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ENTROPY SOLUTION FOR A NONLINEAR DEGENERATE
ELLIPTIC PROBLEM WITH DIRICHLET-TYPE BOUNDARY

CONDITION IN WEIGHTED SOBOLEV SPACES

A. SABRI - A. JAMEA - H. T. ALAOUI

In this paper, we prove the existence and uniqueness results of an
entropy solution to a class of nonlinear degenerate elliptic problem with
Dirichlet-type boundary condition and L1 data. The main tool used here is
the regularization approach combined with the theory of weighted Sobo-
lev spaces.

1. Introduction

Let Ω ⊂ RN ,(N ≥ 2) be an open bounded domain and let p ∈ (1,∞). In this
paper we study the existence and uniqueness question of entropy solution for
the nonlinear degenerate elliptic problem{

− div
(

ω(x)|∇u−Θ(u)|p−2
(
∇u−Θ(u)

))
+α(u) = f in Ω,

u = 0 on ∂Ω,
(1)

where ω is a measurable positive function defined on RN , α is a non decreasing
continuous real function defined on R and Θ is a continuous function defined
from R to RN , the datum f is in L1.
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The study of partial differential equations and variational problems has received
considerable attention in many models coming from various branches of math-
ematical physics, such as elastic mechanics, electrorheological fluid dynamics
and image processing, etc. Degenerate phenomena appear in area of oceanogra-
phy, turbulent fluid flows, induction heating and electrochemical problems (cf.
e.g. [8, 11, 14]). The problem (1) is modeling several natural phenomena, we
cite for example the following two parabolic models.
•Model 1. Filtration in a porous medium. The filtration phenomena of fluids in
porous media are modeled by the following equation,

∂c(p)
∂ t

= ∇a[k(c(p))(∇p+ e)], (2)

where p is the unknown pressure, c volumetric moisture content, k the hydraulic
conductivity of the porous medium, a the heterogeneity matrix and −e is the
direction of gravity.
• Model 2. Fluid flow through porous media. This model is governed by the
following equation,

∂θ

∂ t
−div

(
|∇ϕ(θ)−K(θ)e|p−2(∇ϕ(θ)−K(θ)e)

)
= 0, (3)

where θ is the volumetric content of moisture, K(θ) the hydraulic conductivity,
ϕ(θ) the hydrostatic potential and e is the unit vector in the vertical direction.
The problem (1) or some particular cases of it have recently been considered by
several authors, for example, in the case when ω ≡ 1, the existence and unique-
ness of weak or entropy solution for the problem (1) are already proven (cf. e.g.
[1] and [9]). Many authors have considered the problem (1) in the case when
Θ = 0 and especially the study of questions of existence and uniqueness of en-
tropy solution to the problem (1) (cf. e.g. [7]).
In this paper and by using the regularization approach, we prove in the first
step existence of a sequence of weak solutions to approximate problems (7),
we apply here the variational method combined with a special type of operators
(operator of type (M), see definition 2.6 below). In the second step, we will
prove that the sequence of weak solutions converges to some function u and by
using some a priori estimates, we will show that this function u is an entropy
solution of nonlinear elliptic problem (1). We recall that the notion of entropy
solutions was introduced by Ph. Bénilan, L. Boccardo, T. Gallouet, R. Gariepy,
M. Pierre, J.L. Vazquez in [2] and adapted by many authors to study some non-
linear elliptic and parabolic problems (cf. e.g. [1, 3–5, 13]).
The plan of our paper is divided into four sections and organized as follows, in
section 2, we present some preliminaries on weighted Sobolev spaces and some
basic tools to prove our main result of this paper, in section 3, we introduce
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some assumptions, and we give the definition of entropy solutions of problem
(1), we finish this paper by proving the main result of this paper.

2. Preliminaries and notations

In this section, we give some notations and definitions and we state some results
which will be used in this work.
Let ω be a measurable positive and a.e finite function defined on RN , further,
we suppose that the following integrability conditions are satisfied:

(H1) ω ∈ L1
loc(Ω) and ω

−1
p−1 ∈ L1

loc(Ω),

(H2) ω−s ∈ L1
loc(Ω) where s ∈

(
N
p ,∞

)
∩
[

1
p−1 ,∞

)
.

The weighted Lebesgue space Lp(Ω,ω) is defined by

Lp(Ω,ω) = {u Ω→ R, u is measurable and
∫

Ω

ω(x)|u|pdx < ∞},

endowed with the norm

‖u‖p,ω := ‖u‖Lp(Ω,ω) =

(∫
Ω

ω(x)|u|pdx

) 1
p

.

The weighted Sobolev space W 1,p(Ω,ω) is defined by

W 1,p(Ω,ω) = {u ∈ Lp(Ω,ω) and |∇u| ∈ Lp(Ω,ω)} ,

with the norm

‖u‖1,p,ω = ‖u‖p +‖∇u‖p,ω , ∀ u ∈W 1,p(Ω,ω).

In the following, the space W 1,p
0 (Ω,ω) denote the closure of C∞

0 in W 1,p(Ω,ω)
endowed by the norm

‖u‖W 1,p
0 (Ω,ω)

=

(∫
Ω

|∇u|pω(x)dx

) 1
p

.

Let s be a real number satisfying hypothesis (H2), we define the following crit-
ical exponents

p∗ =
N p

N− p
for p < N,
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ps =
ps

1+ s
< p,

p∗s =

{ ps
(1+ s)N− ps

if N > ps,

+∞ if N ≤ ps.

In the following of this work, we need to following results

Proposition 2.1 ([10]). Let Ω ⊂ RN be an open set of RN and let hypothesis
(H1) be satisfied, we have

Lp(Ω,ω) ↪→ L1
Loc(Ω).

Proposition 2.2 ([10]). Let hypothesis (H1) be satisfied, the space
(
W 1,p(Ω,ω),

‖u‖1,p,ω
)

is a separable and reflexive Banach space.

Proposition 2.3 ([10]). Assume that hypotheses (H1) and (H2) hold, we have
the continuous embedding

W 1,p(Ω,ω) ↪→W 1,ps(Ω,ω).

Moreover, we have the compact embedding

W 1,p(Ω,ω) ↪→↪→ Lr(Ω),

where 1≤ r < p∗s .

Proposition 2.4 ([10]). (Hardy-type inequality) There exist a weight function ω

defined on Ω and a parameter q, 1 < q < ∞ such that the inequality(∫
Ω

ω(x)|u(x)|qdx
) 1

q

6C0

(∫
Ω

ω(x)|∇u|pdx
) 1

p

(4)

holds for every u ∈W 1,p
0 (Ω,ω),C0 is a strictly positive constant independent of

u. Moreover, the embedding

W 1,p
0 (Ω,ω) ↪→ Lq(Ω,ω)

expressed by inequality (4) is compact.

Let k be a strictly positive real, we define the cut function Tk : R→ R as

Tk(s) = min(k,max(s,−k)) =


s if |s| ≤ k,
k if s > k,
−k if s <−k.
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For a function u = u(x) defined on Ω, we define the truncated function Tku as
follows, for every x ∈Ω, the value of (Tku) at x is just Tk(u(x)).
We define also the space

T 1,p
0 (Ω,ω) ={

u : Ω→ R, u is measurable and Tk(u) ∈W 1,p
0 (Ω,ω) f or all k > 0

}
.

By [2, lemma 2.1], the weak gradient of a measurable function u ∈ T 1,p
0 (Ω,ω)

is defined as

Proposition 2.5. For every function u ∈ T 1,p
0 (Ω,ω), there exists a unique mea-

surable function v : Ω→RN , which we call the very weak gradient of u (if there
is any confusion, we denote v = ∇u)such that

∇Tk(u) = vχ{|u|≤k} for a.e x ∈Ω and for all k > 0,

where χB is the characteristic function of the measurable set B⊂RN . Moreover,
if u belongs to W 1,p

0 (Ω,ω), the very weak gradient of u coincides to its weak
gradient.

Definition 2.6 ([12]). Let Y be a reflexive Banach space and let P be an operator
from Y to its dual Y ′. We say that P is of type (M) if and only if

un ⇀ u weakly in Y
Pun ⇀ χ weakly in Y ′

limsup
n→+∞

〈Pun,un〉 ≤ 〈χ,u〉

 Then Pu = χ.

Theorem 2.7 ([12]). Let Y be a reflexive real Banach space and P : Y −→Y ′ be
a bounded operator, hemi-continuous, coercive and of type (M) on space Y , the
equation Pu = h has at least one solution u ∈ Y for each h ∈ Y ′.

Lemma 2.8 ([1]). For ξ , η ∈ RN and 1 < p < ∞, we have

1
p
|ξ |p− 1

p
|η |p ≤ |ξ |p−2

ξ (ξ −η).

Lemma 2.9. For a≥ 0, b≥ 0 and 1≤ p <+∞, we have

(a+b)p ≤ 2p−1(ap +bp).

Lemma 2.10 ([9]). Let p, p′ two reals numbers such that p > 1, p′ > 1 and
1
p +

1
p′ = 1, we have∣∣|ξ |p−2

ξ −|η |p−2
η
∣∣p′ ≤C

{
(ξ −η)(|ξ |p−2

ξ −|η |p−2
η)
} β

2 {|ξ |p + |η |p}1− β

2 ,

∀ ξ ,η ∈ RN , where β = 2 if 1 < p≤ 2 and β = p′ if p≥ 2.

Remark 2.11. Hereinafter, Ci, i ∈ {1;2; ...} is a positive constant and meas{A}
denotes the measure of the measurable set A⊂ RN .
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3. Assumptions and main result

In this section, we will introduce the concept of entropy solution for problem
(1) and we will state the existence and the uniqueness results for this type of
solution. Firstly and in addition to hypotheses (H1) and (H2) listed earlier, we
suppose the following assumptions.

(H3) α is a non-decreasing continuous real function defined on R, surjective
such that α(0) = 0.

(H4) Θ is a continuous function from R to RN such that Θ(0) = 0, and for all
real numbers x,y, we have |Θ(x)−Θ(y)| ≤ λ |x−y|, where λ is a real con-

stant such that 0 < λ <
1

2C0
, and C0 is the constant given in Proposition

2.4.

(H5) f ∈ L1(Ω).

Definition 3.1. A function u ∈ T 1,p
0 (Ω,ω) is an entropy solution of degenerate

elliptic problem (1) if and only if∫
Ω

ωΦ
(
∇u−Θ(u)

)
∇Tk(u−ϕ) +

∫
Ω

α(u)Tk(u−ϕ)≤
∫

Ω

f Tk(u−ϕ) (5)

for all k > 0 and ϕ ∈W 1,p
0 (Ω,ω)∩L∞(Ω),

where

Φ(ξ ) = |ξ |p−2
ξ , ∀ ξ ∈ RN .

Our main result of this work is the following Theorem

Theorem 3.2. Let hypotheses (H1), (H2), (H3), (H4) and (H5) be satisfied,
then the problem (1) has a unique entropy solution.

4. Proof of the main result

The proof of our main result is divided into three steps, in the first one and
by using the regularization approach, we regularize the problem (1) and study
the existence of weak solutions to approximate problems (7). In the second
step, we give some a priori estimates which will be used to prove the existence
of an entropy solution for problem (1). We finish this section by proving the
uniqueness of the entropy solution.
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4.1. The approximate problem

Let the operator Bn : W 1,p
0 (Ω,ω)−→ (W 1,p

0 (Ω,ω))′ (where (W 1,p
0 (Ω,ω))′ is the

dual space of W 1,p
0 (Ω,ω)) and let

Bn = An−Ln,

where for un,v ∈W 1,p
0 (Ω,ω)

〈Anun,v〉=
∫

Ω

ωΦ(∇un−Θ(un))∇vdx+
∫

Ω

Tn(α(un))vdx

and
〈Ln,v〉=

∫
Ω

Tn( f )vdx.

We will prove that Bn satisfies the assertions of Theorem 2.7. Firstly, we prove
that Bn is of type (M) and coercive, for that, let (uk)k∈N be a sequence in
W 1,p

0 (Ω,ω) such that
uk ⇀ u weakly in W 1,p

0 (Ω,ω),

Bnuk ⇀ χ weakly in (W 1,p
0 (Ω,ω))′,

limsup
k→+∞

〈Bnuk,uk〉 ≤ 〈χ,u〉.

We will prove that χ = Bnu, indeed, the sequence (uk)k∈N converges weakly to
u in W 1,p

0 (Ω,ω), so, there exists a subsequence, still denoted (uk)k∈N such that
uk −→ u in Lp(Ω,ω). Since (uk)k∈N is a bounded sequence in W 1,p

0 (Ω,ω), then(
|∇uk−Θ(uk)|p−2(

∇uk−Θ(uk)
))

k∈N
is bounded in

(
Lp′(Ω,ω)

)N
.

Consequently

|∇uk−Θ(uk)|p−2(
∇uk−Θ(uk)

)
⇀ |∇u−Θ(u)|p−2(

∇u−Θ(u)
)

in
(
Lp′(Ω,ω)

)N as k→+∞.

According to the above result, we deduce that, for all v ∈W 1,p
0 (Ω,ω), that

〈χ,v〉 = lim
k→+∞

〈Bnuk,v〉

= lim
k→+∞

(∫
Ω

ωΦ(∇uk−Θ(uk))∇vdx+
∫

Ω

Tn(α(uk))vdx−
∫

Ω

Tn( f )vdx
)

=
∫

Ω

ωΦ(∇u−Θ(u))∇vdx+
∫

Ω

Tn(α(u))vdx−
∫

Ω

Tn( f )vdx

= 〈Bnu,v〉.
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This implies that χ = Bnu. Therefore Bn is of type (M).
Let un ∈W 1,p

0 (Ω,ω), we have

〈Bnun,un〉=∫
Ω

ωΦ(∇un−Θ(un))∇un dx +
∫

Ω

Tn(α(un))un dx −
∫

Ω

Tn( f )un dx.

On the one hand, we have by application of hypothesis (H3) that∫
Ω

Tn(α(un))un dx≥ 0.

And, by Hölder inequality and Proposition 2.3, there exists a positive constant
C1 such that ∫

Ω

Tn( f )un dx≤C1‖ f‖p′‖un‖W 1,p
0 (Ω,ω)

.

This implies that

〈Bnun,un〉 ≥
∫

Ω

ωΦ(∇un−Θ(un))∇un dx − C1‖ f‖p′‖un‖W 1,p
0 (Ω,ω)

. (6)

On the other hand, using Lemma 2.8 and Lemma 2.9, we obtain that∫
Ω

ωΦ(∇un−Θ(un))∇un dx ≥ 1
p

∫
Ω

ω|∇un−Θ(un)|p dx− 1
p

∫
Ω

ω|Θ(un)|p dx

≥
∫

Ω

1
p

ω

[
1

2p−1 |∇un|p−2|Θ(un)|p
]

dx

≥ 1
p

1
2p−1

∫
Ω

ω|∇un|p dx− 2λ p

p

∫
Ω

ω|un|p dx

≥ 1
p

1
2p−1

∫
Ω

ω|∇un|p dx− 2λ p

p
Cp

0

∫
Ω

ω|∇un|p dx

≥ 1
p

( 1
2p−1 −2λ

pCp
0

)
‖un‖p

W 1,p
0 (Ω,ω)

.

So, the choice of λ in (H4) gives the existence of a positive constant C2 such
that ∫

Ω

ωΦ(∇un−Θ(un))∇un dx≥C2‖un‖p
W 1,p

0 (Ω,ω)
.

Then, inequality (6) becomes

〈Bnun,un〉 ≥C2‖un‖p
W 1,p

0 (Ω,ω)
−C1‖ f‖p′‖un‖W 1,p

0 (Ω,ω)
.

Therefore
〈Bnun,un〉
‖un‖W 1,p

0 (Ω,ω)

→+∞ as ‖un‖W 1,p
0 (Ω,ω)

→+∞.
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Then we conclude that Bn is coercive. The operator Bn is hemi-continuous, then
by Theorem 2.7, there exists un ∈W 1,p

0 (Ω,ω) such that∫
Ω

ωΦ(∇un−Θ(un))∇vdx+
∫

Ω

Tn(α(un))vdx =
∫

Ω

Tn( f )vdx (7)

for all v ∈W 1,p
0 (Ω,ω).

4.2. A priori estimates

In this section, all the proofs of a priori estimates are inspired by the outline of
the Boccardo-Gallouet proof (see [2, 3]).

Lemma 4.1. Let hypotheses (H1),(H2),(H3),(H4) and (H5) be satisfied, then
(∇Tk(un))n∈N is bounded in

(
Lp(Ω,ω)

)N
.

Proof. Taking v = Tk(un) in equality (7), we have by hypothesis (H3) that∫
Ωk(n)

ωΦ(∇un−Θ(un))∇un ≤ k‖ f‖1,

where Ωk(n) = {|un| ≤ k} . So, by using the same arguments used to prove the
coercivity of Bn, we obtain that∫

Ω

ω|∇un|p ≤ kC3,

where C3 is a positive constant.
Therefore,

‖Tk(un)‖W 1,p
0 (Ω,ω)

≤ (kC3)
1
p . (8)

Then, for any k > 0, (Tk(un))n∈N is uniformly bounded in W 1,p
0 (Ω,ω).

Lemma 4.2. Let hypotheses (H1),(H2),(H3),(H4) and (H5) be satisfied, the
sequence (un)n∈N converges in measure to some measurable function u.

Proof. To prove this, we show that (un)n∈N is a Cauchy sequence in mea-
sure. Let k > 0 be large enough positive number. Noting that {|un|> k} =
{|Tk(un)|> k}, then by inequality (8) and Markov inequality, we have

meas{|un|> k} ≤

(
‖Tk(un)‖W 1,p

0 (Ω,ω)

k

)p

≤ C3

kp−1 .

Therefore

meas{|un|> k}→ 0 as k→ ∞,uniformly with respect to n. (9)
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Moreover, for every fixed t > 0 and every real positive k, we know that

{|un−um|> t} ⊂ {|un|> k}∪{|um|> k}∪{|Tk(un)−Tk(um)|> t}

and hence
meas{|un−um|> t} ≤

meas{|un|> k}+meas{|um|> k}+meas{|Tk(un)−Tk(um)|> t} (10)

Let ε > 0, we have by (9) that

meas({|un|> k})≤ ε

3
and meas({|um|> k})≤ ε

3
. (11)

Since Tk (un) converges strongly in Lp(Ω,ω), then it is a Cauchy sequence in
Lp(Ω,ω), thus implies by Markov inequality that

meas({|Tk (un)−Tk (um)|> t})≤ 1
t p

∫
Ω

ω |Tk (un)−Tk (um)|p dx≤ ε

3
(12)

for all n,m≥ n0(t,ε). Finally, from (10), (11) and (12) we obtain

meas({|un−um|> t})≤ ε for all n,m≥ n0(t,ε). (13)

This proves that (un)n∈N is a Cauchy sequence in measure and then it converges
almost everywhere to some measurable function u.
Therefore

Tk (un)⇀ Tk(u) in W 1,p
0 (Ω,ω)

Tk (un)→ Tk(u) in Lp(Ω,ω) and a.e. in Ω.
(14)

Lemma 4.3. Let hypotheses (H1),(H2),(H3),(H4) and (H5) be satisfied, the
sequence (∇un)n∈N converges in measure to ∇u.

Proof. Let ε, t,k,µ are positive real numbers and let n ∈N, we have the follow-
ing inclusion

{|∇un−∇u|> t} ⊂

{|un|> k}∪{|u|> k}∪{|∇Tk(un)|> k}∪{|∇Tk(u)|> k}∪{|un−u|> µ}∪G,

where
G =

{|∇un−∇u|> t, |un| ≤ k, |u| ≤ k, |∇Tk(un)| ≤ k, |∇Tk(u)| ≤ k, |un−u| ≤ µ} .

The same method used in the proof of Lemma 4.2, enable us to obtain, for k
sufficiently large, that

meas({|un|> k}∪{|u|> k}∪{|∇Tk(un)|> k})≤ ε

4
. (15)
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This implies by (14) that

∇Tk(un) converges weakly to ∇Tk(u) in (Lp(Ω,ω))N . (16)

Then, we have for k sufficiently large that

meas({|∇Tk(u)|> k})≤ ε

4
. (17)

On the other hand, by using the Lemma 4.2, we deduce the existence of n1 ∈N,
such that

meas({|un−u|> µ})≤ ε

4
for n≥ n1. (18)

Now, the application

A : (s,ξ1,ξ2)→ ω

(
Φ(ξ1−Θ(s))−Φ(ξ2−Θ(s))

)(
ξ1−ξ2

)
is continuous, and the set

K :=
{
(s,ξ1,ξ2) ∈ R×RN×RN , |s| ≤ k, |ξ1| ≤ k, |ξ2| ≤ k, |ξ1−ξ2|> t

}
is compact. Moreover, we have

ω

(
Φ(ξ1−Θ(s))−Φ(ξ2−Θ(s))

)(
ξ1−ξ2

)
> 0, ∀ ξ1 6= ξ2.

Then, the application A attains its minimum on K, we shall note it by β , we
have easily that β > 0 and∫

G
β dx ≤

∫
G

ω [Φ(∇un−Θ(un))−Φ(∇u−Θ(un))] [∇un−∇u] dx

≤
∫

Ω

ω
[
Φ(∇un−Θ(un))−Φ(∇Tk(u)−Θ(Tk+µ(un)))

]
∇Tµ

(
Tk+µ(un)−Tk(u)

)
dx.

By taking v = Tµ

(
Tk+µ(un)−Tk(u)

)
in equality (7), we get∫

Ω

ωΦ(∇un−Θ(un))∇Tµ

(
Tk+µ(un)−Tk(u)

)
dx≤ µ (‖ f‖1 +‖Tn(α(un))‖1) .

(19)
However, by hypothesis (H3), we have

sign(un) = sign(Tn(α(un))),

where

sign(s) :=


1 if s > 0,
0 if s = 0,
−1 if s < 0.
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Then, by taking v = sign(un) in equality (7), we obtain

‖Tn(α(un))‖1 ≤ ‖ f‖1.

Consequently∣∣∣∣∫
Ω

ωΦ(∇un−Θ(un))∇Tµ

(
Tk+µ(un)−Tk(u)

)
dx
∣∣∣∣≤ µC4. (20)

On the other hand, we have

Tk+µ(un) converges weakly to Tk+µ(u) in W 1,p
0 (Ω,ω). (21)

This implies, by using hypothesis (H4) that

Θ(Tk+µ(un)) converges to Θ(Tk+µ(u)) in(Lp(Ω,ω))N , (22)

and that

∇Tµ

(
Tk+µ(un)−Tk(u)

)
⇀ ∇Tµ

(
Tk+µ(u)−Tk(u)

)
in(Lp(Ω,ω))N . (23)

Then, by (21), (22), (23), we deduce that

lim
n→∞

∫
Ω

ωΦ(∇Tk(u)−Θ(Tk+µ(un)))∇Tµ

(
Tk+µ(un)−Tk(u)

)
dx

=
∫

Ω

ωΦ(∇Tk(u)−Θ(Tk+µ(u)))∇Tµ

(
Tk+µ(u)−Tk(u)

)
dx.

However,
lim
µ→0

∇Tµ

(
Tk+µ(u)−Tk(u)

)
= 0.

Let µ < 1, we have from hypothesis (H4) that

Φ(∇Tk(u)−Θ(Tk+µ(un)))∇Tµ

(
Tk+µ(un)−Tk(u)

)
≤C5

(
|Tk+1(u)|p−1 + |∇Tk(u)|p−1) |∇T1 (Tk+1(u)−Tk(u))| .

Now, as(
|Tk+1(u)|p−1 + |∇Tk(u)|p−1) |∇T1 (Tk+1(u)−Tk(u))| ∈ L1(Ω).

Then, we get by using the Dominated Convergence Theorem that

lim
µ→0

∫
Ω

ωΦ(∇Tk(u)−Θ(Tk+µ(u)))∇Tµ

(
Tk+µ(u)−Tk(u)

)
dx = 0.
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Let δ be a strictly positive number such that µ < δ

C4
, there exists n2 ∈ N such

that for all n≥ n2, we have∫
Ω

ωΦ(∇Tk(u)−Θ(Tk+µ(un)))∇Tµ

(
Tk+µ(un)−Tk(u)

)
dx≤ δ

2
. (24)

Therefore, by (20) and (24), we deduct that∫
Ω

β dx≤ δ .

This implies that
meas(G)≤ ε

4
. (25)

Consequently, from (15), (17), (18) and (25), we conclude that

meas{|∇un−∇u|> t} ≤ ε.

This implies that the sequence (∇un)n∈N converges in measure to ∇u.

Now, we shall prove that limit function u is an entropy solution of problem
(1). Let ϕ ∈W 1,p

0 (Ω,ω)∩L∞(Ω) and take v = Tk(un−ϕ) in equality (7), we
get ∫

Ω

ωΦ(∇un−Θ(un))∇Tk(un−ϕ) dx+
∫

Ω

Tn(α(un))Tk(un−ϕ) dx

=
∫

Ω

Tn( f )Tk(un−ϕ) dx. (26)

Let k = k+‖ϕ‖∞, we have∫
Ω

ωΦ(∇un−Θ(un))∇Tk(un−ϕ) dx

=
∫

Ω

ωΦ
(
∇Tk(un)−Θ(Tk(un))

)
∇Tk(Tk(un)−ϕ) dx

=
∫

Ω

ωΦ
(
∇Tk(un)−Θ(Tk(un))

)
∇Tk(un)χΩ(n,k) dx

−
∫

Ω

ωΦ
(
∇Tk(un)−Θ(Tk(un))

)
∇ϕχ

Ω(n,k) dx,

where Ω(n,k) = {|Tk(un)−ϕ| ≤ k} and χB is the characteristic function of the
measurable set B⊂ RN .
The above equality implies that∫

Ω

ω

(
Φ
(
∇Tk(un)−Θ(Tk(un))

)
∇Tk(un)+

2
p
|Θ(Tk(un))|p

)
χ

Ω(n,k) dx
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−
∫

Ω

ωΦ
(
∇Tk(un)−Θ(Tk(un))

)
∇ϕχ

Ω(n,k) dx+
∫

Ω

Tn(α(un))Tk(un−ϕ) dx

(27)

=
∫

Ω

Tn( f )Tk(un−ϕ) dx+
2
p

∫
Ω

ω|Θ(Tk(un))|pχ
Ω(n,k) dx.

We know that the function Tk(un) is bounded in W 1,p
0 (Ω,ω), then by hypothesis

(H4), Θ(Tk(un)) is also bounded in (Lp(Ω,ω))N , this implies that

Φ
(
∇Tk(un)−Θ(Tk(un))

)
is bounded in

(
Lp(Ω,ω)

)′
, (where

(
Lp(Ω,ω)

)′
is the

dual space of Lp(Ω,ω)) and weakly converges.
However, we have

un→ u a.e. in Ω, (28)

and
∇un→ ∇u a.e. in Ω.

Hence follows that

Θ(Tk(un))→Θ(Tk(u)) a.e. in Ω, (29)

and
∇Tk(un)→ ∇Tk(u)) a.e. in Ω. (30)

This implies that

Φ
(
∇Tk(un)−Θ(Tk(un))

)
→Φ

(
∇Tk(u)−Θ(Tk(u))

)
in
(
Lp(Ω,ω)

)′
.

Now, as
∇ϕχ

Ω(n,k) converges in(Lp(Ω,ω))N .

Then∫
Ω

ωΦ
(
∇Tk(un)−Θ(Tk(un))

)
∇ϕχ

Ω(n,k)dx→
∫

Ω

ωΦ
(
∇Tk(u)−Θ(Tk(u))

)
∇ϕχ

Ω(k)dx

where Ω(k) = {|Tk(u)−ϕ| ≤ k}.
By hypothesis (H4) and properties of the truncated function, we have

|Θ(Tk(un))|p ≤
(
C6k
)p

.

This implies by using (29) and Dominated Convergence Theorem that

2
p

∫
Ω

ω|Θ(Tk(un))|pχ
Ω(n,k) dx−→ 2

p

∫
Ω

ω|Θ(Tk(u))|
p
χ

Ω(k) dx.

On the other hand, we have by using Lemma 2.8 that(
Φ
(
∇Tk(un)−Θ(Tk(un))

)
∇Tk(un)+

2
p
|Θ(Tk(un))|p

)
χ

Ω(n,k) ≥ 0 a.e. in Ω.
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Therefore, by (29), (30) and Fatou’s lemma, we have∫
Ω

ω

(
Φ
(
∇Tk(u)−Θ(Tk(u))

)
∇Tk(u)+

2
p
|Θ(Tk(u))|

p
)

χ
Ω(k) dx

≤ liminf
∫

Ω

ω

(
Φ
(
∇Tk(un)−Θ(Tk(un))

)
∇Tk(un)+

2
p
|Θ(Tk(un))|p

)
χ

Ω(n,k).

Finally, taking limits as n goes to infinity in (27) and using the above results to conclude
that u satisfies the entropy inequality (5).

4.3. Uniqueness
The proof of uniqueness part of Theorem 3.2 is inspired by the ideas found in [6].
Firstly, we need the following Lemma.

Lemma 4.4. Let hypotheses (H1), (H2), (H3), (H4) and (H5) be satisfied, if u is an
entropy solution of problem (1), then

1. lim
h→∞

lim
k→0

1
k

∫
{h<|u|<k+h}

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx = 0.

2. lim
h→∞

lim
k→0

1
k

∫
{h<|u|<k+h}

ω|∇u|p dx = 0.

3. lim
h→∞

lim
k→0

1
k

∫
{h<|u|<k+h}

ω|∇u−Θ(u)|p dx = 0.

Proof. 1. Let k and h be two real numbers such that 1 < k < h. Taking ϕ = Th(u) in
inequality (5), we get∫

Ω

ω

(
|∇u−Θ(u)|p−2 (∇u−Θ(u))

)
∇Tk(u−Th(u))dx

+
∫

Ω

α(u)Tk(u−Th(u))dx≤
∫

Ω

f Tk(u−Th(u))dx. (31)

Firstly, we have∫
Ω

α(u)Tk(u−Th(u))dx =
∫
{|u|>h}

α(u)Tk(u−hsign(u))dx,

and

sign(u)χ{|u|>h} = sign(u−hsign(u))χ{|u|>h} = sign(Tk(u−hsign(u)))χ{|u|>h}.

Then ∫
Ω

α(u)Tk(u−Th(u))dx≥ 0.

Therefore, inequality (31) becomes∫
{h≤|u|≤h+k}

ω

(
|∇u−Θ(u)|p−2 (∇u−Θ(u))

)
∇Tk(u−Th(u))dx
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≤ k
∫
{|u|>h}

| f |dx.

By (9), we deduce that meas{|u|> h} converges to 0 as h go to infinity, then, we
conclude that

lim
h→∞

∫
{|u|>h}

| f |dx = 0.

This implies that

lim
h→∞

lim
k→0

1
k

∫
{h<|u|<k+h}

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx = 0.

2. By using Lemma 2.8 and Lemma 2.9, we have

1
p2p−1 |∇u|p− 2

p
|Θ(u)|p ≤ |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇u.

We use hypothesis (H4), we get

1
p2p−1 |∇u|p− 2λ p

p
|u|p ≤ |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇u.

This implies that
1

p2p−1

∫
Ωh

k

ω |∇u|p dx− 2λ p

p

∫
Ωh

k

ω|u|p dx

≤
∫

Ωh
k

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx,

where Ωh
k = {h≤ |u| ≤ h+ k} .

Then, by using Proposition 2.4, we get that

1
p2p−1

∫
Ωh

k

ω |∇u|p dx −
2λ pCp

0
p

∫
Ωh

k

ω|∇u|p dx

≤
∫

Ωh
k

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx.

Then, by hypothesis (H4), there exists a positive constant C6 such that∫
Ωh

k

ω|∇u|p dx≤C7

∫
Ωh

k

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx.

This, we allow to deduce that

lim
h→∞

lim
k→0

1
k

∫
{h<|u|<k+h}

ω|∇u|p dx = 0.

3. We have by Lemma 2.8 that

1
p
|∇u−Θ(u)|p− 1

p
|Θ(u)|p ≤ |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇u.
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This implies that

1
p

∫
Ωh

k

ω |∇u−Θ(u)|p dx ≤
∫

Ωh
k

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx+
1
p

∫
Ωh

k

ω|Θ(u)|p dx

≤
∫

Ωh
k

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx+
λ p

p

∫
Ωh

k

ω|u|p dx

≤
∫

Ωh
k

ω |∇u−Θ(u)|p−2 |∇u−Θ(u)|∇udx+
λ pCp

0
p

∫
Ωh

k

ω|∇u|p dx.

We apply the previous results 1 and 2, we get that

lim
h→∞

lim
k→0

1
k

∫
{h<|u|<k+h}

ω|∇u−Θ(u)|p dx = 0.

Now, let u and v are two entropy solutions of degenerate elliptic problem (1) and
let h,k two positive real numbers such that 1 < k < h. In inequality (5), we take for the
solution u, ϕ = Th(v) and for the solution v, we take ϕ = Th(u) as a test function, we
have∫

Ω

α(u)Tk(u−Th(v))dx +
∫

Ω

ω

(
|∇u−Θ(u)|p−2 (∇u−Θ(u))

)
∇Tk(u−Th(v))dx

≤
∫

Ω

f Tk(u−Th(v))dx

and∫
Ω

α(v)Tk(v−Th(u))dx +
∫

Ω

ω

(
|∇v−Θ(v)|p−2 (∇v−Θ(v))

)
∇Tk(v−Th(u))dx

≤
∫

Ω

f Tk(v−Th(u))dx.

We divide the two above inequalities by k and we pass to limit when k→ 0 and h→ ∞,
we find by applying Dominated Convergence Theorem, hypotheses (H3) and (H5) that

‖α(u)−α(v)‖1 + lim
h→∞

lim
k→0

1
k
I(k;h)≤ 0, (32)

where

I(k;h) =∫
Ω

ω

(
|∇u−Θ(u)|p−2 (∇u−Θ(u))

)
∇Tk(u−Th(v))

+
(
|∇v−Θ(v)|p−2 (∇v−Θ(v))

)
∇Tk(v−Th(u))dx.

We will prove that

lim
h→∞

lim
k→0

1
k
I(k;h)≥ 0.
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For that, we consider the following decomposition

Ω
1
h = {|u| ≤ h; |v| ≤ h} ; Ω

2
h = {|u| ≤ h; |v|> h} ,

Ω
1
h = {|u|> h; |v| ≤ h} ; Ω

2
h = {|u|> h; |v|> h} ,

and for i = 1; ...;4
Ii(k;h) =∫

Ωi
h

ω |∇u−Θ(u)|p−2 (∇u−Θ(u))∇Tk(u−Th(v))

+ |∇v−Θ(v)|p−2 (∇v−Θ(v))∇Tk(v−Th(u))dx.

Firstly, we pose
I1(k;h) = I1

1 (k;h)+I2
1 (k;h),

where
I1

1 (k;h) =

∫
Ωk

h(1)
ω

(
|∇u−Θ(u)|p−2 (∇u−Θ(u))−|∇v−Θ(v)|p−2 (∇v−Θ(v))

)
ψθ (u;v)dx

I2
1 (k;h) =∫

Ωk
h(1)

ω

(
|∇u−Θ(u)|p−2 (∇u−Θ(u))−|∇v−Θ(v)|p−2 (∇v−Θ(v))

)
Ψθ (u;v)dx

Ω
k
h(1) = {|u− v| ≤ k; |u| ≤ h; |v| ≤ h}

and
ψθ (u;v) = (∇u−Θ(u))− (∇v−Θ(v)) ; Ψθ (u;v) = Θ(u)−Θ(v).

To show that
lim
h→∞

lim
k→0

1
k
I1(k;h) = 0,

we consider two cases according to the value of p.
• First case, 1 < p≤ 2. Let ε > 0, we apply Young’s inequality, we find

I2
1 (k;h) ≤ ε

p′

∫
Ωk

h(1)
ω

∣∣∣(|∇u−Θ(u)|p−2 (∇u−Θ(u))
)
−
(
|∇v−Θ(v)|p−2 (∇v−Θ(v))

)∣∣∣p′ dx

+
1

ε p

∫
Ωk

h(1)
ω |Θ(u)−Θ(v)|p dx.

We apply Lemma 2.10 and hypothesis (H4), we get∣∣I2
1 (k;h)

∣∣≤ εC8I1
1 (k;h)+

C9

ε
kp.

This implies that

lim
k→0

1
k

∣∣I2
1 (k;h)

∣∣≤ εC8 lim
k→0

1
k
I1

1 (k;h). (33)
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If limk→0
1
kI

1
1 (k,h) = 0, the above inequality (33) becomes

lim
k→0

1
k
I2

1 (k,h) = 0.

i.e.
lim
h→∞

lim
k→0

1
k
I1(k,h) = 0.

If 0 < limk→0
1
kI

1
1 (k,h)< ∞, we take ε = 1

h limk→0
1
k I

1
1 (k,h)

in (33), we deduce that

lim
h→∞

lim
k→0

1
k
I2

1 (k,h) = 0.

It follows that
lim
h→∞

lim
k→0

1
k
I1(k,h)≥ 0.

If limk→0
1
kI

1
1 (k,h) = +∞, we have by using hypothesis (H4) that

∣∣I2
1 (k;h)

∣∣ ≤ kλ

∫
Ωk

h(1)
ω

∣∣∣|∇u−Θ(u)|p−2 (∇u−Θ(u))−|∇v−Θ(v)|p−2 (∇v−Θ(v))
∣∣∣

≤ kλ

∫
Ωk

h(1)
ω

(
|∇u−Θ(u)|p−1 + |∇v−Θ(v)|p−1

)
dx.

Consequently

1
k

∣∣I2
1 (k;h)

∣∣≤ λ

∫
Ωk

h(1)
ω

(
|∇u−Θ(u)|p−1 + |∇v−Θ(v)|p−1

)
dx.

On the other hand, for the solution u, we take ϕ = 0 in inequality (5), we find∫
{|u|≤k}

ω

(
|∇u−Θ(u)|p−2 (∇u−Θ(u))

)
∇udx≤ kC10

This implies that∫
{|u|≤k}

ω |∇u−Θ(u)|p dx ≤ kC10 +C11

∫
{|u|≤k}

ω|Θ(u)|p dx

≤ kC10 +C12kp

≤ C13kp.

Similarly, we prove that ∫
{|u|≤k}

ω |∇v−Θ(v)|p dx≤C14kp.

Therefore
1
k

∣∣I2
1 (k;h)

∣∣≤ λC15(h+ k)p,
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i.e.
lim
k→0

1
k

∣∣I2
1 (k;h)

∣∣≤ λC16hp.

Thus, it follows that

lim
k→0

1
k
I1

1 (k,h)+ lim
k→0

1
k
I2

1 (k,h) = +∞.

Then
lim
h→∞

lim
k→0

1
k
I1(k,h) = +∞.

• Second case, p > 2. We use Young’s inequality to deduce

1
k

∣∣I2
1 (k,h)

∣∣≤ C17ε(k+h)
p′k

+
C18

pε
kp−1 ∀ ε > 0.

Then, we take ε =
k
h2 , we obtain

lim
h→∞

lim
k→0

1
k
I2

1 (k,h) = 0.

Consequently

lim
h→∞

lim
k→0

1
k
I1(k,h)≥ 0.

Secondly, we pose
I2(k;h) = I1

2 (k;h)+I2
2 (k;h),

where

I1
2 (k;h)

=
∫

Ω2(h)
ω |∇v−Θ(v)|p−2 (∇v−Θ(v))∇Tk(v−u)dx

=
∫

Ω
2,1
h,k

ω |∇v−Θ(v)|p−2 (∇v−Θ(v))∇vdx−
∫

Ω
2,1
h,k

ω |∇v−Θ(v)|p−2 (∇v−Θ(v))∇udx,

I2
2 (k;h) =

∫
Ω2(h)

ω |∇u−Θ(u)|p−2 (∇u−Θ(u))∇Tk(u−hsign(v))dx

=
∫

Ω
2,2
h,k

ω |∇u−Θ(u)|p−2 (∇u−Θ(u))∇udx,

and
Ω

2,1
h,k = {|u| ≤ h; |v|> h; |v−u| ≤ k}

Ω
2,2
h,k = {|u| ≤ h; |v|> h; |u−hsign(v)| ≤ k} .

On the one hand, since ω is a positive function, then, by application of Lemmas 2.8 and
2.9, we get

I2
2 (k;h)≥ 0.
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In the same manner, we prove that∫
Ω

2,1
h,k

ω |∇v−Θ(v)|p−2 (∇v−Θ(u))∇vdx≥ 0.

On the other hand, by Hölder inequality, we have∣∣∣∣∣
∫

Ω
2,1
h,k

ω |∇v−Θ(v)|p−2 (∇v−Θ(u))∇udx

∣∣∣∣∣
≤

(∫
Ω

2,1
h,k

ω|∇v−Θ(v)|p dx

) p−1
p
(∫

Ω
2,1
h,k

ω|∇u|p dx

) 1
p

Hence, by application of Lemma 4.4, we get

lim
h→∞

lim
k→0

1
k

∫
Ω

2,1
h,k

ω |∇v−Θ(v)|p−2 (∇v−Θ(u))∇udx = 0.

Then
lim
h→∞

lim
k→0

1
k
I1

2 (k;h)≥ 0.

Therefore
lim
h→∞

lim
k→0

1
k
I2(k;h)≥ 0.

Finally, in the same manner, we show that

lim
h→∞

lim
k→0

1
k
(I3(k;h)+I4(k;h))≥ 0.

Hence
lim
h→∞

lim
k→0

1
k
I(k;h)≥ 0.

Therefore, inequality (32) becomes

‖α(u)−α(v)‖1 ≤ 0.

This implies that
u = v a. e. in Ω.

Hence the uniqueness of entropy solution of the problem (1).
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