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A SHORT NOTE ON CAYLEY-SALMON EQUATIONS

MARVIN A. HAHN - SARA LAMBOGLIA - ALEJANDRO VARGAS

A Cayley-Salmon equation for a smooth cubic surface S in P3 is an
expression of the form l1l2l3−m1m2m3 = 0 such that the zero set is S and
li, m j are homogeneous linear forms. This expression was first used by
Cayley and Salmon to study the incidence relations of the 27 lines on S.
There are 120 essentially distinct Cayley-Salmon equations for S. In this
note we give an exposition of a classical proof of this fact. We illustrate
the explicit calculation to obtain these equations and we apply it to the
Clebsch surface and to the octanomial form in [12]. Finally we show
that these 120 Cayley-Salmon equations can be directly computed using
recent work by Cueto and Deopurkar [6].

1. Introduction and motivation

During the early days of algebraic geometry results were mostly derived via
clever constructions in projective geometry and lengthy manipulation of the
equations which defined the varieties. In the latter case it was important to
choose a convenient normal form for the equations. For example, it is immedi-
ate to deduce the presence of lines on a surface S⊂ P3 defined by a polynomial
of the form l1l2l3−m1m2m3, with li and m j linear forms. In fact the lines are
the intersection of the planes {li = 0}∩ {m j = 0}. This was first noticed and
exploited by Cayley and Salmon to investigate the incidence relations of the 27
lines on a smooth cubic surface.
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We call an equation of the form

l1l2l3−m1m2m3 = 0, (1)

with li and m j homogeneous linear forms with four variables, a Cayley-Salmon
equation. The first half of this note is an exposition on a classical proof of the
fact that a smooth cubic surface S in P3 can be expressed as the zero-set of a
Cayley-Salmon equation in 120 essentially distinct ways. The arguments we re-
produce illustrate the kind of geometric constructions used by Cayley, Salmon
and later by Steiner. On the way we show that S has 27 lines, 45 tritangent planes
that intersect S at 3 distinct lines, and 120 pairs of triples of tritangent planes
where each triple of planes altogether intersects S in nine lines. The conclu-
sion of the classical constructions is that knowing the equations for the 27 lines
we can compute the Cayley-Salmon equations, and conversely, from a Cayley-
Salmon equation it is possible to derive equations for the 27 lines. In Section
3 we compute the Cayley-Salmon equations first for the Clebsch surface and
then for the octanomial model in [12]. The computations are implemented in
Macaulay2 [9] and Sage [17] and are available at the supplementary website1.

In the second part of the note we treat the question of calculating the Cayley-
Salmon equations without having prior knowledge of the 27 lines. We first
introduce the more modern approach of considering S as a del Pezzo surface
of degree 3. [10, section V.4] This is a complete non-singular surface with
ample anticanonical bundle with self intersection number 3. It is well-known
that degree 3 del Pezzo surfaces may be realized as smooth cubic surfaces in P3

and as the blow-up of P2 at six generic points p1, . . . , p6, i.e. no three of them
are colinear and no conic passes though all six of them (see [10, Section I.4
and Section 5 Proposition 4.10 ]. Furthermore, in a family of cubics containing
six generic points there are at least 24 cuspidal cubics (it follows from [3], for
a more modern explanation [14, Section 4]). Hence one can assume that after
coordinate change the points p1, . . . , p6 lie on the cuspidal cubic V (z3−xy2) and
therefore are of the form 1 1 1 1 1 1

d1 d2 d3 d4 d5 d6
d3

1 d3
2 d3

3 d3
4 d3

5 d3
6

 . (2)

One of the main results of [6] gives an explicit description of the ideal of an
embedding of the surface S into P44. More precisely, they compute the ideal of
the image of this embedding in terms of d1, . . . ,d6. We compute the pull-back
of this ideal via a suitable morphism P3 → P44 recovering all Cayley-Salmon
equations (see Proposition 4.1).

1https://github.com/Saralamboglia/CayleySalmonEquations
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In recent years, the tropicalization of cubic surface has gotten increased at-
tention. Especially the fact that tropicalizations of cubic surfaces may have more
than 27 lines – they might have infinitely many lines – has been a driving force
for several new developments. The works [6] and [12] both aim for a better un-
derstanding of this feature, although from different perspectives. Ultimately our
exposition, examples and calculations are intended to be basic tools for explor-
ing possible implications of Cayley-Salmon equations to a deeper understanding
of the tropicalizations of cubic surfaces. The 120 Cayley-Salmon equations of
a cubic surface contain the information of its 27 lines. Therefore, a possible
next step in exploring such implications is a study of tropical Cayley-Salmon
equations in the flavour of the classical approach of Cayley and Salmon.

2. Classical constructions of Cayley-Salmon equations

Consider X ,S⊂ P3 to be smooth surfaces, with S of degree 3. The history of the
27 lines goes back to the 19th century, when Arthur Cayley observed via a pa-
rameter count that a generic cubic surface can contain only finitely many lines.
He corresponded with Salmon, who replied with an algebro-combinatorial argu-
ment showing that if a smooth cubic surface contains one line L then it contains
exactly 27 lines. See the discussion at the end of [5]. We follow the exposition
in [15] and [16] to: sketch how to prove that S has at least one line L, prove
there are 27 lines and 45 tritangent planes associated to S, and show that S can
be expressed as a Cayley-Salmon equation in 120 distinct ways.

2.1. Cayley-Salmon’s proof for the existence of a line in S

Here we summarize Cayley’s proof in [5] of the following fact:

Theorem 2.1. Let S⊂ P3 be a smooth cubic surface. Then there exists a line L
contained in S.

The proof goes through several geometrical facts known at the time about
tangent spaces, a clever geometrical construction, and the Plücker formulas
for plane curves. We do not give proofs to the lemmas, these follow mostly
from straightforward calculations. Instead we focus on discussing their conse-
quences. When a deeper insight is needed for a proof, we sketch the idea.

The first objects to consider are tangent planes to surfaces. Denote by TPX
the tangent plane of an algebraic surface X at a point P= [p0 : p1 : p2 : p3]∈X . If
X =V ( f ) then TPX is the zero set of x0

∂

∂x0
f |P+x1

∂

∂x1
f |P+x2

∂

∂x2
f |P+x3

∂

∂x3
f |P.

Lemma 2.2. Let X ⊂ P3 be a smooth surface, Π⊂ P3 a plane such that Π 6⊂ X,
C = X ∩Π the scheme theoretic intersection, and P ∈C. Then Π = TPX if and
only if C is singular at P.
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Lemma 2.3. Let S be a smooth cubic surface, P ∈ S a point, and C = S∩TPS
a curve. Then C is either a singular irreducible cubic, the union of a line and a
conic, or the union of three distinct lines.

We are interested in studying the tangent lines to a surface X passing through
some point A outside X . For that purpose we introduce the following object:

Definition 2.4. Given a point A = [a0 : a1 : a2 : a3] ∈ P3 and X = V ( f ) ⊂ P3 a
surface, the first polar with respect to A is the surface in P3 defined as the zero
set of the polynomial:

fA := a0
∂ f
∂x0

+a1
∂ f
∂x1

+a2
∂ f
∂x2

+a3
∂ f
∂x3

. (3)

Geometrically, we have that P ∈ V ( f )∩V ( fA) if and only if the line PA
is tangent to V ( f ) at P. For deg f = 3 the first polar appears naturally in the
following Taylor expansion, where [λ : µ] ∈ P1 parametrizes the line PA:

f (λP+µA) = λ
3 f (P)+λ

2
µ · fA(P)+λ µ

2 fP(A)+µ
3 f (A). (4)

If PA is tangent to S=V ( f ) at P and at A, then the right hand side of Equation (4)
is identically zero, namely f (λP+µA) = 0, so PA⊂ S. This gives:

Lemma 2.5. Let S be a smooth cubic surface. If a line L is tangent to S in two
distinct points then L⊂ S.

If X =V ( f ), we denote by XA the first polar V ( fA). The main construction
to prove the existence of lines on S is the cone over the algebraic curves S∩SA

with vertex A.

Definition 2.6. The tangent cone to X with vertex A is the set of lines passing
through the point A and tangent to X , namely

ConeA(X) :=
⋃

P∈X∩XA

PA. (5)

Lemma 2.7. Let X = V ( f ), n = deg f , and A ∈ P3 a point not in X. Then
ConeA(X) is an algebraic surface of degree n(n−1).

To see geometrically that the degree of ConeA(X) is n(n− 1), let Π be a
general plane through A. The plane curves X ∩Π and XA∩Π have degrees n and
(n−1) respectively, so by Bézout the set X ∩XA∩Π has n(n−1) points. Hence,
the curve ConeA(X)∩Π consists of the n(n−1) lines containing A and the points
of X ∩XA∩Π, so it has degree n(n−1), giving the degree of ConeA(X).
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Now comes the ingenious idea of Cayley and Salmon for finding lines in a
surface S of degree 3. Let A 6∈ S and Π̃ be a plane with A 6∈ Π̃. The idea is to set
up a chain of bijections between the lines on S and lines in Π̃ that are tangent to
the curve ConeA(S)∩ Π̃ at two points. These lines are called bitangent lines and
can be counted using Plücker formulas. The chain of bijections is:

{ lines in S}←→

{
Π tangent to S
at two points

in S∩SA

}
←→


Π tangent

to ConeA(S)
at two points

in S∩SA

←→
{ bitangents to

ConeA(S)∩ Π̃

}
.

Example 2.8. We exemplify the bijection between lines in S and bitangents to
ConeA(S)∩ Π̃ with a remarkable smooth cubic surface whose 27 lines are real,
the Clebsch surface. We take the Clebsch to be given by the polynomial:

f = (x+
√

3y+ z/4)3 +(x−
√

3y+ z/4)3

+(−2x+ z/4)3 +(3z/4+w)3− (3z/2+w)3.

For A and Π̃ we take the point (0,0,−1/2,1) and the plane x2 = 0, respectively.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Image by Greg Egan, see [1].
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The surface ConeA(S). 27 bitangents to the curve ConeA(S)∩ Π̃.

The code for calculating ConeA(S), ConeA(S)∩ Π̃, and the images above
can be found at the supplementary website in the file Cone-Clebsch.

We now state the bijections. For the remainder of this subsection, S⊂ P3 is
a smooth cubic surface and A in P3 is a point outside S.
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Lemma 2.9. Let L ⊂ P3 be a line. Then L ⊂ S if and only if there exists P1,P2
in L∩S∩SA such that TP1S = TP2S.

Lemma 2.9 follows from geometric considerations. Assume that L⊂ S. Let
Π be the plane containing L and A. By Lemma 2.3 the curve S∩Π is singular
at two points P1, P2 in L. Lemma 2.2 implies that Π = TP1S = TP2S and since
A ∈Π we have that P1,P2 are also in SA. The converse is Lemma 2.5.

Lemma 2.10. Let P1,P2 in S∩ SA be distinct points, and Π a plane contain-
ing P1,P2. Then Π= TP1S= TP2S if and only if Π= TP1ConeA(S)= TP2ConeA(S).

Lemma 2.10 follows from a calculation. The main geometrical idea is that
P1,P2 in SA implies that TP1S, TP2S contains the lines P1A, P2A, respectively.
These lines are also contained in ConeA(S).

Before going into the last bijection, we motivate it with the Plücker formula
for calculating bitangents. One of the numbers involved in this formula is the
class of a plane curve C, which is the number of tangents to C that contain a
point B not in C.

Lemma 2.11. Let C be a plane curve with at worse nodes and ordinary cusps as
singularities. Denote by τ , δ , ν , µ the number of bitangents, number of nodes,
the degree and the class of C, respectively. Then

2τ−2δ = (µ−ν)(µ +ν−9). (6)

Equation (6) may be obtained by eliminating variables from the equations
5.34, 5.35 and 5.36 of [2, Chapter 5]. See also Section 5.7 of [8].

Lemma 2.12. Let Π⊂ P3 be a plane, P in S∩SA a point, and Q in PA. Then Π

is tangent to ConeA(S) at P if and only if Π is tangent to ConeA(S) at Q.

Lemma 2.13. Let Π,Π̃⊂ P3 be planes with A 6∈ Π̃, C = ConeA(S)∩ Π̃ a curve,
T = Π∩ Π̃ a line, and Q1,Q2 in T be points. Then:

1. T is tangent to C at Qi if and only if Π is tangent to ConeA(S) at Qi.

2. T is a bitangent of C at points Q1,Q2 if and only if Π is tangent to
ConeA(S) at P1 := AQ1∩S and P2 := AQ2∩S.

3. A point Q ∈C is a node if and only if AQ is tangent to S at two points.

Now we calculate the Plücker formulas for the curve C defined in Lemma 2.13.
For the nodes, by Lemma 2.5 if the line L is tangent to S at two points, then
A 6∈ L. Thus, part 3 of Lemma 2.13 implies that δ = 0. For the degree, by
Lemma 2.7 we get that ν = n(n−1) = 6. For the class, let B ∈ Π̃\C be a point.
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By part 1 of Lemma 2.13 and Lemma 2.10, a tangent line to C containing B
corresponds to a tangent plane to S containing A and B. Recall that if a tangent
of S contains A then the point of contact lies in the first polar SA, of degree n−1.
Likewise for B. Thus the point of contacts are in the set S∩SA∩SB, which has
n · (n− 1) · (n− 1) = 12 points. So µ = 12. Plugging values in Equation (6)
gives τ = 1

2 ·6 ·9 = 27.
Apparently we have found the 27 lines on S, but there is no evident way

of certifying that this count corresponds to distinct lines, or if some have to be
counted with a multiplicity. Thus, we only conclude Theorem 2.1, and move on
to a combinatorial argument in the next section.

2.2. Salmon’s construction of 27 lines

Fix a smooth cubic surface S. We sketch another argument from [5], a combina-
torial construction that Salmon communicated to Cayley in private correspon-
dence. Cayley wrote it down and credited Salmon in the last paragraph of [5].
The argument proves:

Theorem 2.14. If there is a line L in S, then there are 27 distinct lines in S.

Fix a line L⊂ S. A plane Π through L cuts S in a cubic curve which consists
of the union of L with a conic C. Since S is smooth, by Lemma 2.3 the plane
Π intersects S in three distinct lines L,L′,L′′ if and only if C is singular, if and
only if certain determinant of a matrix which depends on the coefficients of C
vanishes. This determinant gives a degree 5 polynomial. It can be shown that
the roots are distinct (see Proposition 7.3 in [13]), hence we recover 5 special
planes through L. These are called tritangent planes through L since any such
plane is equal to the tangent plane to S at the intersection point of a pair of lines
chosen from L,L′,L′′.

Fix a tritangent plane Π through L. Then S∩Π is the union of L with another
two lines, say L′ and L′′. Through each line L,L′,L′′ there are other 4 distinct
tritangent planes. We get 12 tritangent planes, with 2 lines in each plane that
are distinct from L, L′, L′′′. This gives 24 lines if no double counting occurs.
Suppose a line is counted twice. Then it is contained in the intersection of 2
out of the 12 planes we are considering. Thus it equals either L,L′, or L′′, a
contradiction. Hence, there are at least 3+ 12 · 2 = 27 lines in S. Comparing
this result with the one in Section 2.1 we then get that there are exactly 27 lines
in S.

Moreover since there are 5 tritangent planes per line, and each plane has
exactly 3 lines, one also obtains that there exist 27·5

3 = 45 tritangent planes.
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2.3. Cayley-Salmon equations and Triederpaare

In the course of computing a particular example, Cayley also claims in [5] by
“merely reckoning the number of arbitrary constants” that S can be described
as the zero set of a polynomial in the form of a Cayley-Salmon equation:

f = l1l2l3−m1m2m3, (7)

where the li and m j are linear forms.
In this subsection we investigate the properties of a smooth surface given by

an f as in Equation (7). The aim is to establish a natural bijection between each
Cayley-Salmon equation and a special pair of triples of tritangent planes called
Triederpaar.

We denote by lq, mr both the linear forms and the planes defined by them.
Let `q,r = lq ∩mr be the line of intersection of these two planes. Note that the
indices do not commute, namely `q,r 6= `r,q. The line `q,r is in S, hence we obtain
nine lines in S if we can show the `q,r to be distinct.

Suppose that `α,1 = `β ,2, where α is not necessarily distinct from β . Take
partial derivatives of Equation (7):

(
∂ l1
∂xk

l2l3 + l1
∂ l2
∂xk

l3 + l1l2
∂ l3
∂xk

)
−
(

∂m1

∂xk
m2m3 +m1

∂m2

∂xk
m3 +m1m2

∂m1

∂xk

)
Let γ ∈ {1,2,3}\{α,β}, and P = `α,1∩ lγ . Note that P is in lα and lγ , thus the
first terms between the parenthesis vanish at P. Since P is in m1 and m2 the terms
in the second parenthesis also vanish. Hence, S is singular at P, contradicting
that S is smooth. This proves that the nine lines are distinct and the li, mi are
tritangent planes of S (they contain three lines each).

Definition 2.15. Let L be a set of nine lines in S. We call an unordered pair of
unordered triples of tritangent planes {l1, l2, l3} and {m1,m2,m3} a Triederpaar
if each triple contains all the lines in L.

Proposition 2.16. There is a natural bijection between Cayley-Salmon equa-
tions for S and the set of Triederpaare.

Proof. By our discussion above we have that a Cayley-Salmon equation induces
a Triederpaar.

Conversely, let L be a set of nine lines in S that determines a Triederpaar
with tritangent planes {l1, l2, l3} and {m1,m2,m3}. The linear forms correspond-
ing to the tritangent planes are determined up to multiplication with a constant.
Thus,

µl1l2l3−νm1m2m3 = 0, (8)
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with [µ : ν ] ∈ P1, is a one parameter family F of smooth cubics that contain the
nine lines of L.

Let F ′ be the family of smooth cubics containing L. We have that F ⊂ F ′.
We now prove that F ′ has dimension 1 which implies F =F ′. For this we need
the following claim: the line ` = m1 ∩m2 intersects S in at most three points.
This claim is proven as Claim II in the proof of Lemma 2.17.

Suppose g∈F ′. By a coordinate change we assume that m1 is the plane {y=
0}, and m2 is {z = 0}. Since `= m1∩m2 intersects V (g) in at most three points,
the polynomial g|y=z=0 is not identically zero, so we may choose a coefficient
and scale it to 1. The polynomials g|y=0, g|z=0 are cubics in three variables,
depend on ten parameters each, vanish on the triples of lines {`1,1, `2,1, `3,1} and
{`1,2, `2,2, `3,2} respectively, and share the terms of g|y=z=0, so at least one term
has coefficient 1. Thus, g|y=0 and g|z=0 are determined, giving 10+10−4 = 16
coefficients of g. This leaves 4 parameters free, namely the coefficients of y3,
y2z, yz2, z4, for making V (g) vanish on C = {`1,3, `2,3, `3,3} as well. A cubic is
defined by 9 parameters, but we already have some points C∩ `i j for j = 1,2.
Specifically, the Claim II in the proof of Lemma 2.17 implies that `1,3∪`2,3∪`3,3
intersects m1 in three points which are contained in V (g), likewise for m2. Thus
V (g)∩C has six points already, and we need to use another three conditions to
ensure V (G) vanishes on C, bringing the dimension of F ′ down to 1.

Finally, since S is smooth it does not contain a plane so µ,ν are nonzero.
Dividing by µ we get l1l2l3−κm1m2m3 = 0. Let P∈ S be a point not in a line of
L. Since S∩ li equals the union of three lines of L, the form l1l2l3 evaluated at
P is nonzero. Similarly for m1m2m3. Thus κ is equal to l1l2l3

m1m2m3
evaluated at P.

Including κ in one of the forms mi we obtain the Cayley-Salmon equations.

2.4. Counting 120 Cayley-Salmon equations in the classical way

In this subsection we count the number of Cayley-Salmon equations by count-
ing Triederpaare. This is done by Henderson in Section 12 of [11]. There he
proposes the argument below and assumes the following lemma that we prove
at the end of this subsection.

Lemma 2.17. Let S be a cubic surface and let l1, l2 be two tritangent planes
containing 6 of the 27 lines on S. Then this determines a Triederpaar.

The lemma above implies that the Triederpaar is uniquely determined by a
pair of tritangent planes containing 6 of the 27 lines of S. For the first plane
there are 45 possibilities. Then the number of tritangent planes passing through
at least one of the three lines in the first plane is 13. This again follows from the
fact that there are 5 tritangent planes through each line. Hence we get 32 ways
to choose the second plane. The number of triples of tritangent planes passing
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through nine lines is then 45·32
3! = 240. Dividing these in pairs we obtain 120

Triederpaare, and so 120 Cayley-Salmon equations.

Proof of Lemma 2.17. Choose a tritangent plane l1. Let `1,1, `1,2, `1,3 be the
lines in l1∩S. Choose a tritangent plane l2 not passing through the `1,i. Recall
Cayley’s construction of the 27 lines of Section 2.1. We have seen that given
a line L ⊂ S with L 6= `1,1, `1,2, `1,3, then there is a tritangent plane containing
L and exactly one `1,i. Thus we can name the lines in l2 as `2,1, `2,2, `2,3 with
the property that `1, j and `2, j determine a tritangent plane m j. We now set `3, j
to be the line not yet named in m j ∩ S and define L = {(`i j)i, j=1,2,3}. Next,
we show that `3,1, `3,2, `3,3 are coplanar, i.e. there exists a plane l3, such that
`3,1, `3,2, `3,3 ⊂ l3. Then ({l1, l2, l3},{m1,m2,m3}) forms a Triederpaar, which
completes the proof. As a first step we show that `3,1 intersects `3,2. This follows
from the following three claims:

Claim I: `3,1 and `3,2 are distinct.
Observe that `3,1 = `3,2 if and only if the line ` := m1 ∩m2 is contained
in S. Moreover if three lines L, L′, L′′ ⊂ S intersect at a point P, then they
are coplanar. In fact, the smoothness of S implies that they are contained
in the tangent plane TPS. Hence as `1,1, `2,1 ⊆ m1 and `1,2, `2,2 ⊆ m2,
we get `1,1 ∩ `1,2, `2,1 ∩ `2,2 ∈ m1 ∩m2 = `. Thus `1,1, `2,1, `1,2, `2,2, are
coplanar, contradicting that m1 6= m2.

Claim II: the line `= m1∩m2 intersects S in at most three points.
The argument for claim I also proves that ` 6⊂ S. Thus ` intersects S in at
most three points.

Claim III: the three lines in mi∩S intersect `= m1∩m2 in three different
points.
Suppose that two lines L, L′ ⊂ m1 ∩ S intersect in a point P of `. By
construction there is a line L′′ ⊂m2∩S intersecting one of L and L′; say L.
As L∩ L′′ ∈ m1 ∩m2 = `, then L∩ L′ ∩ L′′ = {P}, and so L,L′,L′′ are
coplanar. This implies that m1 = m2, contradicting that l1,1 6= l1,2.

Putting these claims together: let p1 = `1,1∩`, p2 = `2,1∩` and p3 = `3,1∩`
be the intersection points of the lines in m1∩S with `. Note that p1, p2, p3 ∈ S∩`,
thus these are the three intersection points of ` with S and by claim III they are
distinct. By construction `1,1 intersects `1,2. The intersection point is both in m1
and m2, thus `1,1∩ `1,2 = p1. Similarly, `2,1∩ `2,2 = p2. Hence, by Claim III we
get that `3,2 intersects ` on p3, proving that `3,1 and `3,2 intersect.

Analogously, `3,2 intersects `3,3 and `3,3 intersects `3,1, proving the lines are
coplanar.
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3. Computing the 120 Cayley-Salmon equations

In this section we use the isomorphism between S and the blow up of P2 at six
points, denoted by Blp1,...,p6P2, to first study the incidence relations between the
27 lines and then to give a description of the possible Triederpaare. Then using
the convention in [4] we show the procedure to compute the 120 Cayley-Salmon
equations and we apply it to the Clebsch surface and to the octanomial model
presented in [12].

To begin with, we recall how to obtain the 27 lines and the 45 tritangent
planes from Blp1,...,p6P2. Let π : Blp1,...,p6P2→ P2 be the blow-down map. Con-
sider the following curves:

• Ei, the fiber over pi.

• Fi j, the proper transform of the line pi p j through pi, p j (that is, the curve
that remains after deleting Ei, E j from π−1(pi p j)).

• G j, the proper transform of the conic C j through {p1, . . . , p6}\{p j} (that
is, the curve that remains after deleting all Ek in π−1(C j)).

After showing that Ei,Fi j, and G j are lines (see [7], Section 8.3.1) we get
the 27 lines in S.

Note that this description makes it simple to deduce the incidence relations
between the lines. In fact, for any i we have that Ei is incident to only 10 lines.
These are Fi j and G j for j 6= i. The line Gi intersects Fi j for every j and E j

for j 6= i. For Fi j observe that it is incident to Ei, E j, Gi, G j and also to Fkl
with {i, j}∩{k, l} = ∅ (the intersection point is π−1(pi p j ∩ pk pl)). Any other
intersection is excluded since it would contradict the hypothesis that p1, . . . , p6
are in general position. We obtain that any line L ⊂ S meets exactly ten other
lines on S. Moreover, one can see that these ten lines come in pairs that are
coplanar, so there are planes that intersect S in 3 distinct lines L,L′,L′′. Any
such plane is a tritangent plane. This shows that a tritangent plane is determined
by two types of triples of the 27 lines:

Type I = {Ei,G j,Fi j} Type II = {Fi j,Fkl,Fnm} (9)

There are 6 ·5 = 30 possibilities for type I and
(6

2

)
·
(4

2

)
/3! = 15 possibilities

for type II (this is the number of partitions {i, j},{k, l},{n,m} of {1, . . . ,6}).
The description of the types of tritangent planes can be used to list all possible
Triederpaare. Following [4, Remark 4.6] we may write a Triederpaar as a 3
by 3 matrix such that each entry is a line of S. Each row (resp. each column)
contains three lines of S which determine a tritangent plane. The first triple of
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the Triederpaar is the one associated to the rows and the other one is associated
to the columns.

Note that if two rows determine tritangent planes of type II of Equation (9),
then the third row is also of type II. Thus in a Triederpaar we may have 0,1, or
3 rows of type II. To summarize we have the following options:

Ei G j Fi j

Gk Fjk E j

Fik Ek Gi

Ei G j Fi j

Gk El Flk
Fik Fjl Fmn

Fi j Flm Fkn
Fln Fik Fjm

Fkm Fjn Fil

(10)

The Triederpaar we obtain from a matrix is invariant under permutation of rows
and columns, and under transposition of the matrix. Thus, the number of es-
sentially distinct ways of filling up the indices is

(6
3

)
= 20 for the first type;(6

4

)
·
(4

2

)
= 90 for the second type; and

(5
3

)
= 10 for the third type (we may

assume i = 1 and m < n, so one has to choose j,k, l out of 5 numbers). This
recovers the number 120 of Triederpaare.

In the case of the Clebsch surface and of the octanomial model we have
the explicit equations for the 27 lines in S. Hence we can plug them in the
matrices in (10), compute the associated tritangent planes and then obtain the
Cayley-Salmon equations.

Example 3.1. The polynomial we gave in Example 2.8 for the Clebsch surface
is a coordinate transformation of the polynomial:

f =−(w+ x+ y+ z)3 +w3 + x3 + y3 + z3.

One Cayley-Salmon equation for f is:

−3(w+ x)wx−3(w+ x+ y)(w+ x+ z)(y+ z)

The file Clebsch-Tritangent-CS in the supplementary website contains equa-
tions for the 45 tritangent planes and the 120 Cayley-Salmon equations of the
Clebsch surface given by the polynomial f .

Example 3.2. We also perform this calculation for the lines of the octanomial
model of cubic surfaces presented in [12]. This is a polynomial of the form

a · xyz+b · xyw+ c · xzw+d · yzw+ e · x2y+ f · xy2 +g · z2w+h · zw2

where the coefficients a, . . . ,h are in terms of the d1, . . . ,d6 as in (2). Any smooth
cubic surface in P3 can be given in this form after a coordinate change. The
calculation are done in the field Q(d1, . . . ,d6). The code and the output can
be found at our supplementary website. In particular the 120 Cayley-Salmon
equations are listed in the file Output-Octanomial.
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4. Cayley-Salmon equations from the anticanonical embedding

In this section, we relate the Cayley-Salmon equations to recent work of Cueto
and Deopurkar [6]. Given a smooth cubic surface S, Cueto and Deopurkar con-
struct an embedding – which they coin the anti-canonical embedding – of S into
P44. This is given by the 45 tritangent planes of S. More precisely, when con-
sidering a realization S ⊂ P3 the coordinate functions of these embeddings are
(up to scaling) given by the equations of each of the tritangent planes. In [6], the
ideal of this embedding into P44 is explicitely computed and this paves the way
for several applications in the study of the tropicalization of S whenever S does
not have Eckardt points. We note that the ideal of the anti-canonical embedding
however is independent of the existence of Eckardt points.

We show that given a smooth cubic surface S as the blow-up of P2 induced
by the parameters d1, . . . ,d6 as in (2), we may derive the 120 Cayley-Salmon
equations from the ideal of the anti-canonical embedding of S without know-
ing the explicit equations of the 27 lines. Our considerations follow from the
constructions in Sections 2 and 3 of [6], which is our main reference for this
section.

As we have already observed we can see S as the blow-up of P2 at the six
points in (2). This reveals that the moduli space of marked cubic del Pezzo sur-
faces contains an open subset isomorphic to a dense open subset of (P2)6 (this
elaborated in detail in [6, Section 2]). This open subset is the projectification of
the root lattice E6, which is the complement of the root hyperplane arrangement.
Moreover the reflection group W (E6) acts on (d1, . . . ,d6).

Consider the symbols xi j and yi jklmn. These correspond to tritangent planes
of Type I and Type II as in Equation (9).
Theorem 3.5 in [6] states that S∼= Blp1,...,p6P2 is isomorphic to the variety in P44

cut out by the ideal I in K

[
(xi j)i, j=1,...,6

i 6= j
,
(
yi jklmn

)
{i, j}t{k,l}t{m,n}

={1,...,6}

]
generated by

all 270 W (E6)-conjugates of

(d3−d4)(d1+d3+d4)x21−(d2−d4)(d1+d2+d4)x31+(d2−d3)(d1+d2+d3)x41,
(11)

and all 120 W (E6)-conjugates of

x12x23x31− x13x32x21. (12)

Now define the map φ : P3→ P44 associated to the ring map

φ
∗ : K[xi j,yi jklmn]→K[x,y,z,w]

that sends xi j (resp. yi jklmn) to the linear form defining the corresponding tritan-
gent plane. The map φ is an embedding. In fact the rank of the matrix associated
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to φ ∗ is 4 since by Section 2.3 any four tritangent planes of a Triederpaar have
empty intersection. Moreover, it follows immediatly from the proof of Theorem
3.5 in [6] that the image of φ is exactly V (I).

We now observe that pull-backs via φ ∗ of each of the cubics in Equation (12)
are exactly the 120 Cayley-Salmon equations of S. In the case in which we do
not have knowledge of the equations of the 27 lines the map φ can be computed
in the following way. Let LS be the linear span of S ∼= V (I) ⊂ P44. This is
defined by the linear forms in Equation (11) and it is isomorphic to P3. The
map φ is then the linear map

ψ : P3→ P44, (13)

whose image is LS and which is an isomorphism onto its image. Therefore, we
have proved the following proposition.

Proposition 4.1. Let φ : P3 → LS ⊂ P44 a linear map onto LS and consider
S∼= φ−1(S)⊂ P3. Then, the images of the 120 W (E6)-conjugates of (12) via φ ∗

are the 120 Cayley-Salmon equations of φ−1(S) .

The explicit linear forms defining ψ can be at the supplementary website in the
file Code-AnticanonicalEmbedding. The pullbacks of the 120 cubic bino-
mials are included in Output-AnticanonicalEmbedding.
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