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ON THE EIGENPOINTS OF CUBIC SURFACES

T. Ö. ÇELIK - F. GALUPPI - A. KULKARNI - M.-Ş. SOREA

We show that the eigenschemes of 4× 4× 4 symmetric tensors are
parameterized by a linear subvariety of the Grassmannian Gr(3,P14). We
also study the decomposition of the eigenscheme into the subscheme as-
sociated to the zero eigenvalue and its residue. In particular, we describe
the possible degrees and dimensions.

1. Introduction

The goal of this paper is to study the eigenpoints of order three tensors. The
spectral theory of tensors is a multi-linear generalization of the study of eigen-
values, singular values, eigenvectors and singular vectors in the case of matrices.
Starting with the works of Qi [9] and Lim [8], there has been steady progress
and strong interest in the subject, both theoretically and in the applications to
hypergraph theory, data analysis, automatic control, magnetic resonance imag-
ing, higher order Markov chains, and optimization [7, 11].

Given a tensor T ∈ (Cn+1)⊗3 and a matrix A∈Cn+1⊗Cn+1, the vector T ·A,
defined by

(T ·A)k =
n

∑
i=0

n

∑
j=0
Ti jkAi j

is called the tensor contraction of T and A with respect to the first and second
axes. An analogous definition can be given for a different choice of two of the
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three axes. Therefore, a choice of two axes induces a linear map

T : Cn+1 → Cn+1

x 7→ T · (x⊗ x).

An eigenvector of the tensor T , with respect to the chosen directions, is a non-
zero vector x ∈ Cn+1 such that T · (x⊗ x) = λx for some λ ∈ C, and an eigen-
point is the associated equivalence class in Pn. As we point out in Definition 2.1,
the condition of being an eigenpoint can be expressed as the vanishing of minors
of a suitable matrix, thus giving the eigenpoints a scheme structure. This closed
subscheme of Pn is the eigenscheme of T with respect to the chosen axes.

In this article, we fix the contraction to be along the first two directions
and we use the terminology of eigenvector, eigenpoint, eigenscheme with the
implicit reference to these axes. However, we stress that there are interesting re-
lations between the eigenschemes associated to different directions of the same
tensor; this phenomenon of eigencompatibility was studied in detail by Abo,
Seigal, and Sturmfels in [1, Section 3].

With a fixed choice of axes, we may assume without loss of generality that
T ∈ Sym2Cn+1⊗Cn+1. Indeed, let T̃ ∈ (Cn+1)⊗3 be the tensor obtained from
T by switching the first and the second index. In other words, (T̃ )i jk = T jik.
Then

(T̃ · (x⊗ x))k =
n

∑
i=0

n

∑
j=0
T̃i jkxix j =

n

∑
j=0

n

∑
i=0
T jikx jxi = (T · (x⊗ x))k,

hence T and T̃ induce the same linear map. We refer to elements of Sym2Cn+1⊗
Cn+1 as partially symmetric tensors. A symmetric tensor is an element of
Sym3Cn+1. The space Sym3Cn+1 of symmetric tensors is canonically iso-
morphic to the space C[x0, . . . ,xn]3 of homogeneous cubic polynomials. The
symmetric tensor T corresponds to the polynomial

f = ∑
i0+...+in=3

Ti0...inxi0 · . . . · xin ∈ C[x0, . . . ,xn]3.

Equivalently, T defines a polynomial f by f (x) = T · (x⊗ x⊗ x). Conversely,
given a homogeneous cubic form f in n+1 variables, each of the partial deriva-
tives of f is a quadratic form, which in turn can be viewed as an element of
Sym2Cn+1; the tuple of quadratic polynomials

(
1
n

∂ f
∂x0

, . . . , 1
n

∂ f
∂xn

)
, viewed as

(n+1)× (n+1) symmetric matrices, defines a tensor in Sym3Cn+1.
In Section 2 we provide the necessary definitions and the setup. In Section 3

we look at the decomposition of the eigenscheme into the subscheme of eigen-
points with eigenvalue 0 (the irregular eigenpoints) and its residue (the regular
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eigenpoints); we study the dimensions of the components in this decomposition.
In Section 4 we focus on the degree of 0-dimensional regular eigenschemes of
ternary and quaternary cubics. In Section 5 we show that there is a natural bi-
jection between 3-planes in P14 satisfying linear constraints and eigenschemes
of cubic surfaces.

2. Preliminaries

Fix a projective space Pn and denote by C[x0, . . . ,xn] its coordinate ring. We also
fix Pn+1 := ProjC[x0, . . . ,xn,λ ]. For convenience, we denote x := (x0, . . . ,xn).

A partially symmetric tensor T ∈ Sym2Cn+1⊗Cn+1 can be viewed as a
tuple of n + 1 quadratic forms (q0(x) , . . . ,qn(x)) given by the contraction
T · (x⊗ x), similar to how a symmetric tensor T defines a cubic form in n+1
variables by the contraction T · (x⊗ x⊗ x). Equivalently, the quadratic forms
are those associated to the n+ 1 symmetric matrices of size (n+ 1)× (n+ 1)
obtained by slicing T .

Definition 2.1. Let T = (q0, . . . ,qn) be a partially symmetric tensor. Define the
scheme of eigenpairs of T by

Ẽ(T ) =V (q0(x)−λx0, . . . ,qn(x)−λxn)⊂ Pn+1 = ProjC[x0, . . . ,xn,λ ].

Observe that [0, . . . ,0,1] ∈ Ẽ(T ). Let π : Pn+1 99K Pn be the projection from
[0, . . . ,0,1]. The image of π is a closed subscheme of Pn. The eigenscheme of
T , denoted by E(T ), is the image under π of the residue of Ẽ(T ) with respect to
[0, . . . ,0,1]. Equivalently, E(T )⊂ Pn is the common vanishing set of the 2×2
minors of (

x0 x1 . . . xn

q0 q1 . . . qn

)
.

When T is symmetric, we can consider it as a homogeneous polynomial f . In
this case qi =

∂ f
∂xi

, and we denote its eigenscheme by E( f ).

The first question we can ask about eigenpoints is whether they always exist.
If so, we would like to know how many of them are there.

Lemma 2.2. Let T ∈ Sym2Cn+1⊗Cn+1 be a partially symmetric tensor.

1. If T is general, then E(T ) consists of 2n+1−1 reduced points.

2. [0, . . . ,0,1] is a smooth isolated point for Ẽ(T ), and moreover E(T ) 6= /0.
In particular, every smooth cubic polynomial has at least a regular eigen-
point.
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Proof. 1. By Bézout’s theorem, it suffices to show that the quadrics defining
the eigenscheme are transverse. Since transversality is an open condition,
it is enough to exhibit one example of a partially symmetric tensor with
2n+1−1 reduced eigenpoints. It is easy to check that the symmetric tensor
x3

0 + . . .+ x3
n satisfies this requirement.

2. To be smooth and to be isolated are local properties, so we can work in
the affine space Cn defined by λ = 1. In this chart the point [0, . . . ,0,1]
is the origin (0, . . . ,0) and the Jacobian of Ẽ(T ) is the (n+ 1)× (n+ 1)
matrix

J =


∂q0
x0
−1 ∂q0

x1
. . . ∂q0

xn

∂q1
x0

∂q1
x1
−1

. . . ∂q1
xn

...
. . . . . . ∂qn−1

xn
∂qn
x0

∂qn
x1

∂qn
xn−1

∂qn
xn
−1

 .

Since q0, . . . ,qn are homogeneous, so are their derivatives. This implies
that, up to a sign, J(p) = J(0, . . . ,0) is the identity matrix, hence it has
maximal rank. This proves that Ẽ(T ) is smooth at p. The tangent space
to Ẽ(T ) at p is defined by J(p) · (x0, . . . ,xn)

> = 0, so it has equations
x0 = . . .= xn = 0. Therefore TpẼ(T ) = {p}, hence p is an isolated point
for Ẽ(T ).
Since E(T ) is the image of Ẽ(T ) under the projection from p, in order
to show that it is not empty it is enough to show that Ẽ(T ) contains at
least a point outside p. Since p ∈ Ẽ(T ), dim Ẽ(T )≥ 0. If it has positive
dimension, we are done. In case it has dimension 0, by point (1) we have
deg Ẽ(T )≥ 2n+1−1 > 1. Since Ẽ(T ) is smooth at p, it contains at least
another point.

Given a 0-dimensional subscheme of Pn of length 2n+1−1, we can ask how
to detect whether it is the eigenscheme of a cubic. Each point has to satisfy the(n

2

)
equations {

∂ f
∂xi

x j−
∂ f
∂x j

xi : 0≤ i < j ≤ n
}
, (1)

whose indeterminates are the
(n+3

3

)
coefficients of f . These conditions are lin-

ear. In order to have a solution, the matrix associated to the system of lin-
ear equations (1) cannot have maximal rank. Hence the length 2n+1− 1 sub-
scheme is the eigenscheme of a cubic if and only if the maximal minors of the(n+3

3

)
× (2n+1 − 1)

(n
2

)
matrix vanish. Although these conditions are compli-

cated, they provide a computational way to check if 2n+1− 1 given points are
the points of an eigenscheme.
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Definition 2.3. Let T = (q0, . . . ,qn) be a partially symmetric tensor. The ir-
regular eigenscheme of T is the subscheme Irr(T ) ⊂ Pn defined by the ideal
(q0, . . . ,qn)⊂C[x0, . . . ,xn]. The residue of E(T ) with respect to Irr(T ) is called
the regular eigenscheme and denoted by Reg(T ). As a consequence, we can
compute the ideal of Reg( f ) as the saturation

I(Reg( f )) = I
(

Reg( f )
)
= (I(E( f )) : I(Irr( f ))) .

To clarify the terminology, the regular eigenpoints are the points p such
that the rational map (q0, . . . ,qn) : Pn 99K Pn is both regular at p and fixes p.
When T is a symmetric tensor, the regular eigenpoints of the associated cubic
polynomial f are the fixed points of the gradient map ∇ f : Pn 99K Pn defined by

p 7→
[

∂ f
∂x0

(p), . . . ,
∂ f
∂xn

(p)
]
.

The closed points of the irregular eigenscheme are the singular points of the hy-
persurface V ( f )⊂ Pn. It will be useful for this paper to consider what happens
to the eigenscheme under the following group action.

Definition 2.4. Let U ∈GLn+1(C) and let T := (q0(x), . . . ,qn(x)) be a partially
symmetric tensor. We define the twisted action of U on T by

ΨUT := (q0(xU), . . . ,qn(xU)) ·U−1.

i.e, U acts on the quadrics by change of coordinates, then U−1 acts by taking
linear combinations of the slices of the tensor.

Remark 2.5. Let ρstd be the standard representation of GLn+1(C). The ac-
tion described in Definition 2.4 defines the representation ρ

⊗2
std ⊗ ρ∨std. For the

subgroup SOn+1(C), the action is equivalent to acting by orthogonal change of
coordinates. By [11, Theorem 2.20], the eigenscheme is SOn+1(C)-invariant.
The next lemma shows what happens for the action of GLn+1(C).
Lemma 2.6. Let U ∈ GLn+1(C) and let T := (q0(x), . . . ,qn(x)) be a partially
symmetric tensor. Then E (ΨUT ) =U−1E(T ).
Proof. The equations {qi(x)x j−q j(x)xi : 0≤ i, j ≤ n} vanish at x if and only if
the minors of (

(x0 x1 . . . xn) ·U−1

(q0(x) q1(x) . . . qn(x)) ·U−1

)
also vanish. Setting y := (x0, . . . ,xn) ·U−1, we have that the minors of(

y0 y1 . . . yn

(q0(yU) q1(yU) . . . qn(yU)) ·U−1

)
vanish if and only if y∈U−1(x). The last system of equations defines the eigen-
scheme of ΨU T .
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3. Dimensions of the regular and irregular eigenschemes of cubics

The eigenscheme of a cubic can exhibit a wide range of structure. For instance,
it can be non-reduced or it can have components of different dimension.

Example 3.1. Let f = x1(x1x2+x2
3+x2

0) be the cubic equation and consider the
conic C =V (x3,2x2

0− x2
1− x2

2). Explicit computation shows that

E( f ) =C∪{[1,2,0,2], [1,2,0,−2], [1,0,0,0]},

while Irr( f ) = {[1,0,0,0], [0,1,1,0], [0,1,−1,0]}. Hence Reg( f ) has compo-
nents of both dimension 0 and 1.

Example 3.2. Let f = x0(x2
1+x2

2+x2
3)+x3

1 and consider the non-reduced curve
C defined by the ideal (x2

1,2x2
0− x2

2− x2
3). Regular eigenpoints are dense in C

and Reg⊃C.

In this section, we describe some of the possibilities for the degrees and
dimensions of Reg( f ) and Irr( f ).

Proposition 3.3. Let f ∈ C[x0, . . . ,xn]3 be a homogeneous cubic. Then

(a) dimIrr( f )+ 1 ≥ dimReg( f ). In particular, dimReg( f ) = 0 whenever f is
smooth;

(b) dimIrr( f ) = n−1 if and only if Irr( f ) is a hyperplane. In this case X con-
tains a double hyperplane and Reg( f ) has either 0, 1, or 2 closed points;

(c) if dimReg( f ) = n−1, then dimIrr( f ) = n−2.

Proof. (a) Let H be the hyperplane of Pn+1 = ProjC[x0, . . . ,xn,λ ] defined by
λ = 0. Let π : Pn 99K Pn−1 be the projection from the point [0, . . . ,0,1].
Since all fibers of π have dimension 1, we have:

dimIrr( f ) = dim(π−1Irr( f ))−1 = dim
(
π
−1E( f )∩H

)
−1

≥ dim(π−1E( f ))−2 = dimE( f )−1≥ dimReg( f )−1.

If f is smooth, then this implies dimReg( f ) ≤ 0. We already know that
dimReg( f ) 6=−1 by Lemma 2.2(2).

(b) Let X = V ( f ) ⊂ Pn be the projective cubic hypersurface defined by f . For
every pair of points s1,s2 ∈ Irr( f ), the line 〈s1,s2〉 intersects X with multi-
plicity at least 4, so it is contained in X by Bézout’s theorem. This means
that X contains the secant variety of Irr( f ). Assume dimIrr( f ) = n− 1. If
Irr( f ) was not supported on a hyperplane, then its secant variety would be
the whole Pn, contradiction. The converse is clear.
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We now determine the number of regular eigenpoints in this case. By Re-
mark 2.5, we may assume that Irr( f ) = V (xr

0) for some r ≥ 2 up to an
orthogonal transformation. We can write f = x2

0(a0x0 + . . .+anxn), and the
eigenscheme is defined by

{
2x0(a0x0 + . . .+anxn)+a0x2

0 = λx0

a1x2
0 = λx1, a2x2

0 = λx2, . . . , anx2
0 = λxn

}
.

If λ 6= 0, then up to scaling we may assume λ = 1, so we have

{
2x0(a0x0 + . . .+anxn)+a0x2

0 = x0

a1x2
0 = x1, . . . , anx2

0 = xn

}
.

We see that
(
(a2

1 + . . .+a2
n)x

2
0 +3a0x0−1

)
x0 = 0 by eliminating x1, . . . ,xn

from the first relation. The only solution when x0 = 0 is [0, . . . ,0,1]. The
other factor has at most 2 solutions in x0, so the claim follows.

(c) From (a), we see dimIrr( f )≥ n−2. From part (b), dimIrr( f )< n−1.

The bounds from Proposition 3.3 on the dimensions of Irr( f ) and Reg( f ) are
optimal for ternary and quaternary cubics. For any δ ,ε ∈ {−1,0,1} satisfying
these requirements, Table 1 gives an example of a ternary cubic f such that
dimReg( f )= δ and dimIrr( f )= ε . Table 2 gives examples of quaternary cubics
for any admissible δ ,ε ∈ {−1,0,1,2}.

Table 1: Dimensions of the regular and irregular eigenschemes for plane cubics.
Here, δ := dimReg( f ), ε := dimIrr( f ), and i denotes the element such that
i2 =−1.

@
@
@δ

ε
-1 0 1

-1 /0 3x0(x2
1 + x2

2)+(x1 + ix2)
3 x2

0(x1 + ix2)

0 x3
0 + x3

1 + x3
2 x3

0 + x3
1 x3

0

1 /0 x0(x2
1 + x2

2) /0
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Table 2: Dimensions of the regular and irregular eigenschemes of cubic sur-
faces. Here, δ := dimReg( f ), ε := dimIrr( f ), while i, respectively θ denote
elements such that i2 =−1, respectively θ 6 =−8/9.

@
@
@δ

ε
-1 0 1 2

-1 /0
x0(x2

1− x2
2− x2

3)

+(θx1 + ix2 + x3)
3

3x0(x2
1 + x2

2)

+(x1 + ix2)
3

x2
0(x1 + ix2)

0 ∑
3
j=0 x3

j x3
0 + x3

1 + x3
2 x3

0 + x3
1 x3

0

1 /0 ∑
3
j=1 x0x2

j + x3
1 x0(x2

1 + x2
2) /0

2 /0 /0 x0(x2
1 + x2

2 + x2
3) /0

Notice that there are partially symmetric tensors whose eigenscheme has
dimension 3.

Lemma 3.4. Let T = (q0, . . . ,qn)∈ Sym2Cn+1⊗Cn+1. Then E(T ) = Pn if and
only if there is a linear form ` such that qi = `xi for every i ∈ {0, . . . ,n}.

Proof. Consider the matrix (
x0 x1 . . . xn

q0 q1 . . . qn

)
as in Definition 2.1. Assume that qi = `xi for every i ∈ {0, . . . ,n}. Then we are
dealing with (

x0 x1 . . . xn

`x0 `x1 . . . `xn

)
,

which has rank at most 1 for every x ∈ Pn. Conversely, if xiq j− x jqi is identi-
cally zero for every i, j ∈ {0, . . . ,n}, then the result follows from the fact that
C[x0, . . . ,xn] is a unique factorization domain.

One can understand the regular eigenscheme of cubic cones in Pn by study-
ing the eigenscheme of cubics in Pn−1. In general, Lemma 3.5 shows how
examples in lower dimensions help fill in the classification of possible strata for
higher dimensional tensors. If V ( f )⊂Pn is a cone over a plane cubic curve, then
up to a SOn+1(C) transformation we may assume that f satisfies the hypothesis
of Lemma 3.5.

Lemma 3.5. Let f ∈ C[x0, . . . ,xn]3 be a homogeneous cubic such that ∂ f
∂xn

= 0.
Let φ : Pn−1 → Pn be the embedding of Pn−1 as the hyperplane xn = 0 in Pn.
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Let f̃ ∈ C[x0, . . . ,xn]3 be the cubic defined by

f̃ (x0, . . . ,xn−1) = f (x0 . . . ,xn−1,0).

Then Reg( f ) = φ(Reg( f̃ )).

Proof. Let p = [p0, . . . , pn] ∈ Reg( f ). Then

rank

(
∂ f
∂x0

(p) . . . ∂ f
∂xn−1

(p) 0
p0 . . . pn−1 pn

)
≤ 1.

First we prove that pn = 0. Assume by contradiction that pn 6= 0. By hypothesis
all the minors vanish, so ∂ f

∂xi
(p) = 0 for every i ∈ {0, . . . ,n} and thus p ∈ Irr( f ),

contradiction. Hence pn = 0. By omitting the last column of the matrix above
we see that the conditions defining Reg( f ) are the same defining the intersection
of Reg( f̃ ) with the hyperplane xn = 0.

4. Zero-dimensional regular eigenschemes

Even if the general f ∈ C[x0, . . . ,xn]3 has 2n+1− 1 regular eigenpoints, some
cubics have less. The first problem we want to tackle is whether it is possible
to find a cubic with a prescribed number of regular eigenpoints. Moreover, it is
interesting to check if we can realize all the regular eigenpoints on R, instead of
C. We can answer these questions for both ternary and quaternary cubics.

Theorem 4.1. Let f ∈ C[x0, . . . ,xn]3. If dimReg( f ) ≤ 0, then f has at most
2n+1−1 regular eigenpoints. Moreover

1. for every t ∈ {0,1, . . . ,7} there exists a ternary cubic f such that Reg( f )
is reduced and consists of t real points;

2. for every t ∈ {0,1, . . . ,15} there exists a quaternary cubic f such that
Reg( f ) is reduced and consists of t real points.

Proof. From Section 2, the eigenscheme Ẽ( f )⊂ Pn of a general cubic consists
of 2n+1−1 points. If there are more, the dimension increases by Bézout’s theo-
rem. To prove the second statement, we exhibit examples in Table 3.

Many other interesting behaviours appear, such as collinear, triangular or
tetrahedral configurations.

Example 4.2. The regular eigenpoints of x3
0 + x3

1 + x3
2 are

[1,0,0,0], [0,1,0,0], [0,0,1,0], [1,1,0,0], [1,0,1,0], [0,1,1,0], [1,1,1,0].

They are coplanar, in the configuration described by Figure 1.
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Table 3: Examples of ternary and quaternary cubics with a prescribed number
of eigenpoints. All of them are real. The Macaulay2 [6] and Magma [2] scripts
to check the examples are available at [3].

#Reg( f ) f
0 x2

0(x1 + ix2)

1 x3
0

2 x2
1x2

3 x3
0 + x3

1

4 x0x1x2

5 x3
0 + x2

1x2

6 x2
0x1 + x2

0x2 + x1x2
2

7 x3
0 + x3

1 + x3
2

#Reg( f ) f
8 x2

0x1 + x2
2x3

9 x0x1x2 + x3
3

10 x0x1x2 + x0x2
3 + x1x2

2

11 x3
0 + x2

1x2 +3x3
3

12 10x1x2
2− x2

0x1− x2
0x2− x0x2

3

13 x2
0x1 + x2

0x2 + x1x2
2 + x3

3

14 x0x2
3 + x0x1x2 + x3

1 +10x1x2
2 + x3

2

15 x3
0 + x3

1 + x3
2 + x3

3

Example 4.3. The regular eigenpoints of x3
0 + x3

1 + x3
2 + x3

3 are

[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1], [1,1,0,0],

[1,0,1,0], [0,1,1,0], [1,1,1,0], [1,0,0,1], [0,1,0,1],

[0,0,1,1], [1,1,0,1], [1,0,1,1], [0,1,1,1], [1,1,1,1].

They are not in general position. Each coordinate plane contains exactly 7 of
these points arranged in the configuration of Figure 1.

5. A Grassmannian as a parameter space of eigenschemes

We turn our attention to the problem of classifying which sets of points are the
eigenpoints of a cubic homogeneous polynomial in four variables. We proceed
indirectly by first studying the problem for partially symmetric tensors to high-
light the underlying geometry, and recover the result for symmetric tensors by
specialization. The main idea is as follows. Let T = (q0, . . . ,q3) be a partially
symmetric tensor. By construction, the polynomials qi−λxi are linearly inde-
pendent, so

HT := SpanC(q0−λx0, . . . ,q3−λx3) (∗)

is a 3-plane in P14 = P(C[x0, . . . ,x3,λ ]2). On the other hand, given a 3-plane
in P14, the intersection of the dual 10-plane with the image of the Veronese
ν2 : P4 ↪→ P14 defines a subscheme of P4, which is generically 0-dimensional
and of degree 16. We describe the conditions for when a 3-plane in P14 is of the
form (∗) in terms of the Plücker coordinates.
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Figure 1: Configuration of 7 eigenpoints.

Theorem 5.1. Fix the monomial basis {x2
0,x0x1, . . . ,x2

3,x0λ , . . . ,x3λ ,λ 2} of
C[x0, . . . ,x3,λ ]2. The morphism Sym2C4⊗C4 −→ Gr(3,P14) given by T 7→
[HT ] is an isomorphism onto its image. In the Plücker coordinates with respect
to this basis, this image is the subscheme of the Grassmannian defined by the
following conditions:

1. all the entries of the column of HT corresponding to λ 2 are zero, and

2. the Plücker coordinate corresponding to the columns of HT labelled by
{x0λ ,x1λ ,x2λ ,x3λ} is non-zero.

If ν2 : P4 ↪→ P14 is the Veronese embedding, then ν2(Ẽ(T )) = H∨T ∩ν2(P4).

Proof. If T = (q0,q1,q2,q3) is a partially symmetric tensor, then the 3-plane
HT := SpanC(q0−λx0, . . . ,q3−λx3) satisfies conditions (1) and (2). We show
that the morphism, when restricted to the image, has an inverse. A 3-plane in
Gr(3,P14) satisfying conditions (1) and (2) is a subspace represented by a 4×15
matrix


x2

0 x0x1 ... x2
3 x0λ x1λ x2λ x3λ λ 2

m1,1 m1,2 . . . m1,10 m1,11 m1,12 m1,13 m1,14 m1,15
m2,1 m2,2 . . . m2,10 m2,11 m2,12 m2,13 m2,14 m2,15
m3,1 m3,2 . . . m3,10 m3,11 m3,12 m3,13 m3,14 m3,15
m4,1 m4,2 . . . m4,10 m4,11 m4,12 m4,13 m4,14 m4,15

.

By the hypothesis the entries in the column labelled by λ 2 are zero and the
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4×4 block 
x0λ x1λ x2λ x3λ

m1,11 m1,12 m1,13 m1,14
m2,11 m2,12 m2,13 m2,14
m3,11 m3,12 m3,13 m3,14
m4,11 m4,12 m4,13 m4,14


is invertible, we can apply the reduced row echelon form to get


x2

0 x0x1 ... x2
3 x0λ x1λ x2λ x3λ λ 2

m̃1,1 m̃1,2 . . . m̃1,10 −1 0 0 0 0
m̃2,1 m̃2,2 . . . m̃2,10 0 −1 0 0 0
m̃3,1 m̃3,2 . . . m̃3,10 0 0 −1 0 0
m̃4,1 m̃4,2 . . . m̃4,10 0 0 0 −1 0

.

This is a 3-plane given by a tensor. The statement about Ẽ(T ) is clear.

Corollary 5.2. The parameter space of eigenschemes of symmetric tensors is
an open subvariety of a linear subspace of Gr(3,P14).

Proof. Let


x2

0 x0x1 ... x2
3 x0λ x1λ x2λ x3λ λ 2

m1,1 m1,2 . . . m1,10 −1 0 0 0 0
m2,1 m2,2 . . . m2,10 0 −1 0 0 0
m3,1 m3,2 . . . m3,10 0 0 −1 0 0
m4,1 m4,2 . . . m4,10 0 0 0 −1 0


be the affine coordinates for a 3-plane coming from a symmetric tensor. The 4
quadrics corresponding to the rows are of the form ∂ f

∂x0
−λx0, . . . ,

∂ f
∂x3
−λx3 if

and only if the mi, j, interpreted as coefficients of the quadrics q0, . . . ,q3, satisfy
the linear conditions { ∂qi

∂x j
− ∂q j

∂xi
= 0 : i < j}. These give linear relations of the

Plücker coordinates by [5, Proposition 3.1.2].

As shown in [1, Section 4], the eigendiscriminant is a homogeneous poly-
nomial of degree 96 in the entries of a tensor, that vanishes whenever the eigen-
scheme has a point of multiplicity greater than or equal to 2 or the eigenscheme
is positive dimensional. It is interesting to compare the eigendiscriminant to
the Hurwitz form of the image of ν2 : P4 ↪→ P14, which is a polynomial in the
Plücker cooordinates for Gr(3,P14) that vanishes on the 3-dimensional planes
that intersect the Veronese tangentially [14, Theorem 1.1]. As the definitions of
these two polynomials are closely related, we make the following conjecture.
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Conjecture 5.3. Restricted to the 3-planes coming from eigenschemes, the
eigendiscriminant divides the Hurwitz form.

We can verify Conjecture 5.3 for the eigenschemes of binary cubic forms. In
this case, the eigenscheme defines a line in P5 = P(C[x0,x1,λ ]2). We consider
the Hurwitz form of the image of ν2 : P2 ↪→ P5 in the coordinate ring Gr(1,P5).
This is a polynomial of degree 6 in Plücker coordinates. If we express an el-
ement in Gr(1,P5) as the image of the transpose of a 2× 6 matrix, the primal
Plücker coordinates are the maximal minors of the 2× 6 matrix. We compute
the Hurwitz form in the primal Plücker coordinates in the Macaulay2 package
"Resultants". Now, we restrict it to the eigenscheme as follows. Suppose we are
given a binary cubic form f = a0x3

0+a1x2
0x1+a2x0x2

1+a3x3
1. The line associated

to f is given by the image of the transpose of the following 2×6 matrix(
3a0 2a1 −1 a2 0 0
a1 2a2 0 3a3 −1 0

)
.

The primal Stiefel coordinates are the entries, and the primal Plücker coor-
dinates are the 2×2 minors of this matrix. Substituting the Plücker coordinates
into the Hurwitz form we have

36a2
0a2

1 +32a4
1−108a3

0a2−156a0a2
1a2 +216a2

0a2
2 +61a2

1a2
2−144a0a3

2 +32a4
2

−108a2
0a1a3−144a3

1a3 +306a0a1a2a3−156a1a2
3a3 +81a2

0a2
3 +216a2

1a2
3

−108a1a2a2
3 +36a2

2a2
3−108a1a3

3.

On the other hand, we compute the eigendiscriminant in terms of the co-
ordinates in P5 [1, Example 4.4]. In this case, the eigendiscriminant and the
Hurwitz form are equal up to a factor of (−1). The accompanying Macaulay2
[6] script is available at the link [3].
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