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96120: THE DEGREE OF THE LINEAR ORBIT
OF A CUBIC SURFACE

LAURA BRUSTENGA I MONCUSÍ - SASCHA TIMME
MADELEINE WEINSTEIN

The projective linear group PGL(C,4) acts on cubic surfaces,
considered as points of P19

C . We compute the degree of the 15-
dimensional projective variety defined by the Zariski closure of
the orbit of a general cubic surface. The result, 96120, is obtained
using methods from numerical algebraic geometry.

1. Introduction

Automorphism groups of varieties and group actions on varieties are
of much interest to researchers of algebraic geometry, arithmetic ge-
ometry, and representation theory [1, 5, 14, 19]. Here, we study the
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action of the projective linear group PGL(C,4) on cubic surfaces param-
eterized by points in P19

C . In particular, we compute the degree of the
15-dimensional projective variety in P19

C defined by the Zariski closure
of the orbit of a general cubic surface under this action. This degree is
also meaningful in enumerative geometry: It is the number of translates
of a cubic surface that pass through 15 points in general position. This
formulation provides an alternate method for obtaining the degree. Our
work answers a question posed in [15].

Aluffi and Faber considered the analogous problem for plane curves
of arbitrary degree, first the smooth case in [1] and second the general
case in [2]. They obtained a closed formula for the degree of the or-
bit closure of a plane curve under the action of PGL(C,3). This was
a significant undertaking, involving long and detailed calculations in
intersection rings using advanced techniques from intersection theory.

Instead of adopting the techniques developed by Aluffi and Faber,
we use tools from numerical algebraic geometry [9, 18]. The general idea
is as follows. We fix a cubic surface f and 15 points in general position
in P3

C. The condition that a translate of f passes through these 15 points
results in a polynomial system for which we compute all isolated nu-
merical solutions by homotopy continuation and monodromy methods
using the software HomotopyContinuation.jl [4]. The concept of an ap-
proximate zero [3] makes precise the definition of a numerical solution.
We use Smale’s α-theory and the software alphaCertified [10] to cer-
tify that the obtained numerical solutions indeed satisfy the system of
polynomial equations. Finally, we use a trace test [12] to check that no
solution is missing. With these techniques, we conclude that the num-
ber of numerical solutions we obtain, 96120, is the degree of the orbit
closure. This result is a “numerical theorem” rather than a theorem in
the classical sense.

Our presentation is organized as follows. In Section 2, we introduce
the linear orbit problem in detail and derive the polynomial systems
used in our computations. In Section 3, we discuss the techniques used
from numerical algebraic geometry and in Section 4 we describe the
computations performed to arrive at the result.

2. Linear Orbits and Polynomial Systems

Cubic surfaces in P3
C are defined by homogeneous cubic polynomials in

4 variables with complex coefficients. Their parameter space is P19
C . We

fix coordinates (c0 : · · · : c19) ∈ P19
C .
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The projective linear group

PGL(C,4) = {ϕ ∈ P15
C | detϕ 6= 0} ⊆ P15

C

acts on a cubic surface f ∈ P19
C , with ϕ ∈ PGL(C,4), sending f to the

cubic surface ϕ · f defined by the equation

f (ϕ(x,y,z,w)) = 0 .

This corresponds to a linear change of the coordinates x,y,z,w. We say
that ϕ · f is the translate of f by ϕ . Then PGL(C,4) · f is the orbit of
f in P19

C and its Zariski closure Ω f := PGL(C,4) · f is a 15-dimensional
projective variety.

Example 2.1. To illustrate this idea, we consider the action of PGL(C,2)
on pairs of points defined by homogeneous polynomials

f (x,y) = b0x2 +b1xy+b2y2 .

The parameter space for pairs of points is P2
C, that is f = (b0 : b1 : b2) ∈

P2
C. Let

ϕ =

(
a11 a12
a21 a22

)
.

Then

f (ϕ(x,y)) =b1(a11x+a12y)2 +b2(a11x+a12y)(a21x+a22y)+b3(a21x+a22y)2

=(b1a2
11 +b2a11a21 +b3a2

21)x
2 +

(2b1a11a12 +b2(a11a22 +a12a21)+2b3a21a22)xy +

(b1a2
12 +b2a12a22 +b3a2

22)y
2

and thus

ϕ · f = (b1a2
11 +b2a11a21 +b3a2

21 :

2b1a11a12 +b2(a11a22 +a12a21)+2b3a21a22 :

b1a2
12 +b2a12a22 +b3a2

22) ∈ P2
C .

To compute the degree of the orbit closure of a general cubic sur-
face under the action of PGL(C,4), we construct as follows polynomial
systems whose number of solutions correspond to the desired degree.

Fix a general cubic surface f ∈ P19
C and a general linear subspace

L⊆ P19
C of dimension 4, the codimension of Ω f . Consider the map

Θ f : PGL(C,4) P19
C , ϕ 7→ ϕ · f ,
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whose image is the orbit of f by PGL(C,4). By [14, Theorem 5], a generic
hypersurface of degree at least three in at least four variables has a
trivial stabilizer. (In [5, Propostion 7.5] it is stated that the argument
in [14] has an error but that it does not affect the correctness of the
statement.) Hence, the map Θ f is one-to-one.

Since L is general, we may assume that the intersection Ω f ∩ L is
contained in the image of Θ f . Therefore, the degrees of the zero-
dimensional varieties Ω f ∩L and Θ

−1
f (Ω f ∩L) coincide. It follows that

the degree of Ω f is the number of solutions of the polynomial system

L̃ ϕ · f = 0 (1)

in the entries of ϕ ∈ PGL(C,4), where L̃∈C15×20 is a matrix representing
the general linear subspace L⊆ P19

C of dimension 4.

The degree of Ω f is also of meaning in enumerative geometry. As
we will see, it is the number of translates of f that pass through 15
points p1, . . . , p15 ∈ P3

C in general position. Here, the 15 points in general
position play the same role as the general linear space L in formulation
(1). The translated cubic surface ϕ · f passes through a point p ∈ P3

C if
and only if f (ϕ(p)) = 0 . This yields the polynomial system

f (ϕ(pi)) = 0 , i = 1, . . . ,15 (2)

in the entries of ϕ ∈ PGL(C,4). The degree of Ω f is equal to the number
of solutions of (2). To prove this claim, we apply Kleiman’s transversal-
ity theorem to show that the fifteen hypersurfaces intersect transversally
in a finite number of points.

The i-th equation in (2) is the pullback Ypi ⊆ PGL(C,4) by Θ f of the
hyperplane in P19

C of cubic surfaces passing through pi. We show that
every Ypi is smooth by proving that the tangent space at every point of
Ypi is a hyperplane rather than the whole ambient space. Set p = (1 : 0 :
0 : 0). We may assume pi = p since, for any φ ∈ PGL(C,4) with φ(pi) = p,
Ypi
∼= φ(Ypi) = Yp. Now, the i-th equation in (2) is f evaluated at the first

column of ϕ . That is, setting as coordinates ϕ = (ai j)i, j ∈ PGL(C,4), we
have f (ϕ(p)) = f (a11,a21,a31,a41). Hence,

∂ai j f (ϕ(p)) =

{
0 if j > 1
(∂i f )(a11,a21,a31,a41) otherwise,

where ∂1 f = ∂x f (x,y,z,w). Now, for ϕ0 = (a0
i j)i, j ∈ Yp, the tangent space

of Yp at ϕ0 is given by the equation

0 = ∑
i, j

∂ai j f (ϕ(p))|ϕ0 · (ai j−a0
i j) =

4

∑
i=1

(∂i f )(a0
11,a

0
21,a

0
31,a

0
41) · (ai1−a0

i1).
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Since ϕ0 ∈Yp we have f (a0
11,a

0
21,a

0
31,a

0
41) = 0. Now f is smooth, so its par-

tial derivatives cannot all vanish at (a0
11 : a0

21 : a0
31 : a0

41). Thus the tangent
space of Yp at φ0 is indeed given by a hyperplane, so Yp is smooth.

Now, we show that for general points p1, . . . , p15 the smooth vari-
eties Ypi intersect transversally. The group PGL(C,4) (as the group of
automorphisms of P3

C) acts transitively on itself (as the ambient space
of Ypi) by precomposition. Hence, given an initial point p1, for a gen-
eral point p2, the smooth varieties Yp1 and Yp2 intersect transversally by
Kleiman’s transversality theorem (see [11, Corollary 4] or [7, Theorem
1.7]). So Yp1 ∩Yp2 is smooth of dimension dim(Yp1)−1 = 13 and, iterating
the process for general points p3, . . . , p15, we obtain that Yp1 ∩·· ·∩Yp15 is
a smooth variety of dimension 0. That is, for general points p2, . . . , p15,
there is a finite number of ϕ ∈ PGL(C,4) satisfying (2) and this number
is, by construction, the degree of Ω f .

Formulations (1) and (2) both result in a system of 15 homogeneous
cubic polynomials in the 16 unknowns (ai j)1≤i, j≤4, but they have differ-
ent computational advantages. To perform numerical homotopy con-
tinuation, it is beneficial to pass to an affine chart of projective space.
This can be done in formulation (1) by fixing a coordinate, say adding
the polynomial a11− 1 = 0. But this introduces artificial solutions. For
example, for every solution φ ∈ C16, we have that ei 2

3 πφ and ei 4
3 πφ are

also solutions. The formulation (2) does not produce these undesired
artificial solutions. However, the formulation (1) is better suited for
applying the trace test than (2). The reason is given in the following
section.

3. Numerical Algebraic Geometry

Numerical algebraic geometry concerns numerical computations of ob-
jects describing algebraic sets defined over subfields of the complex
numbers. The most basic of these objects are the solution sets, a data
structure for representing solutions to polynomial systems. The term
“numerical” refers to computations which are potentially inexact (e.g.,
floating-point arithmetic). However, this does not necessarily mean that
the results obtained are unreliable. The certification of solutions plays
an important role in the field. For a more in-depth definition and a
brief history of numerical algebraic geometry see [9]. A comprehensive
introduction to the subject is available in [18].

We now introduce the tools from numerical algebraic geometry needed
to compute and certify the degree of the orbit closure. We fix a system
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of polynomials F = (F1, . . . ,Fm) in n variables and assume that it has l
isolated solutions p1, . . . , pl ∈ Cn.

Homotopy Continuation. Numerical homotopy continuation [18, Sec-
tion 8.4.1] is a fundamental method that underlies most of numerical
algebraic geometry. The general idea is as follows. Suppose we want
to compute the isolated solutions of F . We build a homotopy H(x, t) :
Cn ×C→ Cm which deforms a system of polynomials G(x) = H(x,0)
whose isolated solutions are known or easily computable into the sys-
tem F(x) = H(x,1). A well-defined homotopy requires that G has at
least as many isolated solutions as F so that we are able to compute
all isolated solutions of F . Given a solution x0 of G, there is a solution
path x(t) : C Cn, which is a curve implicitly defined by the conditions
x(0) = x0 and H(x(t), t) = 0 for t ∈U ⊆ C where U is the flat locus of the
projection Cn×C C restricted to H = 0, which is dense in C by generic
flatness. In particular, a well-defined homotopy requires 0 ∈U . The so-
lution path is usually tracked using a predictor-corrector scheme. As t
approaches 1 the solution path either diverges or converges to a solution
of F .

A standard homotopy is the total degree homotopy. Bézout’s theorem
gives N = ∏

m
i=1 deg(Fi) as an upper bound for the number of isolated

solutions of F . A total degree homotopy uses a start system G with N
isolated solutions and the homotopy H(x, t) = (1− t)G(x)+ tF(x). As the
Bézout bound may be very high, for large computations the total degree
homotopy is impractical and other methods are necessary.

Monodromy method. Monodromy (see [6, 13]) is an alternative method
for finding isolated solutions to parameterized polynomial systems which
is advantageous if the number of solutions is substantially lower than
the Bézout bound. Embed our polynomial system F in a family of poly-
nomial systems FQ, parameterized by a Zariski open subset Q of Ck. Let
l be the number of solutions of Fq ∈ FQ for q ∈U , where U ⊆ Q is the
flat locus of the family FQ.

Consider the incidence variety

Y :=
{
(x,q) ∈ Cn×Q | Fq(x) = 0

}
.

Let π be the projection from Cn×Q onto the second argument restricted
to Y . For every q ∈U , the fiber Yq = π−1(q) has exactly l points. Given a
loop O in U based at q, the preimage π−1(O) is a union of paths starting



DEGREE OF THE LINEAR ORBIT CLOSURE 431

and ending at (possibly different) points of Yq. So, giving a direction
to the loop O, we may associate to each point y of Yq the endpoint of
the path starting at y. This defines an action, the monodromy action, of
the fundamental group of U on the fiber Yq, which in turn defines a
map from the fundamental group of U to the symmetric group Sl . The
monodromy group of our family at q is the image of such a map. This
action is transitive if and only if Y is irreducible, which we assume.

Fix q0 ∈ U such that F = Fq0 ∈ FQ. Suppose a start pair (x0,q0) is
given, that is, x0 is a solution to the instance Fq0 . The start solution x0
is numerically tracked along a directed loop in U , yielding a (possibly
new) solution of Fq0 at the end. While a new solution is obtained, it is
tracked along the same loop, yielding another possibly new solution.

Then, all solutions are tracked along a new loop, and the process is
repeated until some stopping criterion is fulfilled.

We note that this method requires us to know one solution of our
polynomial system to use as a start pair. Various strategies exist to find
such a solution. We will describe one strategy in Section 4.

Certifying solutions. The above methods yield numerical approxima-
tions of solutions of our polynomial system F . How can we certify
that the obtained approximations correspond to actual solutions of F
and that they are all distinct? For systems F with an equal number
n of polynomials and variables, Smale introduced the notion of an ap-
proximate zero, the α-number and the α-theorem, see [17]. In short, an
approximate zero of F is any point p ∈ Cn such that Newton’s method,
when applied to p, converges quadratically to a zero of F . This means
that the number of correct significant digits roughly doubles with each
iteration of Newton’s method.

Definition 3.1 (Approximate zero). Let JF be the n× n Jacobian matrix
of F . A point p ∈ Cn is an approximate zero of F if there exists a zero
ζ ∈ Cn of F such that the sequence of Newton iterates

zk+1 = zk− JF(zk)
−1F(zk)

starting at z0 = p satisfies for all k ≥ 1 that

‖zk−ζ‖ ≤
(

1
2

)2k−1

‖z0−ζ‖2.

If this holds, then we call ζ the associated zero of p. Here ‖x‖ is the stan-
dard Euclidean norm in Cn, and the zero ζ is assumed to be nonsingular
(that is, det(JF(ζ )) 6= 0).
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To check whether a point p ∈ Cn is an approximate zero of F from
Definition 3.1 requires infinitely many steps, one for each iteration of
the Newton method. Nevertheless, when p is close enough to its associ-
ated zero, it is possible to certify that p is an approximate zero with only
finitely many computations, as we now see. Smale’s α-theorem (see [3,
Theorem 4 in Chapter 8]) is an essential ingredient. The theorem uses
the γ- and α-numbers

γ(F,x) = sup
k≥2

∥∥ 1
k!

JF(x)−1DkF(x)
∥∥ 1

k−1 and

α(F,x) = ‖JF(x)−1F(x)‖ · γ(F,x) ,

where DkF is the tensor of order-k derivatives of F and the tensor
J−1

F DkF is understood as a multilinear map A : (Cn)k Cn with norm
‖A‖ := max‖v‖=1 ‖A(v, . . . ,v)‖.

Theorem 3.2 (Smale’s α-theorem). If α(F,x)< 0.03, then x is an approx-
imate zero of F . Furthermore, if y ∈ Cn is any point with ‖y− x‖ less
than (20γ(F,x))−1, then y is also an approximate zero of F with the
same associated zero ζ as x.

Smale’s α-theorem is more general than is stated above. The num-
bers 0.03 and 20 can be replaced by any pair of positive numbers satis-
fying certain constraints.

To avoid the computation of the γ-number Shub and Smale [16] de-
rived an upper bound for γ(F,x) which can be computed exactly and
efficiently. Hence, one can decide algorithmically whether x is an ap-
proximate zero using only the data of the point x itself and F . Hauen-
stein and Sottile [10] implemented these ideas in an algorithm, called
alphaCertified, which decides both whether a point x ∈ Cn is an ap-
proximate zero and whether two approximate zeros have distinct asso-
ciated zeros.

Trace test The certification process explained above establishes a lower
bound for the number of isolated solutions of F . The trace test can be
used for polynomial systems satisfying certain conditions to show that
all solutions have been found. See [12] for a more detailed explanation.

We first establish definitions of concepts used in the trace test. A
pencil of linear spaces is a family Mt for t ∈C of linear spaces that depends
affinely on the parameter t. Each Mt is the span of a linear space L and a
point t on a line disjoint from L. Suppose that W ⊂ Cn is an irreducible
variety of dimension m of which we wish to verify the degree. Also
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suppose we are given a general pencil of linear spaces Mt for t ∈C such
that Mt is of codimension m for all t and W and M0 intersect transversally.
Fix a subset W ′ ⊆W ∩M0. We track W

′
along the pencil to obtain W

′
t ⊆

W ∩Mt . Denote by w(t) the sum of the points of W ′t . If W ′t =W ∩Mt then
w(t) is the trace of W ∩Mt . The trace is an affine linear function of t [12,
Proposition 3]. That is, there exist a,b ∈Cn such that w(t) = a+ tb. It can
be shown that the sum of any proper subset of the points in W ∩Mt is
not an affine linear function of t.

This leads to the trace test: Let t1 ∈ C \ {0}, fix W ′ ⊆W ∩M0 and
compute tr(t1) := (w(t1)−w(0))−(w(0)−w(−t1)). Note that tr(t1) is iden-
tically zero if and only if w is an affine linear function of t, which is
true if and only if the cardinality of W ′ is the degree of W . Due to the
generality assumption on Mt it is sufficient to compute tr(t1) for only one
t1 ∈ C\{0}.

4. A Numerical Approach

In this section we explain our use of numerical algebraic geometry to
obtain Theorem* 4.1 below. Reasonable mathematicians may differ as
to whether it is appropriate to state this result as a theorem since we
currently cannot certify the last step of our computation. We add the
asterisk to acknowledge these differing opinions.

Theorem* 4.1. The degree of the orbit closure of a general cubic surface
under the action of PGL(C,4) is 96120.

All computations performed to arrive at this result are available from
the authors upon request.

To compute the degree of the orbit closure, we sample a general
cubic surface f ∈ P19

C by drawing the real and imaginary parts of each
of its coordinates independently from a univariate normal distribution.
We then solve the polynomial system (2) encoding the enumerative ge-
ometry problem. A naive strategy is to sample 15 points p1, . . . , p15 ∈ P3

C
in general position and use a total degree homotopy, but in this case
the Bézout bound is 315 = 14,348,907. Here, the monodromy method is
substantially more efficient.

To apply the monodromy method, we consider (2) as a polynomial
system on the entries of ϕ parameterized by 15 points p1, . . . , p15 in P3

C.
We consider the incidence variety

V = {(ϕ,(p1, . . . , p15)) ∈ PGL(C,4)× (P3
C)

15 | F(ϕ(pi)) = 0, i = 1, . . . ,15}
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and we denote by π the projection PGL(C,4)×(P3
C)

15 (P3
C)

15 restricted
to V and by ρ the other projection restricted to V . The fiber of ρ over a
point ϕ ∈ PGL(C,4) is the product of the cubic surface ϕ · f with itself
in (P3

C)
15, hence V is irreducible.

Note that when we numerically solve the equations of V , we are con-
sidering an equivalent incidence variety W but in P15

C ×(P3
C)

15, where P15
C

is the projective space of all non-zero 4-by-4 matrices, a compactification
of PGL(C,4). The closure V of V in P15

C ×(P3
C)

15 is an irreducible compo-
nent of W . If we start the monodromy method at some point of V , then
we will only find solutions in this irreducible component of W and thus
we do not need to encode the condition ϕ ∈ PGL(4,C) explicitly.

Our strategy is to find a start pair (ϕ0; p1, . . . , p15)∈V and then to use
the monodromy action on the fiber π−1(p1, . . . , p15) to find all solutions
in this fiber. A start pair can be found by exchanging the role of vari-
ables and parameters. First, we sample a ϕ0 ∈ PGL(4,C) and the first
three coordinates of 15 points pi ∈ P3

C in general position. This yields
a system of 15 polynomials each depending only on one variable: The
ith polynomial depends only on the fourth coordinate of pi. Such a sys-
tem is easy to solve. Solving it yields a start pair (ϕ0; p1, . . . , p15) ∈ V ,
on which we run the monodromy method implemented in the software
package HomotopyContinuation.jl [4]. In less than an hour on a single
core, this method found 96120 approximate solutions corresponding to
the start points p1, . . . , p15 ∈ P3

C.

Next we apply Smale’s α-theory as implemented in the software
alphaCertified [10] to certify two conditions of our numerical approx-
imations: First, we show that each numerical approximation is indeed
an approximate zero of our original polynomial system, and second
that all 96120 approximate zeros have distinct associated zeros. Due
to computational limits we were only able to obtain a certificate using
(arbitrary precision) floating point arithmetic. Hauenstein and Sottile
call this a “soft” certificate since it does not eliminate the possibility
of floating point errors. It is preferable to use rational arithmetic for
certification, but for a system of our size too much time is required to
perform such a computation.

The certification process establishes a lower bound on the degree of
the orbit closure. As a last step, we run a trace test to verify that we have
indeed found all solutions. The trace test described in the previous sec-
tion is only applicable to subvarieties of Pn

C. In [12] the authors derive
a trace test to certify the completeness of a collection of partial multiho-
mogeneous witness sets. Our formulation (2) is multihomogeneous but
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our computations provide only one partial multihomogeneous witness
set, namely π−1(p1, . . . , p15), and not the entire collection that would be
necessary to run a trace test. To avoid these complications, we use for-
mulation (1). We note that it is straightforward to construct a linear
subspace L from the 15 points p1, . . . , p15 such that our solutions from
the monodromy computation are also solutions to (1), so translating
formulation (2) to (1) is not difficult.

In the language of numerical algebraic geometry our 96120 solu-
tions together with the linear subspace L constitute a pseudo witness set
[8]. We construct a general pencil Mt of linear spaces with M0 = L. Work-
ing with approximate solutions refined to around 38 digits of accuracy
we obtain for tr(1) a vector with norm of approximately 10−32. Addi-
tionally, increasing the accuracy of the solutions decreases the norm of
the trace test result. While this gives us very high certainty that we
indeed obtained all solutions, we do not have a rigorous certificate that
the trace test converges to zero when we increase the accuracy of the
solutions. A certification of the trace test similar to Smale’s α-theory for
numerical solutions remains an important open problem.

From the described computations we conclude that degree of the
orbit closure of a general cubic surface under the action PGL(C,4) is
96120.

We note that as a test of our methods, we confirmed known degrees
of other varieties. In agreement with a theoretical result of Aluffi and
Faber [1], we computed that the degree of the orbit closure of a general
quartic curve in the plane is 14280. Additionally we computed that the
degree of the orbit closure of the Cayley cubic, defined by the equation
yzw+ xzw+ xyw+ xyz = 0, is 305. Due to the symmetry of the variables
in the Cayley cubic, there are 4! matrices corresponding to every poly-
nomial in the orbit. As expected, we computed 7320 = 4! ·305 solutions.
This coincides with a theoretical result of Vainsencher [19].
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