6

b1 < a6−a1, b2 < a2−a1, b1 < b2 ν(u1)< ν(u2),ν(u3),ν(u4) x2x3x4x5x6y1y6
b2 < b1 < a6−a1 ν(u2)< ν(u1)< ν(u3),ν(u4) x2x3x4x5x6y1y6
b1 = b2 < a6−a1 ν(u1) = ν(u2)< ν(u3),ν(u4) ?

In the last case b1 = b2 < a6−a1, the binomial u1−u2 can attain any value
λ ≥ b1 + 2∑

6
i=1 ai− (a6− a1). Indeed, the tropical graph T (u1− u2) ⊆ R21

contains all points of the form (ϕ(a′,b′),λ ′) with a′ ∈ R6, b′ ∈ R4
>0, b′1 = b′2

and λ ≥ b′1+2∑
6
i=1 ai− (a6−a1). In particular, the following three cases occur

under the specified condition on λ0 := ν(u1−u2)−2∑
6
i=1 ai +(a6−a1)−b1:

conditions on (a,b,λ0) ∈ R6×R4
>0×R>0 in(G6)

b1 = b2 < a6−a1, λ0 < a2−a6, λ0 < (a6−a1)−b1 x2x3x4x5x6y1y6
b1 = b2 < (a6−a1)− (a2−a6), λ0 > a2−a6 x3x4x5x2

6y1y2
(a6−a1)− (a2−a6)< b1 = b2 < a6−a1, λ0 > (a6−a1)−b1 x1x2x3x4x5y2

6

Case 2: a1 < a2 < ai for all i = 3,4,5,6.
We proceed as in the previous case, examining the restrictions on the leading

terms of F imposed by the inequalities a1 < a2 < a3,a4,a5,a6. We always have

in(F1 j) =
x3x4x5x6

x j
y2, in(Fi j) =

x2x3x4x5x6

xix j
y1 for j ≥ 4, i 6= 1,6,(i, j) 6= (4,5),

in(G1) = x2x3x4x5x6y2
1, in(G2) = x2x3x4x5x6y1y2, in(G3) = x2

3x4x5x6y1y2,

while for the remaining generators, we obtain

in(F45) ∈ {x2x3x6y1, x1x3x6y2}=: X1,

in(F12) ∈ {x4x5x6y3, x3x5x6y4, x3x4x6y5, x3x4x5y6}=: X2,

in(F13) ∈ {x4x5x6y2, x2x5x6y4, x2x4x6y5, x2x4x5y6}=: X3,

in(F23) ∈ {x4x5x6y1, x1x5x6y4, x1x4x6y5, x1x4x5y6}=: X4,

in(G5) ∈ {x3x4x2
5x6y1y2, x2x3x2

5x6y1y4, x2x3x4x5x6y1y5, x2x3x4x2
5y1y6} := X5,

in(G4) ∈ {x3x2
4x5x6y1y2, x2x2

4x5x6y1y3, x2x3x4x5x6y1y4, x2x3x2
4x6y1y5, x2x3x2

4x5y1y6}=: X6,

in(G6) ∈ {x3x4x5x2
6y1y2, x2x3x5x2

6y1y4, x1x3x5x2
6y2y4, x2x3x4x2

6y1y5, x1x3x4x2
6y2y5,

x2x3x4x5x6y1y6, x1x3x4x5x6y2y6}=: X7.
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Opposed to Case 1, one also observes that here no cancellation of lowest or-
der terms in binomials can affect the initial term of any generator. In particular,
the initials of the generators F only depend on a and b, leading to a distinction
of 31 cases of moneric choices, visualized in Figure 2. There, the choice of
initial monomials from the sets X1, . . . ,X7 is specified by a 7-tuple (i1, . . . , i7)
indicating that the i j-th element of X j forms the leading monomial.

b2 < a2−a1 b2 > a2−a1

a4 < a5,a6,
2222232 1222233a4 < b1 +a1

a5 < a4,a6,
2333344 1333345a5 < b1 +a1

a6 < a4,a5,
2444456 1444457a6 < b1 +a1

a4 < a5,a6, b2 < (a2 +b1)−a4 b2 > (a2 +b1)−a4
2221231a4 ∈ b1 +(a1,a2) 1221232 1221231

a5 < a4,a6, b2 < (a2 +b1)−a5 b2 > (a2 +b1)−a5
2331341a5 ∈ b1 +(a1,a2) 1331344 1331341

a6 < a4,a5, b2 < (a2 +b1)−a6 b2 > (a2 +b1)−a6
2441451a6 ∈ b1 +(a1,a2) 1441456 1441451

a4 < a5,a6, b4 < a4− (a2 +b1) b4 > a4− (a2 +b1) b4 < a4− (a2 +b1) b4 > a4− (a2 +b1)
a4 ∈ b1 +(a2,a3) 1211111 1211131 2211111 2211131

a5 < a4,a6, b4 < a5− (a2 +b1) b4 > a5− (a2 +b1) b4 < a5− (a2 +b1) b4 > a5− (a2 +b1)
a5 ∈ b1 +(a2,a3) 1311111 1311141 2311111 2311141

a6 < a4,a5, b4 < a6− (a2 +b1) b4 > a6− (a2 +b1) b4 < a6− (a2 +b1) b4 > a6− (a2 +b1)
a6 ∈ b1 +(a2,a3) 1411111 1411151 2411111 2411151

a4,a5,a6 > b1 +a3
b4 < a3−a2 b4 > a3−a2 b4 < a3−a2 b4 > a3−a2
1111111 1111121 2111111 2111121

Figure 2: Classification of monerics for a1 < a2 < a3,a4,a5,a6.

In total, Cases 1 and 2 combined, we obtain 39 sets of inequalities classify-
ing all moneric subspaces inside C up to S(C)-symmetry. By considering their
S6-orbits, we obtain:

Theorem 5.1. There are exactly 7320 equivalence classes of moneric subspaces
G ∈ Gr0(3,6) tropicalizing to the relative interior of a maximal cone of type
EEEE in TGr(3,6). They fall into 19 orbits under the action of S6.

6. Khovanskii or not?

The last step of Algorithm 3.2 is to check whether a moneric subspace G is
Khovanskii, i.e. whether the set of initial monomials {in( f ) : f ∈ F} gener-
ates the initial algebra in(RA) of the ring RA generated by F . We apply the
method presented in [15, Thm 5.1], relying on the lifting criterion [4, Prop. 1.3].
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For a set of binomial generators b1, . . . ,bk of the ideal J of relations between
{in( f ) : f ∈ F} we have to check whether each bi lifts to the ideal I of re-
lations between F . We say that w(z1, . . . ,zm) ∈ J lifts to I if we may write
0 = w( f1, . . . , fm)+ S( f1, . . . , fm), where S consists of monomials in f1, . . . , fm

of value higher or equal than the value of w( f1, . . . , fm).
This criterion can be verified by comparing the dimensions of graded pieces

of J containing a minimal binomial generating set b1, . . . ,bk with corresponding
graded pieces of I. We define a map q sending a homogeneous element w ∈ I
to an element w ∈ J obtained by taking only monomials with smallest value
from w – the left inverse to the lifting of relations. Thus a binomial bi can be
lifted to I if and only if it lies in the image of q. Note that if a graded piece of I
has dimension d (as a K-vector space) then it is mapped by q to a d-dimensional
subspace of the corresponding graded piece of J.

We consider 78 equivalence classes of moneric subspaces G from Theo-
rem 4.1. In each of these cases minimal generators of J are placed in 27 degrees
(the same as in [15, Thm 5.1]) and one may check that in these degrees there
cannot be any more linearly independent generators. For each of these degrees
the dimension of the graded piece of I is 3 (in general, one may obtain this di-
mension from the value of the Hilbert function, computed e.g. from formula [15,
Cor. 5.2]). Hence an equivalence class as above is Khovanskii if and only if all
corresponding graded pieces of J contain 3 minimal generators.

Theorem 6.1. There are 38 Khovanskii classes in the set of 78 moneric equiva-
lence classes found in Theorem 4.1. In particular, we obtain 38 different combi-
natorial types of toric degenerations of total coordinate spaces of Cox rings of
smooth cubic del Pezzo surfaces.

Corollary 6.2. The smallest number of faces of the cone corresponding to the
toric algebra for one of the 38 Khovanskii classes found above is 21. That is,
those classes do not give a more compact formula for the Hilbert function of RA

than [15, Cor. 5.2].

7. Summary

In Sections 4-6 we have shown how one can deal with each step of Algo-
rithm 3.2, and presented examples of application of these ideas. Although the
computations are not yet finished, we expect that our methods will be sufficient
to understand the missing cases and complete the classification of Khovanskii
bases of Cox rings of the smooth cubic del Pezzo surfaces. What we still need
to analyse are the lower-dimensional cones of TGr(3,6), which can be treated
with methods similar to the ones used in Section 4, and LBC outside the EEEE
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cone, for which we will use the approach presented in Section 5. The results of
further computations will be uploaded successively to the project’s website at
https://software.mis.mpg.de, together with the source code of our pro-
grams.
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