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STABILITY OF JENSEN�S EQUATIONS

IN TWO NORMED SPACES

R. N. MUKHERJEE

Some stability questions of the Jensen�s functional inequality in the
setting of 2-normed spaces are derived in this article. Few more results are
given on approximate isometries.

1. Introduction.

Several authors dealt about the stability of functional equations of various
hues. To cite some important references we refer to the works of Hyers [4],
Hyers and Rassias [5], Kominek [7], Parnami and Vasudeva [8], Rassias [9],
Rassias and Semrl [10], Jung [6] and Ulam [11]. In fact some of these problems
stemmed from the treatment given in reference [11]. It is our aim article to deal
with Jensen�s functional equation as was the case in [6], in the setting of two
normed spaces extending the work of the same reference. In fact we investigate
the Jensen�s functional inequality of the following type:

(∗)
�
�
�
1

2
f
�x + y

2

�
− f (x )− f (y)

�
�
� ≤ δ + θ

�
�x , z�p + �y, z�p

�
,

where f is a mapping between Banach Spaces X into Y with X having 2-norm
structure.
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Also z is a �xed element in X . In (∗)p ≥ 0 and p �= 1. In fact we consider
the stability of the inequality (∗). Moreover a little modi�cation of example
in [5] shows that (∗) is not stable for p = 1. for notational formulations and
the properties of 2-normed spaced one can refer to [2]. We prove the following
theorem

Theorem 1.1. Let p > 0 and p �= 1. Suppose f is a mapping from X into
Y such that X is a 2-normed space, Y is a Banach Space. Let f satisfy the
inequality (∗). Also suppose that for p > 1, δ = 0 in the inequality (∗). Futher
suppose that z is not in the linear span of x . Then the following inequalities
hold for an additive mapping F from X into Y .

(1) � f (x )− F(x )� ≤ δ + � f (0)� + θ/(21−p − 1){�x , z�p}(p < 1)

or

(2) � f (x )− F(x )� ≤ 2p−1/(21−p − 1)�x , z�p(p > 1)

Proof. If we put y = 0 in (∗) then we get the following inequality.

(3) �2 f (x/2)− f (x )� ≤ δ + � f (0)� + θ�x , z�p

for all x in X and �xed z in X .

We can prove by induction,

(4) �2−n f (2nx )− f (x )� ≤ (δ + � f (0)�)

n�

k−1

2−k + θ�x , z�p
n�

k−1

2−(1−p)k

for the case when 0 < p < 1. Substituting 2x for x and dividing both sides of
(3) by 2 we see the validity of (4) for n = 1. Now assume that the inequality
(4) holds for n in N . Now if we replace x in (3) by 2n+1x and divide both side
of (3) by 2 then it follows from (4) that

(5) �−(n+1) f (2n+1x )− f (x )� ≤

2−n�2−1 f (2n+1x )− f (2nx )� + �2−n f (2nx )− f (x )�

≤ (δ + � f (0)�)

n+1�

k=1

2−k + θ�x , z�p
n+1�

k=1

2−(1−p)

This completes the proof of (4).
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Now de�ne

(5)a F(x ) = lim
n→∞

2−n f (2nx ).

This is possible because Y is a Banach Space and we shall prove that the term
de�ned in F(x ) through a sequence is a Cauchy sequence.

For n > m, using (4) we get

(6) �2−n f (2nx )− 2−m f (2mx )� ≤

≤ 2−m(δ + � f (0)� + 2mp/(21−p − 1)θ�x , z�p)

which tends to 0 as m tends to in�nity. Let x , y in X be arbitrary. Then it
follows from (5a) and (∗) that,

(7) �F(x + y)− F(x )− F(y)�

= lim2−(n+1)�2 f (2n+1(x + y)/2)− f (2n+1x )− f (2n+1 y)�

≤ lim2−(n+1)(δ + θ2(n+1)p(�x , z�p + �y, z�p))

which tends to o as n tends to in�nity. Hence F is an additive mapping. Now
(4) and (5a) imply the validity of (6).

For uniqueness we simply see that for another additive G of similar nature
we have the following inequality:

(8) �F(x )− G(x )� ≤ 2−n(2δ + 2� f (o)� + 2θ/(21−p − 1)2np�x , z�p)

which tends to o as n tends to in�nity. Hence F(x ) = G(x ). For the case when
p > 1 and δ = o, we can get the following equality.

(9) �2n f (2−nx )− f (x )� ≤ θ�x , z�p
n−1�

k=1

2−(p−1)k

instead of (4). There after the proof goes in the same fashion as in the previous
case.

Examples of 2-normed spaces and isometries. [1] In R2 an example of
2-norm would be given as follows. For x and y in R2 we say

�x , z�2 = {((x1)
2 + (x2)

2)((z1)
2 + (z2)

2) − (x1z1 + x2z2)
2}.

As such the above 2-norm satis�es:

(i) �x , z� = o if x and z are linearly dependent, other wise it is > o.
(ii) �x , z� = �z, x�

(iii) �x + y, z� ≤ �x , z� + �y, z�

For f (x1, x2) = x1 + x2 the isometry condition (x1 + x2)
2 = �x , z�2 is

satis�ed for z = (1, 1).
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2. Stability of the Jensen�s inequality in a restricted domain.

In this section we give a version of Theorem 1.1 in a restricted domain and
give an application of that result to derive some asymptotic property of some
additive mappings.

Theorem 2.1. Let d ≥ o and δ ≥ o be given. Assume that a mapping f from
X into Y satis�es the following Functional inequality.

(10) �2 f ((x + y)/2)− f (x )− f (y)� ≤ δ

for all x , y in X and �xed z in X such that the following 2-norms satisfy
�x , z� + �y, z� ≥ d . Also suppose that z does not belong to the linear span of
x , y. Then there is an unique additive mapping F : X → Y which satis�es

(11) � f (x )− F(x )� ≤ 5δ + � f (o)�

for all x in X .

The proof of the above theorem can be given on the same lines as Theo-
rem 1.1.

We give a corollary of the above theorem which is interesting for the
asymptotic property of additive mappings.

Corollary 2.2. Suppose a mapping f : X → Y satis�es f (0) = 0 (X having
2-norm structure). Also f satis�es the following asymptotic condition.

� f (x + y)− f (x )− f (y)� → 0

as
�x , z� + �y, z� → ∞

for a �xed z in X , with z not being in the linear span of x and y, then f is an
additive mappings and the converse of this proposition holds.

Proof. If f is an additive mapping then the asymptotic condition is satis�ed
trivially. Next suppose the asymptotic condition of the theorem holds. Then
there is a monotonically decreasing sequence δn such that the following inequal-
ity is true

(12) �2 f ((x + y)/2)− f (x )− f (y)� ≤ δn, for �x , z� + �y, z� ≥ n.

Now from theorem 2.1 we can get a sequence of additive mapping {Fn} such
that

(13) � f (x )− Fn(x )� ≤ 5δn
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for all x in X . Let m ≥ �. Obviously it follows from (13) that

(14) � f (x )− Fm(x )� ≤ 5δm ≤ δ�,

since δN is decreasing. Uniqueness of Fm implies Fm = F�. Hence by letting
n → ∞ in (13) we get, f as additive.

In the next section we extend certain results of Dolinar [1] on stability of
isometries in a generalized sense. Moreover these results are derived when the
domain space has 2-norm structure.

3. Generalized Stability of isometries from 2-normed space to normed
space.

Slight extension of the results from Lindenstrauss and Szankowski see [1]
can eventually show the following.

Consider the function

(15) ϕ f (t) = sup{|� f (x )− f (y)� − �x − y, z�| : �x − y, z� ≤ t

or
� f (x )− f (y)� ≤ t}

where z is a �xed element in X and �, � stands for the symbol for 2-norm in X .
Suppose f ∞

1 (ϕ f )/t
2dt < ∞. Then there is an isometry U : X → Y such

that

(15a) � f (x )− U (x )� = o(�x , z�), as �x , z� → ∞.

Where U (x )− lim
n→∞

f ((2nx )/2n). In the line of [1] we can de�ne ϕ-isometry as

follows:

(16) |� f (x )− f (y)� − �x − y, z�| ≤ ϕ(�x − y, z�)

The above inequality is satis�ed for a given function ϕ and mapping f : X →

Y , where X does possess 2-norm structure. We shall prove the following
proposition.

Theorem 3.1. Let f : X → Y be a surjective ϕ- isometry and X has a 2-
norm structure. Let f (0, z) = 0. Let ϕs : [0, ∞) → [0, ∞) be de�ned by
ϕs(t) = supu≤t {ϕ(u)}.
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If � ∞

1

ϕs (t)

t2
dt < ∞ ,

then there is an isometry U : X → Y de�ned by U (x ) = lim f ((2nx )/2n) which
satis�es,

� f (x )− U (x )� = o(�x , z�) as �x , z� → ∞.

Proof. Suppose

(17)

� ∞

1

ϕs(t)

t2
dt < ∞ .

Then there is a constant M(ϕ) such that t < 2(t − ϕ(t)), for every t > M(ϕ).
Indeed if for every positive integer n we could �nd tn > n such that ϕs(tn) >

t/2, then we would have,

� 2tn

tn

ϕs(t)

t2
dt ≥

� 2tn

tn

ϕs(tn)

t2
dt = ϕs(tn)(1/tn) ≥

1

4
,

which contradicts (17).
Let � f (x )− f (y)� ≤ t . If �x − y, z� > M(ϕ), then

�x − y, z� < 2(�x − y, z� − ϕs(�x − y, z�)) ≤ 2� f (x )− f (y)� ≤ 2t,

so
|� f (x )− f (y)� − �x − y, z�| ≤ ϕs(2t).

If
�x − y, z� ≤ M(ϕ),

then
|� f (x )− f (y)� − �x − y, z�| ≤ ϕs(M(ϕ)).

Now let �x − y, z� ≤ t . Then |� f (x )− f (y)� − �x − y, z�| ≤ ϕ(�x − y, z� ≤

ϕs(t) ≤ ϕs(2t). So if ϕ is given by (1)), we have,

(18) ϕ f (t) ≤ max {ϕs(M(ϕ)), ϕs(2t)} for t ≥ 0.

Then
� ∞

M (ϕ)

ϕ f (t)

t2
dt ≤

� ∞

M (ϕ)

ϕs(2t)

t2
dt ≤ 2

� ∞

M (ϕ)

ϕs(t)

t2
dt < ∞ .

Then by (17) we get the conclusion of the theorem.
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4. Stability of approximate isometries when the range space is a Hilbert
space.

In the line of [5] we can introduce approximate isometries as follows.
A mapping f : X → Y will be called (ε, p)-isometry where X is a 2-

normed space and Y is a Banach space if it satis�es the following inequality for
a �xed z in X .

(19)
�
�� f (x )− f (y)� − �x − y, z�

�
� ≤ ε�x − y, z�p

A pair (X, Y ) is said to be p-stable with respect to isomtries if there exists a
function δ : [0, ∞ → [0, ∞) with lim δ(ε) → 0 for every surjective isometry
f : X → Y and there is a surjective isometry U : X → Y satisfying the
estimate � f (x )−U (x )� ≤ ε�x , z�p .

Theorem 3.1. Let X be 2-normed space and Y be a real Hilbert space. Let ε

and p be given such that ε > 0 and p < 1 also f (0) = (0, z). Then there is a
constant K (ε, p) such that lim K (ε, p) = o and for (ε, p)-isometry f : X → Y
there is a linear isometry U : X → Y such that

� f (x )− U (x )� ≤ K (ε, p) max
�
�x , z�p, �x , z�(1+p)/2

�

The following lemma can be proved in the lines of Lemma 1 of [1].

Lemma 3.2. Let X be a 2-normed space and Y is a Banach Space. Suppose
ε ≥ 0, 0 < p ≤ r < 1, and δ ≥ 0. If f : X → Y , f (0) = (0, z), for a �xed z
in X and f is an (ε, p) isometry satisfying

� f (x )− f (2x )/2�δmax
�
�x , z�p, �x , z�r

�
,

for all (x , z) with �xed z in X then there exists an isometry U : X → Y which
satis�es the following

� f (x )− U (x )� ≤ δ21−r/(21−r − 1)max {�x , z�p, �x , z�r}

where U is de�ned as U (x ) = lim
n→∞

( f (2nx )/2n).

Proof. of Theorem 3.1. Suppose ε ≥ 0 and 0 < p < 1. Let us estimate
� f (x )− f (2x )/2�. Since f is an (ε, p) isometry,

� f (x )− f (2x )�2 ≤
�
�x , z� + ε�x , z�p

�2
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and thus

� f (x )�2 + � f (2x )�2 − 2 < f (x ), f (2x ) >≤
�
�x , z� + ε�x , z�p

�2
.

It now follows that,

2� f (x )− f (2x )/2�2 = 2� f (x )�2 + 2� f (2x )/2�2 − 4 < f (x ), f (2x )/2 >,

the right hand side of the previous inequality can be shown to be

≤ 2
�
�x , z� + ε�x , z�p

�2
− 2� f (2x )/2�2.

There are two cases to be tackled. Suppose �x , z� ≥ 1/2ε1/1−p . In this case
�2x� − ε�2x�p ≤ 0. So, since f is an (ε, p)-isometry

� f (2x )�2 ≥
�
�2x� − ε�2x�p

�2

and therefore

� f (x )− f (2x )/2�2 ≤
�
�x , z� + ε�x , z�p

�2
−

�
�x , z� − (1/2)1−pε�x , z�p

�2
,

after some simpli�cation the right hand side of the previous inequality can be
shown to be

(18) ≤ 4ε�x , z�1+p + ε2�x , z�2p.

If �x , z� < 1 then �x , z� < �x , z�p and therefore

� f (x )− f (2x )/2� ≤
�

ε(1+ ε)�x , z�p .

On the other hand if �x , z� ≥ 1 then �x , z� ≥ �x , z�p and

� f (x )− f (2x )/2� ≤
�

ε(4+ ε)�x , z�(1+p)/2 .

In the second case when �x , z� < 1/2ε1/(1−p), that is

�x , z� > (1/2)1−pε�x , z�p ,

it follows from (18) that

� f (x )− f (2x )/2� ≤ �x , z� + ε�x , z�p ≤
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≤ (1/2)1−pε�x , z�p + ε�x , z�p ≤ 2ε�x , z�p.

So we have the �nal estimate as follows:

� f (x )− f (2x )/2� ≤ 2
�

ε(4+ ε) max
�
�x , z�p, �x , z�(1+p)/2

�
.

Now applying Lemma 3.2 we get,

K (ε, p) = 2((3−p)/2)/(2(1−p)/2 − 1)
�

ε(4+ ε) .

Remark 3.1. Following can be observed . Suppose C[0, 2] stand for continu-
ous functions on [0, 2]. Let E = {αe + f : f is in C[0, 2] and e is a function
from [0, 2] into R such that e(x ) = 0, 0 < x < 1, and e(x ) = 1, for 1 ≤ x ≤ 2}.
De�ne on E a 2-norm as follows

� f, g� = {< f, f >< g, g > −| < f, g > |2}2} ,

where

< f, g >=

� 2

o

f g dx .

In the above setting we can see that the subset A of E de�ned as A = { f :
� f, e� ≤ 1} is sequentially closed in E but not complete with respect to e.
Therefore the isometry U as in Theorem 3.1 does not exist when the range of U
is a set like A, since A is not complete.

Remark 3.2. We observe that the isometry U in Theorem 3.1 is linear. This is
because even if the domain space X becomes a real two normed space and if the
range space Y happens to be strictly convex real Banach Space then the isometry
U is always af�ne. In case f (0) = 0, then U becomes linear. Moreover in
Theorem 3.1 the range space is taken as a real Hilbert space which is always
strictly convex.

5. Some generalized form of stability of Jensen�s inequality.

In the context of convex functions one of the generalization which is
available in the literature is that of s-convex function where 0 < s < 1. In
that connection we see that a generalized form of Jensen�s functional equation
seems to be as follows. as in Section 2; we de�ne

(19) 21/ε f ((x + y)/21/ε) = f (x )+ f (y),
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where doman of function is a Banach space and the range space is a Banach
space Y . Also o < s < 1.

We can prove the following stabilitry result in connection with the follow-
ing generalized Jensen�s inequality.

(20) �21/s f ((x + y)/21/s − f (x )− f (y)� ≤ δ + � f (0)� + θ (�x�p + �y�p)

Theorem 4.1. Let p > 0 and p > 1. Let f be a mapping from X into Y where
X and Y are Banach spaces. And f satis�es the inequality (20). Then there is
a generalized additive mapping F in the sense of (19) such that either

� f (x )� ≤ δ + f (0)+ θ/(2s(1−p) − 1)�x�p

or
� f (x )− F(x )� ≤ 2ps−1/(2ps−1 − 1)�x�p

(0 < s < 1 and p > 1 with ps > 1, δ = 0, f (0) = 0).

Remark 4.2. Consider the case when a self mapping f from X into it self with
X as a 2-normed space satis�es the following functional inequality (see Section
1):

(21) �{2 f ((x + y)/2− f (x )− f (y)}, w� ≤ δ + � f (0), w� +

+ θ{�x , w�p + �y, w�p}(p < 1)

for all w in X and each x , y in X .

In such a case when we have to de�ne the additive map F , the property of
being Cauchy sequence is de�ned by the notion as follows. A sequence {xn} is a
Cauchy sequence in a 2-normed space X with 2-norm �·, ·� if �xn−xm , w� → o
as n,m → ∞ for all w in X . Another property which is used to get an additive
mapping F as in section 2 is the following.

�{F(x + y)− F(x ) − F(y)}, w� = 0 for all w in X implies F(x + y)−
F(x ) − F(y) and w are linearly dependent for all w in X . Which can happen
only when F(x + y)− F(x )− F(y) = 0. Similarly case p > 1 can be tackled.

Acknowledgement : The author is grateful to the referee for his valuable
suggestions.
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