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FAMILIES OF LINES IN FANO VARIETIES COMPLETE

INTERSECTION IN A GRASSMANNIAN

JORGE CORDOVEZ

In this paper we determine all Fano varieties which are complete in-
tersections of hypersurfaces in a Grassmannian. Then, in the case Fano�s
conjecture is satis�ed, we give a formula in order to compute the dimension
of the Hilbert scheme that parametrises their lines.

1. Introduction.

In this paper we give a method to determine all Fano varieties that are
complete intersections of one or more hypersurfaces in a Grassmannian and
we study the dimension of the Hilbert scheme of the families of their lines.
First, we give a numerical charecterization of these Fano varieties and we
classify them up to dimension 5 (see section 2). Then we extend the so-called
Tennison method, that is a modern treatment of a classic work by Predonzan
([9],[13]) concerning a complete study of the family of lines that are contained
in the quartic hypersurface of P4. This method can be extended studying the
projections of the incidence variety

I = {(�, X )∈G(2, r + n + 1)×Q/� ⊆ X } ⊆ G(2, r + n + 1)×Q,

where Q is the algebraic variety parametrising all the n-dimensional complete
intersections of r hypersurfaces of degrees ni respectively in a projective space
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(over C) and G(2, r + n + 1) is the Grassmannian of the lines in Pn+r . In
this form we determine exactly the dimension of the Hilbert scheme F (X ) that
parametrises the lines of a complete intersection X of a �nite number of generic
hypersurfaces in a projective space and, when this is a Fano threefold, we obtain
that 1 ≤ dimF (X ) ≤ 4. Our aim is to extend the Tennison-Predonzan�s
result for the determination of the dimension of the Hilbert scheme F (X ) that
parametrises the lines of any Fano complete intersection in a Grassmannian.
This is possible provided that there exists at least one line. (In general, we know
that when the dimension of a smooth Fano variety plus one is twice minor to
its index, then it contains at least one line ([6], page 248), but the complete
intersection of hypersurfaces in a Grassmannian does not verify this property).
Besides using the incidence varieties, this extension also requires the techniques
of Schubert�s calculus in the cohomology ring of the Grassmannian and the use
of the universal quotient bundle.

Precisely, we prove that for any n-fold X which is a Fano variety complete
intersection in a Grassmannian containing at least one line, the dimension of
F (X ) is greater than or equal to n−3+index(X ). As an immediate consequence
we obtain that the family of lines of a smooth Fano threefold which is a complete
intersection of generic hypersurfaces in a projective space or in a Grassmannian,
has dimension equal to the index of the variety. In particular, we �nd again
that the dimension of the Hilbert scheme that parametrises the lines for the
intersection G(2, 6)∩ H1 ∩ H2 ∩ H3∩ H4∩ H5 of the Plücker image of G(2, 6)
with �ve generic hyperplanes of P14 and the intersectionG(2, 5)∩H1∩H2∩Q of
the Plücker image of G(2,5) with two generic hyperplanes and a generic quadric
in P9, denoted by V14

3 and V10
3 respectively, is exactly one. In fact, Sh�okurov

proves Fano�s conjecture for Fano threefolds of the type V2g−2 in Pg+1 and
of the �rst kind ([12], [5]). There is a general result obtained by Iskovskih
(1989) ([8]), which says that for the varieties that have index 1 and genus ≥ 3,
the Hilbert scheme which parametrises the lines has dimension exactly one.
Since the intersection X of the Grassmannian of the lines on P4 with three
generic hyperplanes contains a Del Pezzo surface and therefore it contains some
lines, then we �nd again that the family of lines of X is parametrised by a 2-
dimensional scheme.

2. Fano Varieties, complete intersection in Grassmannians.

Let X be an algebraic variety and let −KX be its anticanonical divisor,
then:

De�nition 1. A smooth projective algebraic variety X is Fano if−KX is ample.
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The largest integer r ≥ 1 such that −KX ∼ r H for some divisor H of X is
called the index of the variety. A Fano variety is called of the principal series if
its anticanonical divisor is very ample, and of the �rst kind if its Picard Group
is isomorphic to Z.

Remark 1. A smooth complete intersection X = V (n1, . . . , nr ) ⊆ Pr+n of r
generic hypersurfaces of degrees n1, . . . , nr respectively has canonical divisor
KX ∼ (

�r
i=1 ni − r − n − 1)H , with H the hyperplane divisor of X .

Then X is a Fano variety if and only if
�r

i=1 ni ≤ r + n. When dim X ≥ 3,
by Noether-Lefschetz theorem, the Picard group is isomorphic to Z and it is
generated by the hyperplane section, then the index of X is r+n+1−

�r
i=1 ni .

[2], page 179, Cor. 3.2 . When dim X = 2 there are only three Fano complete
intersections, which are Del Pezzo surfaces, namely the quadric V (2) of P3,
the cubic V (3) of P3 and the complete intersection of two quadrics V (2, 2) of
P4. These surfaces have index respectively 2, 1 and 1 [11], page 233, so also in
dimension two the above formula for the index of a Fano complete intersection
holds.
We remark that the three two-dimensional Fano complete intersections are the
only Fano complete intersections with Picard group not isomorphic to Z, i.e.
not of the �rst kind; on the other hand every Fano complete intersection is of
the principal series.

Let pl : G(k, m) �→ P(m
k)−1 be the Plücker embedding (often we omit to

explicity mention the embedding pl), and let us denote by

X = G(k, m) ∩ V (n1) ∩ . . . ∩ V (nr )

where V (ni ) (i = 1, . . . , r ) are r generic hypersurfaces of degrees ni respec-
tively in P(m

k)−1 , with r = dimG(k, m)−n, where n is the dimension of X . For
this type of n-dimensional varieties, we now prove two important properties.

Proposition 1.
a) X is Fano ⇔

�r
i=1 ni −m < 0.

b) X is Fano and dim X ≥ 2⇒ index(X ) = m −
�r

i=1 ni .

Proof.
a) Recall �rst that the canonical divisor of the Grassmannian G(k, m) of

the (k − 1)-planes in Pm−1 is KG(k,m) ∼ −mE [1], page 79, where E is the
hyperplane divisor.

Let us consider

X1 = G(k, m) ∩ V (n1)
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X2 = X1 ∩ V (n2) = G(k, m) ∩ V (n1) ∩ V (n2)
...

Xr−1 = Xr−2 ∩ V (nr−1) = G(k, m) ∩ V (n1) ∩ . . . ∩ V (nr−1)
Xr = Xr−1 ∩ V (nr ) = G(k, m) ∩ V (n1) ∩ . . . ∩ V (nr ) = X

Denote by Ei the hyperplane divisor of Xi , for i = 1, . . . , r − 1, and
by H the hyperplane divisor of X . Using the adjunction formula, if we
consider the smooth one-codimensional subvariety X1 of G(k, m), we have
KX1 ∼ (KG(k,m)+ X1) · X1 ∼ (−mE + n1E) · X1 ∼ (n1−m)E1. Iterating until
Xr = X , for the canonical divisor of X we obtain that KX ∼

� �r
i=1 ni −m

�
H .

Hence: X is Fano ⇔
�r

i=1 ni −m < 0.

b) If dim ≥ 3, since Pic(G(k, m)) ∼= Z, then, again by Noether-Lefschetz
Theorem, Pic(X ) ∼= Z ([2], page 180, Cor. 3.3) and then index (X ) =
m −

�r
i=1 ni . If dim X = 2, then there are only three possibility (see the

following classi�cation), so by a direct computation we �nd that the above
formula for the index is veri�ed also in this case. �

Corollary 1. Let X be Fano then V (n1) ∩ . . . ∩ V (nr ) is Fano.

Proof. In fact, m − 1 ≤

�
m
k

�

− 1 because m > k. �

Remark 2. Note that every Fano variety section of a Grassmannian is of the
principal series and of the �rst kind except the three Fano surfaces (see the
following classi�cation) which have a very ample anticanonical divisor, but their
Picard group is not isomorphic to Z.

Now we want to classify the Fano varieties X as above, with dim X ≤ 5.
As a matter of fact one �nds a curve, three surfaces, six threefolds, nine
fourfolds, thirteen �vefolds. The method can be easily extended. In fact,
since ni ≥ 1 ∀ i , then r − m < 0. Being r = k(m − k) − n, we have
m(k − 1) − k2 − n < 0; and since G(k, m) ∼= G(m − k, m), we impose that
m ≥ 2k. Therefore using the formulas:

• k ≥ 2,
• k2 − 2k − n < 0,
• 2k ≤ m < k2+n

k−1
,

•
�r

i=1 ni < m;

we give a classi�cation including for each of them the degree, the index,
the number d = (−KX )

n , where d is the degree of the variety φ|−K X |(X )
under the anticanonical embedding (in Pdim |−K X |) and furthermore, when X
is a threefold, the integer invariant g = 1

2
(−K 3

X ) + 1 corresponding to the
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genus of the canonical curve contained into the K3 surface embedded in X
when −KX is very ample, ([4], page 488, [1], page 65). Let us denote by
H, Hi the hyperplanes; by V (2), V (2)�, V (3), V (4) the hypersurfaces (quadrics,
cubics, quartics respectively) and by V (n1, . . . , nr ) the complete intersections
in a projective space, here is a list with the varietes that we found:

Curve:
G(2, 4) ∩ H1 ∩ H2 ∩ H3, the Grassmannian of the lines of P3, i.e. the Klein
Quadric, cut out by three generic hyperplanes and is a rational curve, as known.

Surfaces:

Fano surface degree −K d = (−K )2

1 G(2, 4)∩ H1 ∩ H2 = V (2) ⊆ P3 2 2H 8

2 G(2, 4)∩ H ∩ V (2) = V (2, 2) ⊆ P4 4 H 4

3 G(2, 5)∩ H1 ∩ H2 ∩ H3 ∩ H4 ⊆ P5 5 H 5

Threefolds:

Fano threefold degree −K d = (−K )3 g

1 G(2, 4) ∩ H = V (2) ⊆ P4 2 3H 54 28

2 G(2, 4) ∩ V (2) = V (2, 2) ⊆ P5 4 2H 32 17

3 G(2, 4) ∩ V (3) = V (2, 3) ⊆ P5 6 H 6 4

4 G(2, 5) ∩ H1 ∩ H2 ∩ H3 ⊆ P6 5 2H 40 21

5 G(2, 5) ∩ H1 ∩ H2 ∩ V (2) ⊆ P7 10 H 10 6

6 G(2, 6) ∩ H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ⊆ P9 14 H 14 8

Fourfolds:

Fano fourfold degree −K d = (K )4

1 G(2, 4) = V (2) ⊆ P5 2 4H 512

2 G(2, 5)∩ H1 ∩ H2 ⊆ P7 5 3H 405

3 G(2, 5)∩ H ∩ V (2) ⊆ P8 10 2H 160

4 G(2, 5)∩ H ∩ V (3) ⊆ P8 15 H 15

5 G(2, 5)∩ V (2) ∩ V (2)� ⊆ P9 20 H 20

6 G(2, 6)∩ H1 ∩ H2 ∩ H3 ∩ H4 ⊆ P10 14 2H 224

7 G(2, 6)∩ H1 ∩ H2 ∩ H3 ∩ V (2) ⊆ P11 28 H 28

8 G(2, 7)∩ H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ∩ H6 ⊆ P14 42 H 42

9 G(3, 6)∩ H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ⊆ P14 42 H 42
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Fivefolds:

Fano �vefold degree −K d = (−K )5

1 G(2, 5) ∩ H ⊆ P8 5 4H 5120

2 G(2, 5) ∩ V (2) ⊆ P9 10 3H 2430

3 G(2, 5) ∩ V (3) ⊆ P9 15 2H 480

4 G(2, 5) ∩ V (4) ⊆ P9 20 H 20

5 G(2, 6) ∩ H1 ∩ H2 ∩ H3 ⊆ P11 14 3H 3402

6 G(2, 6) ∩ H1 ∩ H2 ∩ V (2) ⊆ P12 28 2H 896

7 G(2, 6) ∩ H1 ∩ H2 ∩ V (3) ⊆ P12 42 H 42

8 G(2, 6) ∩ H ∩ V (2) ∩ V (2)� ⊆ P13 56 H 56

9 G(2, 7) ∩ H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ⊆ P15 42 2H 1344

10 G(2, 7) ∩ H1 ∩ H2 ∩ H3 ∩ H4 ∩ V (2) ⊆ P16 84 H 84

11 G(2, 8) ∩ H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ∩ H6 ∩ H7 ⊆ P20 122 H 122

12 G(3, 6) ∩ H1 ∩ H2 ∩ H3 ∩ H4 ⊆ P15 42 2H 1344

13 G(3, 6) ∩ H1 ∩ H2 ∩ H3 ∩ V (2) ⊆ P16 84 H 84

3. The family of lines in a n-dimensional Fano complete intersection.

In this section we study the dimension of the family of lines of a Fano
complete intersection of hypersurfaces in a projective space. First we show
some classical important examples of threefolds. Then, in Theorem 1, we prove
an extension of Tennison�s method [13] which he realized for the study of the
family of the lines of the quartic hypersurface of P4.

Example 1. For the study of the family of the lines of a complete intersection
V (2, 3) in P5, we consider the Hilbert scheme Q that parametrises the smooth
complete intersections of type V (2, 3) ⊆ P5. We have the natural morphism

π : Q −→ P(H 0(P5, OP5 (2))).

If Q is a generic smooth quadric in P5(rkQ = 6), then we determine exactly
the dimension of the generic �ber π−1(Q). Using the exact sequence

0 −→ OP5 (−2) −→ OP5 −→ OQ −→ 0

tensoring by 3

0 −→ OP5 (1) −→ OP5 (3) −→ OQ(3) −→ 0
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and passing in cohomology, since H 1(OP5 (1)) = 0, we obtain the exact
sequence

0 −→ H 0(OP5 (1)) −→ H 0(OP5 (3)) −→ H 0(OQ(3)) −→ 0

on the other hand P(H 0(OQ (3))) ∼= π−1(Q), Then: dimπ−1(Q) = 49. Now
we can conclude that

dimQ = dimP(H 0(P5, OP5 (2)))+ dimπ−1(Q) = 69.

To determine the dimension of the scheme that parametrises the lines it is
necessary to consider the �bers of the projections pr1 and pr2 naturally re-
stricted to the �rst and second factor respectively of the incidence variety
I = {(�, X )∈G(2, 6)×Q/� ⊆ X } ⊆ G(2, 6)×Q.
Since pr1 has irreducible �bers of constant dimension and the Grassmannian is
an irreducible variety, for [12], Theorem 8 Chapter 1 Section 5, we have that I

is irreducible and that

dim I = dimG(2, 6)+ dim pr−11 (�0) = 70.

Let us remark that dim pr−11 (�0) = 62 and we get that dim pr−12 (V (2, 3)) = 1.

Example 2. For the study of the family of the lines of the complete intersection
V (2, 2, 2) in P6, we consider the Hilbert scheme Q that parametrises all smooth
complete intersections of type V (2, 2, 2) ⊆ P6. It is clear that dimQ =

dimG(3, H 0
OP6 (2)) = 75. In the same way of the previous example we obtain

that dim pr−11 (�0) = 66 and also dim pr−12 (V (2, 2, 2)) = 1.

Remark 3. In both examples we have used the surjectivity of pr2, essential
point to determine the result of the following

Theorem 1. If X is a Fano n-fold (n ≥ 2) complete intersection of r generic
hypersurfaces of degrees n1, . . . , nr respectively, then the scheme F (X ) that
parametrises the lines on X has dimension n − 3+ index(X ).

Proof. Let us consider the scheme Q parametrising the smooth complete
intersections of type X = V (n1, ..., nr ) in Pr+n . Since Q is dominated by a
dense open set P of the variety

P(H 0(Pr+n , OPr+n (n1)))× . . .× P(H 0(Pr+n, OPr+n (nr ))),
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and knowing that

dimP(H 0(Pn, OPn (s))) =

�
n + s

n

�

− 1

clearly:

dQ := dimQ ≤

r�

i=1

�
r + n + ni

r + n

�

− r.

Let us consider the incidence varieties:

I� = {(�, (V (n1), . . . , V (nr )))∈G(2, r + n+ 1)×P/� ⊆ V (n1)∩ · · · ∩ V (nr )}

⊆ G(2, r + n + 1)× P

and

I = {(�, V (n1, . . . , nr ))∈G(2, r + n + 1)×Q/� ⊆ V (n1, . . . , nr )}

⊆ G(2, r + n + 1)×Q

and the projections pr �1, pr �2, pr1, pr2 onto the �rst and the second factor
respectively. In order to complete the proof of the Theorem we demonstrate
some Lemmas.

Lemma 1. The variety I� is an irreducible variety of dimension

2n − 2+

r�

i=1

� �
r + n + ni

r + n

�

− ni

�

.

Proof. We have the following diagram

I�
pr �
2

��

pr �
1

��

P

G(2, r + n + 1)

If �0 ∈G(2, r + n + 1), then the �ber can be described as

pr
�−1
1 (�0) = {(�0, Y )∈ {�0} × P/�0 ⊆ Y } ∼= {Y ∈P/Y ⊇ �0}.
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However, the fact that �0 ⊆ Y , means that the line �0 must be contained in each
of the r hypersurfaces V (ni ), with i = 1, . . . , r . Hence �0 ⊆ Y imposes
ni + 1 linearly independent conditions, for every i = 1, . . . , r . Therefore
pr

�−1
1 (�0) is isomorphic to a product of linear subspaces in P of codimension

n1 + . . .+ nr + r , so that

dim pr
�−1
1 (�0) =

r�

i=1

�
r + n + ni

r + n

�

−

r�

i=1

ni − 2r.

Since G(2, r + n + 1) is an irreducible variety and pr �1 has irreducible �bers of
constant dimension, we obtain the irreducibility of I�. Moreover:

dim I� = dimG(2, r + n + 1)+ dim pr
�−1
1 (�0)

= 2n − 2+

r�

i=1

� �
r + n + ni

r + n

�

− ni

�

. �

We can prove also the

Lemma 2. The variety I is an irreducible variety of dimension

2n − 2+ r + dQ −

r�

i=1

ni .

Proof. We now proceed in the same way as in Lemma 1, the problem is to
guarantee that all conditions imposed by the line are independent. If we consider
the following commutative diagram of the natural morphisms

I�
pr �
2

��

π �

��

P

π

��

I
pr2

�� Q

we can compare these conditionswith those of Lemma 1. In fact, since we know
that the generic �ber of π has constant dimension, that is

dimπ−1(X0) =

r�

i=1

�
r + n + ni

r + n

�

− r − dQ, X0 ∈Q,
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we obtain automatically that π−1(X0) has the same dimension of the �ber
π

�−1(�, X0). Then:

dim I = dim I� − dimπ
�−1(�, X0) = 2n − 2+ r + dQ −

r�

i=1

ni . �

The following Lemma is the answer to Fano�s Conjecture for this type of
varieties.

Lemma 3. The projection pr2 is surjective.

Proof. Suppose that pr2 is not surjective and that Im(pr2 ) is denoted by Q1,
then dimQ1 = dimQ− ε , with ε > 0. We have the diagram

I
pr1

��

��

pr2

��������������� G(2, r + n + 1)

Q1
�
�

�� Q

where the dimension of the generic �ber of X0 is:

dim pr−12 (X0) = dim I− dimQ1 = 2n − 2−

r�

i=1

ni + r + ε.

Now, we consider a �xed line �1 ∈G(2, r + n + 1), and the schemes:

Q� = {X ∈Q/�1 ⊆ X }

and
J� = {(�, X )∈G(2, r + n + 1)×Q�/� ⊆ X } ⊆ I.

We can observe that dimQ� = dQ −
�r

i=1 ni − r , because Q� ∼= pr−11 (�1).
Furthermore, the projection t : J� −→ Q�, with t = pr2 |J� , has the �bers
of dimension 2n − 2 −

�r
i=1 ni + r + ε , because t−1(X0) = {(�, X0) ∈

G(2, r + n + 1)×Q�/� ⊆ X0} ∼= {�/� ⊆ X0} = pr−12 (X0). Then:

(∗) dimJ� = 2n − 2−

r�

i=1

ni + r + ε + dQ −

r�

i=1

ni − r

> 2n − 2+ dQ − 2

r�

i=1

ni .
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Let J be an irreducible component of maximal dimension of J� that dominates
Q� under t , then dimJ = dimJ�. We consider the diagram

J
p�
1

�����������������

p1

��

p2
�� Q

Im(p1) = G1
�
�

�� G(2, r + n + 1)

where p1 e p2 are the corresponding projections, p�1 is the induced morphism
and:

�∈G1⇔ ∃ X ∈Q/X ⊇ � ∪ �1 and (�, X )∈ J.

We have the following three possible cases:

1) G1 = {�1}. Then:

p
�−1
1 (�1) = {(�1, X )∈ J/X ⊇ �1} ⊆ {(�1, X )∈G(2, r + n + 1)×Q/X ⊇ �1}

∼= {X ∈Q/X ⊇ �1}

with dimension: dQ −
�r

i=1 ni − r , therefore

dim J ≤ dimG1 + dim p
�−1
1 (�1)

≤ 0+ dQ −

r�

i=1

ni − r

≤ 2n − 2+ dQ − 2

r�

i=1

ni

< dim J�.

Using the Fano condition we have a contradiction! (with (∗).)

2) G1 �= {�1} and for any �∈G1, �1 ∩ � �= ∅, then:

G1 ⊆ {�∈G(2, r + n + 1)/�1 ∩ � �= ∅}

corresponding to the Schubert cycle σr+n−2 of codimension r + n − 2 in
G(2, r + n + 1) and

p
�−1
1 (�) ⊆ {(�, X )∈G(2, r + n + 1)×Q/X ⊇ � ∪ �1}
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Since X ⊇ �, and V (ni ) ⊇ � then for every i (i = 1, . . . , r ) there are ni + 1
independent conditions. On the other hand since X ⊇ �1 and V (ni ) ⊇ �1 then
for every i (i = 1, . . . , r ), there are only ni independent conditions, in fact
� and �1 have a common point. For example, if X is a quadric, there are 3
independent conditions because it contains a line, moreover since the two lines
have a common point then the conditions imposed by the other line are only
2. It is clear that analogous considerations can be repeated for intersections of
hypersurfaces of higher degree. Then as in Lemma 1 and Lemma 2 we have that
all conditions are independent; it follows that:

dim p
�−1
1 (�) ≤ dQ − 2

r�

i=1

ni − r

therefore,

dim J ≤ dimG1 + dim p
�−1
1 (�)

≤ 2r + 2n − 2− r − n + 2+ dQ − 2
�r

i=1 ni − r
= n + dQ − 2

�r
i=1 ni

< dimJ�.

Contradiction!

3) There exists � ∈ G1, such that � ∩ �1 = ∅. Remember that {� ∈
G(2, r + n + 1)/� ∩ �1 = ∅} corrispond to the Schubert cycle of codimension
0. In this case we have that dimG1 ≤ 2n − 2+ 2r . Now,

dim p
�−1
1 (�) ≤ dQ − 2

r�

i=1

ni − 2r

In fact, X ⊇ � imposes
�r

i=1 ni + r conditions, and X ⊇ �1 also imposes�r
i=1 ni + r conditions. They are all independent among them because we have

skew lines, but we can repeat the same consideration as before; therefore,

dimJ ≤ dimG1 + dim p
�−1
1 (�)

≤ dimG(2, r + n + 1)+ dQ − 2
�r

i=1 ni − 2r
= 2(r + n − 1)+ dQ − 2

�r
i=1 ni − 2r

= 2n − 2+ dQ − 2
�r

i=1 ni

< dimJ�.

Contradiction!
And then ε = 0. �
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Now, using that pr2 is surjective we can conclude the proof of the Theorem, in
fact

dim pr−12 (X0) = 2n − 2+ r −

r�

i=1

ni = n − 3+ index(X ). �

Corollary 2. If X ⊆ Pn is a Fano 3-fold complete intersection of a �nite
number of generic hypersurfaces then dimF (X ) = index(X ).

Remark 4. We obtain, in particular, that if
�r

i=1 ni = r + 3 then dimF (X ) =
1.

This holds true for:

• V (4) ⊆ P4;
• V (2, 3) ⊆ P5;
• V (2, 2, 2) ⊆ P6.

that is for the ones having index 1.

When
�r

i=1 ni < r + 3, then dimF (X ) ≥ 1 and we have that

• For V (1) the hyperplane (a P3) of P4, having index 4, one has dimF (X )
= 4.

• For the quadric hypersurface V (2) ⊆ P4, having index 3, one has
dimF (X ) = 3.

• For cubic hypersurface V (3) ⊆ P4 and for V (2, 2), the intersection of 2
quadrics of P5, both of index 2, one has dimF (X ) = 2.

4. The family of lines in Fano varieties sections of Grassmannians.

Theorem 2. Let X be a n-dimensional Fano variety (n ≥ 2) which is the
intersection of G(k, m) ⊆ P(m

k)−1 with a �nite number of generic hypersurfaces
V (n1), . . . , V (nr ), that is a complete intersection in the Grassmannian G(k, m),
and assume that X contains at least one line. Then the Hilbert scheme F (X )
that parametrises its lines has dimension greater than or equal to n − 3 +
index(X ).

Proof. Let X = G(k, m) ∩ V (n1) ∩ . . . ∩ V (nr ) ⊆ P(m
k)−1, with r =

dimG(k, m) − n and let ni be the degree of each hypersurface V (ni ). Now,
let �0 ∈G(2,

�
m
k

�
) such that �0 ⊆ X . Then:

�0 ⊆ X ⇔ �0 ⊆ V (n1) ∩ . . . ∩ V (nr ) ∧ �0 ⊆ G(k, m)
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Let S̃1 and S̃2 be the two cycles in the cohomology ring of the Grassmannian
G(2,

�
m
k

�
) corresponding respectively to the subvariety S1 of the lines in P(m

k)−1

contained in the intersection of r �xed generic hypersurfaces and the subvariety
S2 of the lines in P(m

k)−1 that are contained in G(k, m).
The intersection S1 ∩ S2 represents the cycle S̃1 · S̃2 corresponding to the lines
in P(m

k)−1 contained in X . If a1, a2 are the codimensions of S1 and S2 in
G(2,

�
m
k

�
) respectively, then we can calculate this codimensions, in fact, since

V (n1) ∩ . . . ∩ V (nr ) is a Fano variety (see Corollary 1), then by Theorem 1 we
obtain immediately that a1 =

�r
i=1 ni + r .

Now let us compute directly also the codimension of S2. We know ([3],
page 207) that if φ : S −→ G(k, m) is a morphism, it induces a surjective
morphism O

⊕m
S −→ F , with F a bundle of rank m − k on S . In fact, we can

consider the exact sequence of bundles over G(k, m):

0 �� T ��

������������� G(k, m) ×Cm ��

��

Q ��

�������������
0

S
φ

�� G(k, m)

where T is the tautological bundle and Q is the universal quotient bundle. We
remember that T = {(�, u) ∈G(k, m) × Cm/u ∈�}. Taking the pull-back via
φ , we obtain:

φ∗(G(k, m) × Cm) −→ φ∗(Q) −→ 0

where φ∗(G(k, m)×Cm) = O
m
S e φ∗(Q) = F . By the universal property of the

quotient bundle the vice versa holds too. As G(k, m) ∼= G(m − k, m), then we
have the identi�cation

Mor(S, G(m − k, m)) ∼= Epi(Om
S , F ).

where here F is a bundle on S of rank k. But, Epi(Om
S , F ) is an open set in

H om(Om
S , F ), which is isomorphic to H 0(S, F ⊗ (Om

S )
∨).

In our case, for S = P1, we have that the bundle F is a vector bundle of
rank k and that on P1 it has the form OP1 (α1) ⊕ OP1 (α2) ⊕ . . . ⊕ OP1 (αk) (by
Grothendieck Theorem). As the image must be a line, then up to order the
integers αi

α1 + α2 + . . .+ αk = 1; α1, α2, . . . , αk ≥ 0 ⇒

α1 = α2 = · · · = αk−1 = 0, αk = 1.

Then:

F =

k−1�

i=1

OP1 ⊕OP1 (1).
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Using the additive property of the cohomology, we can calculate

h0((
�k−1

i=1 OP1 ⊕ OP1 (1))⊗ (O
m
P1
)∨) = h0(

�k−1
i=1 O

m
P1
⊕ OP1 (1)

m)
= (k − 1)h0(Om

P1
) + h0(OP1 (1)

m)
= (k + 1)m.

However, to each surjective morphism corresponds more than one morphism
from P1 to G(k, m). We need to identify those equivalents. First of all there
is a three dimensional group acting on P1, so that the dimension drops by
three. Furthermore, there is the action of the linear group G L(k, k) on the
Grassmannian, so the dimension diminishes by k2. Hence, the dimension of
S2 is

h0((

k−1�

i=1

OP1 ⊕ OP1 (1))⊗ O
m
P1
)− (dim Aut(P1) + k2).

Therefore, a2 = dimG(2,

�
m
k

�

) − (k + 1)m + k2 + 3.

Finally:

dimF (X ) ≥ −

r�

i=1

ni − r + (k + 1)m − k2 − 3 = n − 3+ index(X ). �

Corollary 3. Let X be a Fano surface complete intersection of generic hyper-
surfaces in a Grassmannian, then dimF (X ) = index(X )− 1.

Proof. It is a straightforward computation. �

Corollary 4. Let X be a Fano threefold complete intersection of generic
hypersurfaces in a Grassmannian, then dimF (X ) = index(X ).

Proof. Concerning threefolds, Sh�okurov guarantees the existence of at least
one line for any Fano variety of type V2g−2 in Pg+1 and of the �rst kind
([13],[5]). In fact for the varieties V14

3 and V10
3 which are the two last varieties of

the list given in the classi�cation of the threefolds, we have that dimF (V14
3 ) =

dimF (V10
3 ) = 1 ([10], page 84).

Variaties X which are the intersection of the Grassmannian G(2, 5) with
3 generic hyperplanes H1, H2, H3 in P9 contain a family of lines parametrised
by a 2-dimensional scheme. In fact, since X is a Fano threefold of index 2 and
degree 5, then it contains at least one line ([7], page 64).

The corollary is proved, in fact there are only these three varieties to study,
as the others are isomorphic to complete intersections in a projective space so
that from Theorem 1 it easily follows that the dimension of F (X ) is equal to the
index of X . �
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Example 3. If X is the fourfold intersection of the Grassmannian G(2, 6) with
4 generic hyperplanes H1, H2, H3, H4 in P14 or if X is the intersection of
G(2, 5) with a generic hyperplane H1 and a generic quadric Q in P9, then
dimF (X ) ≥ 3. If X is the intersection of G(2, 5) with 2 generic hyperplanes
H1, H2 in P9, then dimF (X ) ≥ 4.
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forme, Rend. Acc. Lincei, 5 (1948), pp. 238�242.

[10] P.J. Puts, On some Fano-threefolds that are sections of Grassmannians, Indagat.
Math., 12 (1982), pp. 77�90.

[11] I.R. Shafarevich (Ed.), Algebraic Geometry II, Encyclopaedia of Mathematical
Sciences 35, Springer, 1996.

[12] I.R. Shafarevich, Basic algebraic geometry, Springer, Berlin-Heilderberg-New
York, 1974.



FAMILIES OF LINES IN FANO VARIETIES COMPLETE . . . 147

[13] V. Sh�okurov, The existence of lines on Fano threefolds, Izv. Akad. Nauk. USSR,
43 (1979), pp. 922�964.

[14] B.R. Tennison, On the quartic threefold, Proc. London Math. Soc.(3), 29 (1974),
pp. 714�734.

Dipartimento di Matematica del Politecnico di Torino,
Corso Duca degli Abruzzi 24,

10129 Torino (ITALY)
e-mail: cordovez@calvino.polito.it


