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A NOTE ON TWIN PRACTICAL NUMBERS

GIUSEPPE MELFI

A positive integer m is a practical number if every positive integer
n < m is a sum of distinct divisors of m . Let P2(x) be the counting function
of the pairs (m,m + 2) of twin practical numbers. Margenstern conjectured
that P2(x) ∼ λ2x(log x)−2 . We prove that, for suf�ciently large x and for a
suitable constant k, P2(x) > x exp{−k(log x)1/2}.

1. Introduction.

A positive integer m is a practical number if every positive integer n < m
is a sum of distinct positive divisors of m.

A wide survey of results and conjectures on practical numbers is given by
Margenstern [3]. Let P(x ) be the counting function of practical numbers. Erdös
[2] proved that P(x ) = o(x ). Saias [5], using suitable sieve methods introduced
by Tenenbaum [8, 9], provided a good estimate in terms of a Chebishev-type
theorem: for suitable constants c1 and c2,

c1
x

log x
< P(x ) < c2

x

log x
.

Let P2(x ) be the function counting practical numbers m ≤ x such that m + 2
is also a practical number. Margenstern proved that P2(x ) → ∞. By following
his argument one easily gets P2(x ) � loglog x . He also stated among other
things the following prime-like conjectures.
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Conjecture 1.1. For a suitable λ1 > 0:

P(x ) ∼ λ1
x

log x
.

Conjecture 1.2. For a suitable λ2 > 0:

P2(x ) ∼ λ2
x

(log x )2
.

In his conjectures and computations, he proposed λ1 � 1.341 and λ2 � 1.436.
In [4] the author proved a Goldbach-type result showing that every even positive
integer is a sum of two practical numbers. The proof uses an auxiliary increasing
sequence mn of practical numbers such that for every n, mn + 2 is also a
practical number and mn+1/mn bounded by an absolute constant. This implies
P2(x ) � log x , but still very far from the conjecture. In this paper we prove the
following result.

Theorem 1.1. Let k > 2+ log(3/2). For suf�ciently large x ,

P2(x ) >
x

exp{k(log x )
1
2 }

.

This, in particular, proves for the �rst time that, for every α < 1, for
suf�ciently large x , P2(x ) > xα .

2. Preliminary tools.

We brie�y recall a structural theorem and a corollary which will be exten-
sively used in the proof of Theorem 1.1.

Theorem 2.1. An integer m ≥ 2, m = pα1

1 pα2

2 · · · pα�

� , with primes p1 < p2 <

. . . < p� and integers αi ≥ 1, is practical if and only if p1 = 2 and, for
i = 2, 3, . . . , �,

pi ≤ σ
�
pα1

1 pα2

2 · · · p
αi−1

i−1

�
+ 1,

where σ (n) denotes the sum of the positive divisors of n.

Corollary 2.1. Let m be a practical number. If n ≤ σ (m) + 1 then mn is a
practical number. In particular if n ≤ 2m, mn is practical.
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A proof of Theorem 2.1 can be found in Stewart paper [7]. Corollary 2.1
appears, for example, in [3].

Theorem 2.1 and Corollary 2.1 are the main tools to construct practical
numbers. The following lemma that will be used in the proof of Theorem 1.1 is
a kind of statement which follows by Corollary 2.1.

Lemma 2.1. Let z > 28. Then it exists a practical number m such that m + 2
is also practical and m ≤ z ≤ 3

2
m.

Proof. For a proof, see [4], p. 207. �

In the following lemma, we will denote by π (x ) the number of primes not
exceeding x .

Lemma 2.2. Let x suf�ciently large. Let N = [loglog x/2 log2] and c =

2−2−N
. Let m = m(x ) be chosen in such a way that m ≤ x 2−N−1

≤ 2m. Then

lim
x→∞

π (m) − π (cm)

(1 − c)m logm
= 1.

Proof. Note that (1− c) tends to 0, and the above formula cannot be proved by
using the prime number theorem in the usual form π (x ) ∼ x/ log x . However,
a somewhat sharper form will suf�ce. We begin by estimating some of the
quantities involved in the above expression. Let α = {loglog x/2 log2} and
β = 2α . So 1 ≤ β < 2. We have

(1 − c) = 1 − 2−2−N

= 1 − 2−2−(loglog x/2 log 2−α)

= 1 − e−(log x)
− 1

2 β log 2

= β log 2(log x )−
1
2 + O((log x )−1).

Similarly, for suitable θ with 0 ≤ θ ≤ log2, we have

logm = 2−N−1 log x − θ

= 2−(loglog x/2 log 2−α)−1 log x − θ

=
β

2
(log x )

1
2 − θ.

In other terms (1 − c) � 1/ logm. By prime number theorem in his form

π (x ) = li (x ) + O(x exp{−c log− 1
2 x}) (see for example [1]), we have

π (x ) =
x

log x
+

x

log2 x
+ O

� x

log3 x

�
,
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so

π (m) − π (cm) =
m

logm
+

m

log2 m
−

cm

logm
−

cm

log2 m
+ O

� m

log3 m

�

=
m

logm

�
(1 − c)

�
1 +

1

logm

�
+ O

� 1

log2 m

��
,

therefore

π (m) − π (cm)

(1 − c) m
logm

= 1 +
1

logm
+ O

� 1

(1 − c) log2 m

�
= 1 + o(1) . �

3. Main result.

Proof of Theorem 1.1. Let x > e100 and N = [loglog x/2 log2]. By
Lemma 2.1, there exists a pair (m,m + 2) of twin practical numbers with
m ≤ x 2−N−1

≤ 3
2
m. Let c = 2−2−N

. Let p1,1, p2,1, . . . , pk1,1 be all primes
between cm and m. Let p1,2, p2,2, . . . , pk2,2 be all primes between cm2 and

m2. For every 1 ≤ j ≤ N let pi, j be all kj primes between cm2 j−1
and

m2 j−1
. Note that for suf�ciently large x , by Lemma 2.2, all ki are positive

integers. For every 2N -tuple (a1, a2, . . . , aN , b1, b2, . . . , bN ) of integers with
1 ≤ ai , bi ≤ ki , ai �= bi let de�ne m1 and m2 as m1 = m

�N
h=1 pah ,h and

m2 = (m + 2)
�N

h=1 pbh ,h .
It is worth to spent some comments on the choice of c. Its value is

suf�ciently far from 1 to assure, by Lemma 2.2, that all ki are positive. On
the other hand, it is suf�ciently near to 1 to assure that the product of the primes
involved in m1 and m2 is such that m1 ≤ 2m2 and m2 ≤ 2m1. In other words,
m1 and m2 are made up of product of primes �picked up� in certain tiny (in
logarithmic scale) intervals of integers.

Note also that m1 and m2 are practical numbers by repeated application of
Corollary 2.1 and that g.c.d.(m1,m2) = 2. So there exist positive integers r =

r(a1, a2, . . . , aN , b1, b2, . . . , bN ) and s = s(a1, a2, . . . , aN , b1, b2, . . . , bN )
with 1 ≤ r < m2/2 and 1 ≤ s < m1/2 such that m2s − m1r = 2. Note
that a pair (r, s) with these properties is univocally determined as the smallest
pair of positive integers (r, s) such that m2s − m1r = 2. Since m1 and m2 are
practical numbers and r < m1, s < m2, again by Corollary 2.1, m1r and m2s
are practical numbers, and indeed (m1r,m2s) is a pair of twin practical num-
bers. We get

�N
h=1(k

2
h − kh ) pairs of twin practical numbers, all bounded by

m2N+1
, some of which may be repeated.



A NOTE ON TWIN PRACTICAL NUMBERS 115

We now estimate the number of times a pair may appear. Fix the 2N -
tuple (a1, a2, . . . , aN , b1, b2, . . . , bN ) and let (a�

1, a
�
2, . . . , a�

N , b�
1, b

�
2, . . . , b�

N )

be another 2N -tuple of the same kind. Denote m�
1 = m

�N
h=1 pa�

h
,h and

m�
2 = (m + 2)

�N
h=1 pb�

h
,h . Further let r � = r(a�

1, a
�
2, . . . , a�

N , b�
1, b

�
2, . . . , b�

N )
and s � = s(a�

1, a
�
2, . . . , a�

N , b�
1, b

�
2, . . . , b�

N ). How many choices for the 2N -
tuple (a�

1, a
�
2, . . . , a�

N ,b�
1, b

�
2, . . . , b�

N ) do we have such that m1r = m�
1r

� (and
automatically m2s = m�

2s
�)?

Since r (and s) is bounded by m2N
/2, it cannot contain as divisors more

than one prime between cm2N−1
and m2N−1

. Since m1r = m�
1r

� and m2s = m�
2s

�

we have at most two possible choices for a�
N , one of which is aN , and at most

two possible choices for b�
N , one of which is bN .

Analogously, r cannot contain as divisors more than three primes between
cm2N−2

and m2N−2

, nor more than seven primes between cm2N−3

and m2N−3

. For
every h ≤ N , r cannot contain more than 2h − 1 primes between cm2N−h

and
m2N−h

. So we have no more than 2h choices for a�
h , one of which is ah and

no more than 2h choices for b�
h , one of which is bh . Hence m1r = m�

1r
� (and

m2s = m�
2s

�) in no more than 2N(N+1) cases. This implies

P2(x ) ≥ P2(m
2N+1

) ≥

�N
h=1(k

2
h − kh )

2N(N+1)
.

Let 0 < ε1 < 1 − 1/e(log 2)2. For suf�ciently large x and for every h ≤ N , by
Lemma 2.2

k2h − kh > (1 − ε1)(1 − c)2
m2h

22h−2(logm)2
.

Hence, for suf�ciently large x ,

P2(x ) >
1

2N(N+1)

N�

h=1

(1 − ε1)(1 − c)2
m2h

22h−2(logm)2

=
(1− ε1)

N (1 − 2−2−N
)2N

22N
2 ·

m2N+1−2

(logm)2N

≥
(1 − ε1)

N (2−N−1 log 2)2N

22N
2 ·

( 2
3
x 2−N−1

)2
N+1−2

(log x 2−N−1
)2N

=
(1 − ε1)

N (2−N−1 log2)2N

(3/2)2
N+1−222N

2
2(−N−1)2N

·
x 1−2−N

(log x )2N

>
x

(3/2)2N+1x 2−N22N2 (log x )2NeN
.
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Let ε > 0 and α = {loglog x/2 log2}. For suf�ciently large x , we have

P2(x ) >
x

exp{2N+1 log(3/2) + 2−N log x + 2N2 log 2 + 2N loglog x + N}

>
x

exp{21−α log(3/2)(log x )
1
2 + 2α(log x )−

1
2 log x + 2(loglog x )2}

>
x

exp{(2+ log(3/2) + ε)(log x )
1
2 }

.

The proof is complete �

4. Some �nal remarks.

The proof of Theorem 1.1 is completely elementary. Its central point is the
de�nition of suitable intervals where primes are chosen. These intervals may
appear too thin at �rst sight, but any effort to improve their size causes technical
problems in the count of all possible pairs of distinct twin practical numbers.
So an improvement of the form P2(x ) > x exp{−c(loglog x )2} does not appear
easily reachable.

One can hope to deal with this problem by a completely different approach,
based on sieve methods, as Saias suggested me [6], but even taking in account
the best preliminary results one can hope to get by sievemethods, the �nal result,
applied to the pairs of twin practical numbers is not better that the previous one,
proved in Theorem 1.1.
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