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TOWARDS THE DEGREE OF THE PGL(4)-ORBIT OF A CUBIC
SURFACE

ELISA CAZZADOR - BJOJRN SKAULI

We study the action of the group PGL(4) on the parameter space P'°
of complex cubic surfaces. Specifically, we look at how the techniques
used by Aluffi and Faber in [1] can be extended to compute the degree of
the orbit closure O of a general cubic surface. We study the base locus of
the induced rational map P'> --» O C P'°, and the first steps in resolving
this rational map by successively blowing up the reduced base locus.

1. Introduction

A complex cubic surface S in P? is the vanishing locus of a homogenous degree-
3 form of the type

F(X) = aoxg + a1xgx; +--- +aox3.

It is clear that cubic surfaces are parametrized by P Sym?> (C** ~P'°. However,
two isomorphic surfaces correspond to different points in P'° and the simplest
way this can happen is when changing coordinates. A natural question would
then be: Given a fixed S as above, which other cubic surfaces arise from S by
coordinate change? In other words, we are asking to describe the orbit O of S
under the action of the group PGL(4) on the parameter space P'°.

We would like to study the geometry of O: since this just forms a locally
closed subset in P'°, we will rather consider its closure O. A first step in this
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direction is to compute its degree. The latter will depend on the choice of the
surface S and in this paper we will primarily focus on the case where S is chosen
to be general.

In the special case of the Cayley cubic, a surface with four distinct nodes,
the degree of the orbit closure is already known. In [7]], this number is computed
to be 305, based on counting cubic surfaces with 4 distinct double points passing
through 15 general points.

When S is general, the degree of the orbit closure will be significantly higher
and different techniques will be needed. One could start by looking at the map
¢:PGL(4) — P'°, sending the class of a matrix to its pre-composition with F.
The image of this map is the orbit O and computing the degree of its closure
would amount to count the number of points in the intersection of O with a
general linear subspace of complementary dimension.

We can count the number of such points using intersection theory by finding
a pair (V,¢) such that V is a compactification of PGL(4) and ¢ a dominant
regular morphism from Vo O extending ¢ and the intersections of the pull-
back of a hyperplane class by q; is transversal. Then we can simply compute
9*c1(Opio(1))"

The first naive compactification one could think of is PHom(C*,C*) ~ P15,
which can be as well equipped with the pre-composition map which naturally
extends ¢. Unfortunately, this pair is not good enough since the given map is
not regular. From a computational viewpoint, issues come from the fact that the
pull-back classes we are considering will intersect in positive dimension.

The strategy that we would like to pursue here is to find an explicit resolution
of ¢ where it is possible to keep track of how the intersections change. This
approach was already considered by Aluffi and Faber who studied the case of
plane curves of any degree. What we are going to do in the present paper is to
adapt many of the ideas contained in there. In particular, we decide to regularize
¢ by a sequence of blow-ups at smooth centers. We will start by describing the
support of the base locus Bs(¢) from a set-theoretical point of view. We will
then study the first steps towards the resolution of ¢ by successively blowing up
the reduced components of the base locus.

Four of these steps will be analyzed, though currently it is not clear if they
will be sufficient to give the desired resolution. This difficulty reflects an im-
portant difference from the case of plane curves: here the base locus of ¢ has
many components, and this is a consequence of the fact that a general cubic
surface contains 27 distinct lines. More specifically, we will see that problems
can possibly arise from those morphisms in P!> whose image is spanned by a
point contained in one of these lines.

The aim of this paper is to present a report of an on-going project, where the
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remaining work that needs to be done regards not only proving or disproving
the existence of further components to blow up. Indeed, as mentioned above,
there is also a computational aspect, namely showing how the different steps in
the resolution contribute in finding the degree of O. These computations will
not be analyzed here, since the results would currently be very partial. They
are hopefully going to appear in a future paper, as the natural conclusion of the
work illustrated here. For this second part as well, we believe that a considerable
inspiration could be taken by the techniques developed in [1].

An alternative approach to the same problem has been recently explored by
Brustenga i Moncusi, Timme and Weinstein in [3]. There is however a signifi-
cant difference between the methods. Indeed, in their paper the computation of
the degree of the orbit closure is treated from a more numerical perspective. The
idea is to count the number of solutions of a system of polynomial equations in
an affine variety using homotopy continuation and monodromy methods. As a
result, for a general S, this number turns out to be 96120. On the other hand,
applying intersection theory in the context of resolutions of singularities gives a
more geometric flavor and we believe that this will help to shed some light on a
complete understanding on the studied phenomena.

The problem was firstly introduced to us from the 27 Questions on Cubic
Surfaces (see [6]), in view of the First Meeting on Cubic Surfaces, that was held
in Oslo on May 13, 2019. We would like to thank: Kristian Ranestad and Corey
Harris for the valuable discussions and the patience with the many questions,
Paolo Aluffi for very nice explanations about his paper [1/], Maddie Weinstein
for stimulating conversations, the anonymous referees for all the corrections and
suggestions.

2. Setup

In this section we will first describe the action of PGL(4) on the parameter space
of cubic surfaces. This will naturally produce rational maps

P'S ~ PHom(W, W) --» PSym*(W*) ~ P°,

one for every fixed cubic. If the latter is chosen to be general, it will be possible
to illustrate how this map can be used to compute the degree of the orbit closure.
Throughout the paper we will work over the field C of complex numbers.

2.1. The action of PGL(4)

Let us denote with W the 4-dimensional vector space C*. A complex cubic
surface S C PW is the zero set of a homogeneous degree-3 polynomial in four
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variables, say
_ 3 2 2 3
F(x) = aoxp + aixgxi + - - - + a1sxax3 + aj9x3,

which corresponds to a point [F| :=[ag : aj : -+ : aj9] in the parameter space
F :=PSym*(W*). The group PGL(4) acts on F by pre-composition (or, equiv-
alently, by coordinate change):

PGL(4) x F — F
(o, [F(x)]) = [F(a(x))]

For a fixed S (hence for a fixed F), this yields a map ¢:PGL(4) — F, whose
image is by definition the orbit O of F. Moreover, the fiber ¢ ~'(F) is the set
of automorphisms of W leaving F unchanged, so it corresponds to group of
linear automorphisms of S. Our object of study is the degree of O in F: to this
purpose, we first need to understand the dimension of O and the degree of ¢.

Let us denote with V' the space PHom(W,W) of nonzero endomorphisms
of W up to projective equivalence, which is also canonically isomorphic to the
space of matrices P(W* Q@ W).

Lemma 2.1. Let S be a cubic surface with finite group of linear automorphisms.
Then dimO = 15.

Proof. By hypothesis ¢ is a finite map, so dimO = dimPGL(4). But dimO =
dim O and PGL(4) embeds as an open subset V, whose dimension is 15. t

From now on we will consider S to be general, meaning that its correspond-
ing point in F lies in some proper Zariski open subset.

Lemma 2.2. If S is a general cubic surface, the above map ¢ has degree 1.

Proof. We will prove that each fiber of ¢ consists of a single point. Suppose
that there exist two points o, o of PGL(4) with the property that F(a; (x)) =
F(a(x)): then the composite o, ' o o would be a linear automorphism of S.
But a general cubic surface has no nontrivial linear automorphisms (see [J3]]), so
o = 0. O

2.2. How to compute the degree of O

As we noticed in the proof of Lemmal[2.1] we can see PGL(4) as an open subset
of V; in particular the map ¢ can be understood as a rational map V --+ F,
which, by abuse of notation, we will keep calling ¢. The strategy from [[1] that
we want to apply here is to resolve ¢ by a sequence of blow-ups in V and finally
get a regular map 5 :V — F, where V is a smooth compactification of PGL(4)
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and ima = 0. The blow-ups will also produce a morphism 7: V — V), such that
the following diagram commutes:

PGL(4) — YV ' F

4
|
4

PGL(4) — V ---- y F

Given this construction, we can compute the degree d of O as follows:
let @CH(?) — CH(F) be the push-forward map between the corresponding
Chow rings and let us recall that O is a 15-dimensional subvariety of 7. Then by
definition d = [z[O0]-H'®, where [(-) denotes the degree of the O-dimensional
part, while H denotes the hyperplane class in CH(F) ~ Z[H|/H"®. On the other

hand, by construction V dominates O, so deg¢ - [O] = ¢.(1). Then, using the
projection formula, we find:

degq?-d:/ 6*(1-$*H15):/N$*H15. )
F %
Definition 2.3. With notation as above, we define the predegree of O to be
(9% (H))".

Note that, even when S has nontrivial linear automorphisms, it is possible to
use equation () to find the degree of O by dividing the predegree by the order

of the group of linear automorphisms. In the general case we have the following
result:

Proposition 2.4. For a general cubic surface S, the degree of O equals its
predegree.

Proof. Indeed, thanks to Lemma we know that if S is general, degq? =1;
then the expression (I)) gives the desired equality. O

The first step towards the resolution of ¢ is to understand its base locus
Bs(¢). To this purpose we note that the linear system defining ¢ is spanned by
a certain set of hypersurfaces having a nice geometric interpretation.

Definition 2.5. Let S = V(F) be a cubic surface in PW. For every p € PW, the
point condition P, is defined as:

Py, ={aeV|F(a(p)) =0}

i.e. the zero locus of F(a(p)) as a polynomial in a.
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Since the point conditions span the linear system defining ¢, the base locus
Bs(¢) can be identified with the intersection (,cpy Pp. After blowing up this
locus in V, we will get a new rational map, whose base locus will be described
by the intersection of the proper transforms of the point conditions, and so on.
Moreover, if we denote by [D;, the proper transform of P, in V, we see that
d=[3lB)".

Although the main focus of this paper is to illustrate the several steps needed
to resolve ¢, we would like to mention here a very important proposition, which
can be (repeatedly) used to tell how the various blow-ups contribute in the com-
putation of the degree of O.

Proposition 2.6 (|1, Proposition 3.2]). Let i:B — V be an inclusion of non-
singular projective varieties, and let X C 'V be a codimension-1 subvariety,
smooth along B. Let V be the blow-up of V along B, and let X be the proper
transform of X. Then

amv _ [ rrdmy [ (1Bl + K]
Ly [ pgamy— [ o)

where ¢(Np /V) denotes the total Chern class of the normal bundle of BinV.

In our situation, the role of V and X will be played by V and P,, while
B will represent each time a component of the reduced base locus that we are
blowing up. Since the point-conditions are cubic hypersurfaces in V, we have
Jy[Py]"> =315, Then the degree of O will be 3'° —ny — --- —ny, where the n;’s
are the contributions of the blown up loci that can be explicitly computed using
Proposition

At each step, the most difficult part will be to compute ¢(Np/y) in the Chow
ring CH(B). This motivates us to look for a resolution, by picking a suitable
sequence of blow-ups that allows to handle this computation easily.

The contributions coming from the sequence of blow-ups is left for a future
paper, that is thought to be the natural continuation of the present one.

3. Towards the resolution of ¢

In this section, we will describe the first steps necessary to regularize ¢ accord-
ing to the strategy described in [2.2] It is not yet clear if these are enough or
if more blow-ups are required. An important difference from the case of plane
curves studied in [1] is that the base locus Bs(¢) has not only one, but many
components, reflecting the fact that a general cubic surface contains 27 distinct
lines.
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3.1. The base locus of ¢

With the next proposition we are going to describe Bs(¢) as a set. To this
purpose, we look at ) as the space of matrices P(W* ® W), together with the
Segre embedding

PW* X PW — P(W* QW)

given by

kogo kiqo kago k3zqo
kogr kigr kaqi kaq:
kogz kg2 kaqx kzqa
kogs kigs kogs ksqs

([ko:---:hksl,lq0: - q3]) =

)

where k't := {x € PW | koxo + - - - + k3x3 = 0} is the kernel of such a matrix and
q:=1qo: - q3] its image.

Proposition 3.1. Let S = V(F) be a general smooth cubic surface in PW. Let
¢ be the map defined above. Then Bs(9) is supported at the union of two closed
components B and C, with:

(i) B~PW* x S;
(i) C ~U¥ G,

where the C;’s are the irreducible components of C and each C; is isomorphic to
P’

Proof. The map ¢ is not defined over the set
{a eV |F(a(x))=0}={aecV|ima CV(F)}.

Since § is taken to be general, its linear subspaces are points in S and the 27
lines, that we denote by /1, ..., f»7. We can write the base locus as

BUC,
where

B:={a eV |tka=1,imae S},
C:={aeV|rka<2,ima C/; for some i}.
(i) The matrices in B are parametrized by the choice of a point in S and the

choice of a 4-tuple of coefficients in PW* (indeed each column must be a
multiple of the chosen point). Hence B ~ PW* x S.
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(i) Regarding C, it consists of 27 components {Ci}l.zll, where C; is the space
of matrices whose image is spanned by ¢;. So for every i we can make the
identification C; ~ PHom(W,U), where U is the 2-dimensional subspace
of W for which P(U) = ¢;. This is a 7-dimensional projective linear space
and in particular we get C ~ Ul-zll]Pﬁ.

O

Remark 3.2. Alternatively, one can see the the elements of a fixed C; as the
sum of two rank-1 matrices parametrized by the choice of a point on the given
line and the choice of a 4-tuple of coefficients in PW*. In other words, C; is the
union of the span of all pairs of points in PW* x ¢; (including the degenerate
case in which the two points coincide), so we are describing the secant variety
Secy (PW* x £;) ~ Secy(P3 x P!), which is a P,

Remark 3.3. The subset, PGL(4) C V does not intersect Bs(¢), so as we re-
solve the rational map ¢, we still get compactifications of PGL(4).

Remark 3.4. The above proof actually says more: the two components B and
C intersect in

BNC={a eV |rka=1,ima is a point on ¢; for some i}.
In particular, this implies the following Corollary.

Corollary 3.5. Let C;,i =1,...,27 be the components of C, each isomorphic to
P’. Then
BNC; ~PW* x ¥;.

Moreover, for i # j we have

C:AC: ~ PwW* ifeine; #0
! 7o otherwise

As we have mentioned at the end of Section |2} since Bs(¢) has many com-
ponents, there are many ways of resolving the map. The following order of
blow-ups at smooth centers is suited for relating the base loci of the induced
maps to properties of point conditions in V.

We start by blowing up ) along the component B ~ PW* x §: this produces
a morphism 7;: V; — V and an exceptional divisor E; C V). After blowing up
B, the proper transforms of the point condition, denoted by P(l), will define a
new rational map ¢;:V; --» F. Note that BNPGL(4) =0 in V, so V; contains
an open dense subset isomorphic to PGL(4) and with a little abuse of notation
we will indicate it using the same symbol. Let us denote with Cl.(l) the proper
transform of C; in V) for every i.
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Claim 3.6. The base locus Bs(¢;) is supported on the 27 components Cl.(l)’s,
which are disjoint, plus a further component, denoted by B, contained in the
exceptional divisor E, intersecting the Cl-(l)’s.

We will choose B; to be the center of the second blow-up. As before, this
will produce a new morphism 7,: V, — V1, together with an exceptional divisor
E» C V,. Again, the proper transforms of the point conditions, denoted by P(Z),

will define a rational map ¢,:V, --+ F.

Claim 3.7. The support of Bs(¢,) contains the 27 pairwise disjoint proper trans-

forms Cl.(z) ’s and a subvariety, denoted by B;, which has a dominant 2: 1 map to
B.

Note that it is not clear whether the subvariety B; is irreducible or not. What
we will prove is that it must consist of either 1 or 2 components. Moreover, we
need to observe that Claim refers to an inclusion, but not an equality, so
there might be some other components in Bs(¢,), namely the ones dominating
the intersections BNC; ~ PW* x ¢;.

If we assume that we have exactly the components listed in above, we can
proceed by blowing up B;. We get as usual a map 7m3: V3 — V%, an exceptional
divisor E3 C Vs and a rational map ¢3: V3 --+ )V induced by the proper trans-
forms of point conditions. We expect no component of the base locus of ¢3 to
dominate B. In fact, one might hope that the only components of Bs(¢3) are the
Ci(3), and that blowing up these components resolves the rational map.

We summarize the construction in Figure |1} which also fixes notation for
the rest of the section.

3.2. The base locus after blowing up B

We now aim to prove Claim in particular, we are interested in giving the
set-theoretical description of By := E; N Bs(¢).

To this purpose, we recall that B is embedded in ) via the Segre embedding.
In particular, for every o € 1V, we may identify the space 7y ) with the quotient
(W*®@W)/aC. Let o = (k,q) be a point in B and let us denote with ¢ = T,S
the tangent space of S at the point g.

Lemma 3.8. With the identification T,V ~ (W* @ W)/aC, we have:
(i) TuB={t € W*®@W |imt C o0, (k') C ¢}/aC.

(ii) Ta(PW* x £) = {1 e W*®@W |im7 C £, 7(k*) C q}/aC.
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Figure 1: The sequence of blow-ups

(iii) The point condition P, is non-singular at @ and

ToPy={tcW' @W|1(p) Co}/aC.

Proof. The ideas in this proof are essentially the same of [1, Lemma 2.1].

(i) The (5-dimensional) tangent space of B at ¢ is

ToB =T (PW" x {q}) © T,({k} x 5)
K @qeW oW |k cPW*} o {koq e W QW |4 €oc}

kC qC
{teW*@W |imt=gq} {reW*'®W |kert=k', im7C o}
pu— @ .
kC qC

The two spaces in the direct sum decomposition are both contained in the
space
{teW*®W |imt C o, 7(k*) C ¢}
(k®q)C ’

which is also of dimension 5, so they coincide.

(ii) Similarly we obtain the description for Ty, (PW* X £;).
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(iii) A line passing through & can be written as ¥ (s) = ot + s, for some 7 € V.
Note that since ima = g € S, then F(Y4(0)(p)) = F(a(p)) = 0. The
intersection multiplicity mq (P, - ¥) is by definition the order of vanishing

ord,—o[F ((a +75)(p))],

so the line 7y is tangent to P, if and only if that order is greater or equal
than 2. By taking the Taylor expansion we get

3
Fllar ) =Fe()+ 2 (50)  ast
1 a(p

i=0

where 7;(p) denotes the i-th coordinate of 7(p). Hence we need the con-
stant and the linear term of this expression to vanish. We already know

that F(a(p)) = 0, while zi(%) %(p) = 0 if and only if 7(p) C &, that
'/q

is exactly the condition we claimed. The above computation says more:
if 7(p) ¢ o, then the line o + s intersects P, with multiplicity 1 at ¢, so
P, is non-singular at o.

O

We will also need a similar lemma describing various tangent spaces at
points of C;.

Lemma 3.9. For every point o € C;, we have:
(i) TuCi={te W @W |imt C {;}/aC.
(ii) ToPp, = {T eW*@W |t(p) C Ta(p)S}/OC(C.

Proof. (i) Since each C; ~ P is embedded in V as a linear space, if we iden-
tify the C; with nonzero matrices with image in ¢;, then the tangent space
to this linear space at any point is simply the linear space itself, i.e. the
matrices with image in ¢;.

(i) Exactly as the proof of Lemma 3.8[iii)

Lemma 3.10. After blowing up By, the Ci(l) are all disjoint in V.

Proof. Recall that E; is defined as P(Np)y), with Ngy ~ TV/TB. Then the

intersection C'" NE 1 is the projectivization of the image of TC; via the compo-

1
sition
TC;—TV —TV/TB.
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We need to prove that if C; and C; intersect in V, then Cl-(l) and Cﬁ-l) are disjoint in
the blow-up V. We can check this fiberwise and show that for every o € ;N C},
the images of T, C; and ToCj in TV /TyB do not intersect.

First observe that blowing up V along B affects C; as if it was blown up along

PW* x ¢;, producing an exceptional divisor F; := P(WQ}X[)), embedded in

E\. We may therefore instead prove that the image of Cj(-l) in F; is the empty set,
i.e. that ToCi N (T Cj, To(PW* x £;)) is contained in To, (PW* x ¢;). Write ¢ for
the intersection /; N ¢; and o for 7,S. Knowing the description of the tangent
spaces in Lemma and Lemma and recalling that the two lines ¢;,¢; span
o, we obtain

(ToCj, Ty(PW* x £,)) = {t € W*@W |imt C o, t(k") C £;}/aC.

Intersecting this span with T,C; we obtain exactly the tangent space T (PW* X
i), so Ci(l) and Cﬁ-l) are disjoint in the blow-up. O

The tangent spaces appearing in Lemma [3.§] are also essential to describe
the base locus of ¢.

Proposition 3.11. The base locus Bs(¢;) of the rational map ¢:Vy --» F is
supported on

Bu{c,....cVy,

where By is a P°-subbundle of E. Moreover, B; = (Nperw PISU) N E| both set
and scheme-theoretically.

Proof. This result refers to [1, Proposition 2.2]. As observed earlier, the base
locus of ¢, is set-theoretically (1, P[gl). In particular, a point ¢¢; € Ej lying in the
fiber of a € Bis also in Bs(¢,) if it is determined by a vector in (1, TP, which
is normal to B. Thanks to Lemma [3.8[iii), we see that the intersection of all
tangent spaces to the point conditions at & is given by the 11-dimensional space
Yo :={T€W*®@W |im7 C 6}/aC. This contains Ty B (see again Lemma|[3.8)
and the quotient £o /Ty B is a 6-dimensional subspace of the fiber of Ng /), over
a. Moving o, we get a rank-6 subbundle of Ng/y;, so a P>-subbundle of E; =
P(Ng/y), as we wanted. The Cl-(l)’s are also base loci, since the corresponding
C;’s were so.

The second statement can be proved fiberwise: indeed, the fiber of By, a
linear subspace, is cut out by fibers of the various P,S” N E1, which are linear
spaces themselves. O
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Corollary 3.12. The component By can be globally described as IP(
(1)

and its intersection with C; "’ is the bundle over PW x {; given by:

W) ~p, —p TG
G nB (T(PW*M,-) '

Ny TPy
TB

Proof. The global description of Bj is straightforward from Proposition [3.11]
Regarding the intersection Cl-(l) N By, this coincides with Cl-(l) NE;. The descrip-
tion then holds by the same arguments used for Lemma|3.10 Ul

3.3. The base locus after blowing up B;

We now address Claim [3.7} although a complete description of the components
of Bs(¢») will not be given, we will show which of those components are the
ones dominating B ~ PW* x S.

So, let us denote with B, the closed subvariety of Bs(¢,) N E, dominating
B. In order to understand B, we will need to look at the intersection of S with
its tangent planes. We will focus on the points of S lying in the subset Sy :=
S\ N, 4. Note that for every g € Sp, the plane cubic curve T,S NS is either a
node or a cuspidal curve and if ¢ is a line in the tangent cone of such a cubic at
its singular point g, then the intersection multiplicity is m,(¢- (T,SNS)) = 3.

Definition 3.13. A line of matrices o + Ts in V, with @ = (k,q) € B is called a
special line if g € Sy, T(k*) ¢ q and the image of 7 is contained in a line tangent
to the cubic curve T,S NS at q.

We would like to translate properties of points in B, to properties of points
in B and as we will soon see it will be useful to observe the following:

Lemma 3.14. The base locus Bs(@,) is disjoint from E 1(1>.

Proof. This is just a rephrase of the second part of Proposition [3.11] thanks to
which we know that the point conditions P,gl) intersect E transversely in V;. [

Proposition 3.15. Let ap be a point of E; and let us denote with o = (k,q) its
image in B via the composite map ) o . Suppose also that g € Sy. Then o
is in By if and only if it can be written as the intersection of E, with the proper
transform in V, of a special line in V. Moreover, the set of such o is dense in
By.

Proof. By definition, o € Bs(¢,) if and only if it is contained in the proper
transform of a general point condition P;SZ). In particular, if oy is in By, it must

represent a direction normal to B; and tangent to a general point condition P;(vl)
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at o := m(op). We can identify this direction with a smooth curve germ 7y,
around o in V), satisfying normality to B; and the tangency condition:

Mey (Yo ~P,El)) > 2, fora general p € PW.

Note that, using the above identification, we can write 0y = E» N (Y, )(1).

Thanks to Lemma |3.14{ we can rephrase everything in terms of curve germs
in V: indeed, Yy, turns out to be not only normal to By, but to the whole of Ej,
so we can think of it as the proper transform of a line Y, = ot + 7s C V, which is
normal to B and intersects a general point condition P, with multiplicity greater
or equal than 3.

Denoting as usual with ¢ the tangent plane T;S, we can equivalently say
that:

o €By = a=EN(o+1)?,

with im7 C ¢ and t(k') ¢ ¢ (see Lemma , such that for a general p we
have mq (0 + Ts) - P,) > 3.

This description reduces to study a special class of lines through o in V =V:
we divide in 3 cases, depending on the rank of 7, that can be either 1,2 or 3.

If rkT = 3, then im7 = ¢. In particular, for a general p € PW, we have
7(p) = qp, Where g, is a point varying on ¢ and different from g. Then the span

(a(p) =q,7(p) = qp)

is a general line A, in © passing through ¢ and (& + 7s)(p) is a parametrization
of such a line. Then for a general p we have

ma (0 +Ts) - Pp) = ordi—o (F ((a + 75)(p)))
=mgy(Ap-S)
=my(A,-(SNo))=2<3,

so in this case ¢ is not in the base locus.

If rkT =2, then im 7 = ¢, where { is a line in the tangent plane ¢. Again,
for a general p € PW, the span of o(p) and 7(p) is a line through g and we are
interested in computing my(A, - (SN ©)). There are two possibilities: if g ¢ ,
then for every two distinct points p; and p, in PW the lines A, and A, are
distinct. In particular, for a general p, the above multiplicity will be 2, so in this
case as well, o is not in the base locus.

On the other hand, if g € ¢, then for a general p we constantly have 4, = ¢
and oy is in the base locus precisely when m,(¢- (SN o)) =3, i.e. when £ is
one of the two tangent lines at the node ¢ (or the double tangent line in the
degenerate case). Note the multiplicity computation makes sense since we are
assuming that g € Sp.
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Finally, if rk T = 1, then im T = ¢/, a point in ¢ different from g (otherwise
this would contradict (k%) ¢ ¢). Then, arguing as above, for a general p, the
span of a(p) = q and 7(p) = ¢ is a constant line £ and o, is in the base locus if
and only if my(¢- (SN o)) = 3. Note that the rank-1 matrices 7 satisfying this
property come from taking the closure of the space of rank-2 matrices described
at the previous step.

The density statement is a consequence of the fact that Sy is dense in S,
since a component dominates B if and only if it dominates PW* x So C B. [

Our knowledge about the components of the base locus of ¢, can be sum-
marized in the following:

Proposition 3.16. The components of the support of Bs(¢,) that dominate a
component of the original base locus Bs(9) are CE2>,..., g) and the irre-
ducible components of By. Moreover, the map (T o )|, is a double cover

of B, i.e. B consists of at most 2 irreducible components.

Proof. We just need to observe that B; is obtained by taking the closure of a
subset of E> whose fibers over B correspond to two special lines of V' (counted
with multiplicity). O

Remark 3.17. While the Cl-(z) ’s are clearly irreducible, we are still left lo under-
stand if also B> is.

3.4. The base locus after blowing up the c®

]

The last part of the paper is devoted to proving the following result:

Proposition 3.18. After blowing up one of the components Cl.(S), corresponding
to matrices with image contained in a line, there will be no remaining base locus
over the points in C; corresponding to matrices of rank 2.

Since, up to this point, the centers of all blow-ups have been away from
matrices of rank 2, we will for simplicity consider the base locus after blowing
up C; in V instead of Cl.(3) in Vs.

We now wish to study the intersection of the tangent spaces of all point
conditions. To this end, we will study the image of matrices contained in the
intersection of all the tangent spaces. From Lemma[3.9](ii) we see that for every
o € C;, the intersection of all the tangent spaces T P, is:

N {teW @W | 2(p) C Ty,S}/aC. )
pEW
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In fact, as we will prove now, this condition will imply that the image of the
matrix T must be contained in /;.

The proof relies on pencils of hyperplanes. The hyperplanes in W containing
¢; are parametrized by H ~ P!, A pencil of hyperplanes containing ¢; will be a
morphism P! — #, and the degree of the pencil is the degree of this morphism
(if it is nonconstant).

In this and the following lemma, we will work with the affine space W
instead of PW.

Lemma 3.19. Let a € C; be a point corresponding to a rank-2 matrix with
image {;, and let T € W* @W be such that the image of T in T,V ~W*@W /aC
is in N, T Py. Then for any two-dimensional subspace U C W such that a(U) =
i, we have t(U) C 4;.

Proof. From the two-dimensional subspace U we can construct a degree-two
pencil P; of hyperplanes in W containing ¢; by assigning to u € U the hyper-

plane defined by the equation
3. (OF
% (5
S\ 0xi a(u)

where F is the general degree three polynomial defining the cubic surface S. We
think of P as assigning to u € U the tangent plane of S at ¢(s). This defines a
map from P(U) ~ P! to H. This pencil will have degree two, as it is defined by
degree two polynomials.

Assume for contradiction that T(U) Z ¢;. There are three cases: T(U) is ei-
ther a one-dimensional space not contained in ¢;, a two-dimensional space with
one-dimensional intersection with #;, or a two-dimensional space with zero-
dimensional intersection with ¢;. In all cases, we construct a second pencil P,
of hyperplanes containing ¢;, by assigning to u € U the hyperplane spanned by
7(u) and ¢;. This defines a map P(U) --» H which is a priori at least rational,
but extends to a morphism P(U) — H since the domain is a curve.

The condition (2)) states that P; and P, are equal. Indeed, condition (2
requires that P (p) = (p,£:) is mapped to T (,)S in T, V. But this can only
happen if P»(p) = Pi(p). However, this cannot be true in any of the three cases,
as we will see in the following:

e If 7(U) is a one-dimensional space not contained in ¢;, then P, is constant,
and therefore not equal to P;.

* In the case where 7(U) is two-dimensional and intersects ¢; in the one-
dimensional space gC, P,(p) will be the hyperplane spanned by ¢; and
7(U) for any p, so the pencil is constant.
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» If 7(U) is a two-dimensional space intersecting ¢; only in 0, then P, is a
pencil of degree 1. Therefore, again, it cannot be equal to P;.

From this lemma we can deduce that in fact the image of T must be in /;.

Lemma 3.20. With notation as above, let @ be a matrix of rank 2 in C;. If
T €, TaPp, then T is in the tangent space ToC;.

Proof. Let 7’ be any element of € W* @ W that is mapped to 7. For any vector
u € W\ kera, it is possible to find a 2-dimensional subspace U containing u
such that a(U) = ¢;. Then, thanks to Lemma we have 7'(u) € ¢;. But
since u was arbitrarily chosen in W \ ker o« and this latter set spans W, we must
have imt’ C ¥;. d

Putting all this together we find that after blowing up a component of the
base locus corresponding to matrices with image in a certain line, the remaining
base locus is supported in the fibers over the rank-1 matrices.

Proposition 3.21. Let

be the the diagram associated to the blow-up of V, along one of the components
Ci ~ P’ and let ¢":V' ——» F be the induced rational map. If we denote by
G; the exceptional divisor over C; and by Bs(9') the base locus of ¢, then
7 (Bs(¢')NG;) is contained in the PW* x {; C C; consisting of rank-1 matrices.

Proof. We will prove the statement fiberwise. Let o € C; be a rank-2 matrix.
Then we must show that Bs(¢') N7~ () is empty. The fiber 7! () is the
projectivization of (Ng,/y)a, the fiber of the normal bundle of C; at a. If we
denote with P, the stict transform of a point condition, then P, N7~ () is
the projectivization of the quotient Ty P,/ToC;. Therefore Bs(¢') Nz~ (a), is
obtained by projectivizing (), TaPp /ToC;. But by Lemma we know that
N » Ty Py is actually contained in T, C;, so the quotient described above must be
trivial. After projectivizing, we see that Bs(¢') N7z~ ! (o) must be empty. [
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Remark 3.22. In our resolution of ¢:V --» F, we actually want to blow up
the proper transforms Cl.(S) of the C; in V. However, over the matrices of rank
2, the blow-down V, — V is an isomorphism. We can therefore conclude from
Propostion [3.21] that also in this case there is no further base locus over the

rank-2 matrices.
Having Proposition [3.2T|been proved, the natural question to ask is:

Question 3.23. After blowing up the CI-(3)’S, is there any base locus over the
subset of points that projects down to the locus of rank-1 matrices?
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