$L^{p, \lambda}$ REGULARITY FOR DIVERGENCE FORM ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

FRANCESCO MARINO

We will prove $L^{p, \lambda}$ regularity results for the gradient of the solution to Dirichlet problem concerning the equation

$$
-\sum_{i, j=1}^{n}\left(a_{i j} u_{x_{i}}\right)_{x_{j}}-\sum_{i=1}^{n}\left(d_{i} u\right)_{x_{i}}+c u=f_{0}-\sum_{i=1}^{n}\left(f_{i}\right)_{x_{i}}
$$

with coefficients in $V M O \cap L^{\infty}$ and Morrey spaces.

1. Introduction.

Let Ω be a bounded open set of $\mathbb{R}^{n}, n>2$, with smooth boundary $\partial \Omega$. In Ω we shall consider the following linear elliptic equation of second order in divergence form

$$
\begin{equation*}
-\sum_{i, j=1}^{n}\left(a_{i j} u_{x_{i}}\right)_{x_{j}}-\sum_{i=1}^{n}\left(d_{i} u\right)_{x_{i}}+c u=f_{0}-\sum_{i=1}^{n}\left(f_{i}\right)_{x_{i}}, \tag{1.1}
\end{equation*}
$$

where the coefficients $a_{i j}$ are in $V M O$ (see Section 2 for definitions) and the other coefficients are in suitable Morrey spaces $L^{p, \lambda}$. Several authors have

Entrato in redazione il 10 ottobre 2002.
1991 AMS Subject Classification: 35J25.
Key words and Phrases: Elliptic equations, $L^{p, \lambda}$ regularity.
studied linear elliptic equations of second order with coefficients in $V M O \cap L^{\infty}$ both in the variational and nonvariational case. These studies began with the papers [3] and [4] by F. Chiarenza, M. Frasca and P. Longo, where the authors proved the well-posedness of the Dirichlet Problem for the equation $\sum_{i, j=1}^{n} a_{i j} u_{x_{i} x_{j}}=f$ in the class $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. These results were further extended to equations containing lower order terms (see [13] and [14]) as well as to the case of oblique derivative boundary conditions (see [7]) and quasilinear equations (see [8]). The study of linear elliptic equations of second order in divergence form with coefficients in $V M O$ began with the paper [6] of Di Fazio who proved L^{p} estimates for the solution to the Dirichlet problem for equation (1.1) with $c=0, d=0$, and $f_{0}=0$. Further M.A. Ragusa has continued in [10] and [11] the study of the equations of type (1.1) (still under the assumptions $c=0, d=0, f_{0}=0$) obtaining $L^{p, \lambda}$ regularity results.

The general aim of the present paper is to extend the $L^{p, \lambda}$ regularity results of [10] and [11] to the case when lower order terms are present. More precisely, under the following assumptions

$$
\begin{gathered}
a_{i j} \in V M O \cap L^{\infty}(\Omega), d_{i} \in L^{p, \eta}(\Omega), c \in L^{p, \mu}(\Omega), f_{0} \in L^{p_{*}, \lambda_{*}}(\Omega), f_{i} \in L^{p, \lambda}(\Omega), \\
i=1,2, \ldots, n, 2<p<n, n-p<\eta, \mu<n, \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}, \lambda_{*}= \\
\quad=\lambda \frac{p_{*}}{p}, 0<\lambda<n
\end{gathered}
$$

we shall prove that the gradient ∇u of the solution u to the Dirichlet problem for equation (1.1), for each value of ε in the range $] 0, n-p[$, belongs to the space $L^{p, \lambda_{\varepsilon}}(\Omega), \lambda_{\varepsilon}=\min \{\lambda, \eta-\varepsilon, \mu-\varepsilon\}$, and the relative inequality holds (see Sections 3 and 4).
Acknowledgments. The author wishes to thank Giuseppe Di Fazio for his help and encouragement during the preparation of this work.

2. Some definitions and known results.

For reader's convenience we recall some definitions. A functional space we shall use throught this paper is the John-Nirenberg space $B M O$ of the functions of bounded mean oscillation and its subspace $V M O$ introduced in [9] and [12] respectively. We say that a locally integrable function f on \mathbb{R}^{n} is in the space $B M O$ if

$$
\begin{equation*}
\|f\|_{*}:=\sup _{B} \frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right| d x<+\infty, \tag{2.1}
\end{equation*}
$$

where B ranges in the class of the balls in \mathbb{R}^{n} and f_{B} is the integral average $f_{B} f(x) d x=\frac{1}{|B|} \int_{B} f(x) d x$. For $f \in B M O$ and $r>0$, we set

$$
\begin{equation*}
\eta(r)=\sup _{\rho \leq r} \frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right| d x \tag{2.2}
\end{equation*}
$$

where B ranges in the class of the balls with radius ρ less than or equal to r. We will say that a function $f \in B M O$ is in the space $V M O$ if $\lim _{r \rightarrow 0} \eta(r)=0$ and we will call $\eta(r)$ the $V M O$ modulus of the function f.
If Ω is a bounded open set of \mathbb{R}^{n} and if $1 \leq p<+\infty$, and $0 \leq \lambda \leq n, L^{p, \lambda}(\Omega)$ denotes the space of the functions $u \in L^{p}(\Omega)$ such that

$$
\|u\|_{L^{p, \lambda}(\Omega)}=\left(\sup _{(x, r) \in \Omega_{\delta}} \frac{1}{r^{\lambda}} \int_{\Omega(x, r)}|u(y)|^{p} d y\right)^{\frac{1}{p}}<+\infty
$$

where $\left.\left.\Omega(x, r)=\{y \in \Omega:|x-y|<r\}, \Omega_{\delta}=\Omega \times\right] 0, \delta\right]$, and $\delta=\operatorname{diam} \Omega$.
Lemma 2.1. ([1]) Let $1 \leq q \leq p<+\infty$ and $0 \leq \lambda, \lambda_{1} \leq n$. If $q(n-\lambda) \leq p\left(n-\lambda_{1}\right)$, then $L^{p, \lambda}(\Omega)$ is continuously imbedded in $L^{q, \lambda_{1}}(\Omega)$.

Lemma 2.2. ([2]) If $u \in W^{1, p}(\Omega), 1 \leq p<+\infty$, and $u_{x_{i}} \in L^{p, \lambda}(\Omega)$, $i=1,2, \ldots, n, 0 \leq \lambda<n-p$, then $u \in L^{p, \lambda+p}(\Omega)$ and moreover there exists a constant k, independent of u, such that

$$
\begin{equation*}
\|u\|_{L^{p, \lambda+p}(\Omega)} \leq k\left(\|\nabla u\|_{L^{p, \lambda}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right) . \tag{2.3}
\end{equation*}
$$

Let us give a result that will be useful later on. It could be proved by a technique similar to that one used in [5], Lemma 4.1, in the case $p=2$.
Lemma 2.3. Let $u \in W^{1, p}(\Omega)$ and $g \in L^{p, \eta}(\Omega)$, with $2 \leq p<n, n-p<\eta<$ n. If $u_{x_{i}} \in L^{p, v}(\Omega), i=1,2, \ldots, n$, for same $v \in[0, n-p[$, then

$$
g u \in L^{p, \eta+\nu-n+p}(\Omega)
$$

Moreover there exists a constant k, that does not depend on u and g, such that

$$
\|g u\|_{L^{p, \eta+v-n+p}(\Omega)} \leq k\|g\|_{L^{p, \eta}(\Omega)}\left(\|\nabla u\|_{L^{p, v}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right)
$$

Let Ω be a bounded open set of $\mathbb{R}^{n}, n>2$, of generic point $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, with smooth boundary, say $C^{1,1}$. Let us consider the following Dirichlet problem

$$
\left\{\begin{array}{l}
-\sum_{i, j=1}^{n}\left(a_{i j} u_{x_{i}}\right)_{x_{j}}-\sum_{i=1}^{n}\left(d_{i} u\right)_{x_{i}}+c u=f_{0}-\sum_{i=1}^{n}\left(f_{i}\right)_{x_{i}} \quad \text { in } \Omega \tag{2.4}\\
u \in W_{0}^{1, p}(\Omega) \quad(1<p<\infty)
\end{array}\right.
$$

where we assume (${ }^{1}$),

$$
\left\{\begin{array}{r}
\text { i) } a_{i j} \in V M O \cap L^{\infty}(\Omega), \quad i, j=1,2, \ldots, n ; \\
\text { ii) } a_{i j}=a_{j i}, \quad \text { and } \exists v>0 \text { such that } v^{-1}|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \leq v|\xi|^{2}, \\
\quad \forall \xi \in \mathbb{R}^{n}, \text { a.e. } x \in \Omega, i, j=1,2, \ldots, n ; \\
\text { iii) } d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in\left[L^{p, \eta}(\Omega)\right]^{n} c \in L^{p, \mu}(\Omega), \tag{2.5}\\
\\
f=\left(f_{1}, f_{2}, \ldots, f_{n}\right) \in\left[L^{p, \lambda}(\Omega)\right]^{n}, f_{0} \in L^{p_{*}, \lambda_{*}(\Omega), 2<p<n,} \\
n-p<\eta, \mu<n, 0<\lambda<n, \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}, \lambda_{*}=\lambda \frac{p_{*}}{p} .
\end{array}\right.
$$

Solution of Problem (2.4) will be a function $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{align*}
& \int_{\Omega}\left(\sum_{i, j=1}^{n} a_{i j} u_{x_{i}} \varphi_{x_{j}}+\sum_{i=1}^{n} d_{i} u \varphi_{x_{i}}+c u \varphi\right) d x= \tag{2.6}\\
& =\int_{\Omega}\left(f_{0} \varphi+\sum_{i=1}^{n} f_{i} \varphi_{x_{i}}\right) d x, \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
\end{align*}
$$

Our technique is the same introduced in [3] and [4] for non divergence form equations. We estabilish interior and boundary $L^{p, \lambda}$ estimates for the gradient of u in "small" balls, using a suitable representation formula. The representation formula expresses locally the gradient of u by means of singular integral operators and commutators of the kind already considered in [3] and [4].
In the sequel we shall set, for the sake of brevity

$$
L u=-\sum_{i, j=1}^{n}\left(a_{i j} u_{x_{i}}\right)_{x_{j}}
$$

Lemma 2.4. ([6]) Let i) and ii) in (2.5) hold true and let v be a solution of the equation

$$
L v=\operatorname{div} F+F_{0}
$$

[^0]whose support is contained in a ball $B_{\sigma} \subset \subset \Omega$. Let us assume that $F=$ $\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ and F_{0} are supported in $B_{\sigma}, F \in\left[L^{p, \lambda}\left(B_{\sigma}\right)\right]^{n}, 2<p<n$, $0<\lambda<n$, and $F_{0} \in L^{p_{*}, \lambda_{*}}\left(B_{\sigma}\right), \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}, \lambda_{*}=\lambda \frac{p_{*}}{p}$. Then
\[

$$
\begin{align*}
& v_{x_{i}}(x)=\sum_{h, j=1}^{n} P . V . \int_{B_{\sigma}} \Gamma_{i j}(x, x-y)\left\{\left[a_{h j}(x)-a_{h j}(y)\right] v_{x_{h}}(y)-\right. \tag{2.7}\\
&\left.-F_{j}(y)\right\} d y-\int_{B_{\sigma}} \Gamma_{i}(x, x-y) F_{0}(y) d y+\sum_{h=1}^{n} c_{i h}(x) F_{h}(x), \quad \forall x \in B_{\sigma},
\end{align*}
$$
\]

where
$c_{i h}(x)=\int_{|t|=1} \Gamma_{i}(x, t) t_{h} d \sigma_{t}, \Gamma_{i}(x, t)=\frac{\partial}{\partial t_{i}} \Gamma(x, t), \Gamma_{i j}(x, t)=\frac{\partial^{2}}{\partial t_{i} \partial t_{j}} \Gamma(x, t)$,
and

$$
\Gamma(x, t)=\frac{1}{(n-2) \omega_{n}\left(\operatorname{det} a_{i j}(x)\right)^{\frac{1}{2}}}\left(\sum_{i, j=1}^{n} A_{i j}(x) t_{i} t_{j}\right)^{\frac{2-n}{2}} \text { a.e. } x \in \Omega, t \neq 0
$$

with $A_{i j}$ cofactor of $a_{i j}$ in the matrix $\left(a_{i j}\right)$ and ω_{n} surface area of the unit ball.
It is a well known fact that $\Gamma_{i j}$ are Calderon-Zygmund kernel in the t variable for a.a. $x \in \Omega$.

We conclude this section recalling two known existence and regularity results for Problem (2.4), in the case $d=0, c=0$, and $f_{0}=0$.
Theorem 2.1. ([6], Theorem 2.1) Let i) and ii) in (2.5) hold true. If $f_{i} \in$ $L^{p}(\Omega), i=1,2, \ldots, n$, and $1<p<+\infty$, then the Dirichlet problem (2.4), with $d=0, c=0$, and $f_{0}=0$, has a unique solution u and moreover there exists a constant k, that does not depend on u and f, such that

$$
\begin{equation*}
\|\nabla u\|_{L^{p}(\Omega)} \leq k\|f\|_{L^{p}(\Omega)} . \tag{2.8}
\end{equation*}
$$

Theorem 2.2. ([11], Theorem 4.3) Let i) and ii) in (2.5) hold true. If $f_{i} \in$ $L^{p, \lambda}(\Omega), i=1,2, \ldots, n, 2<p<+\infty$, and $0<\lambda<n$, then the gradient of the solution u of Dirichlet problem (2.4), with $d=0, c=0$, and $f_{0}=0\left({ }^{2}\right)$, belongs to $L^{p, \lambda}(\Omega)$. Moreover there exists a constant k that does not depend on u and f such that

$$
\begin{equation*}
\|\nabla u\|_{L^{p, \lambda}(\Omega)} \leq k\|f\|_{L^{p, \lambda}(\Omega)} . \tag{2.9}
\end{equation*}
$$

[^1]
3. $L^{p, \lambda}$ regularity: the case $d=f=0$.

In this section and in the next one we shall show regularity results for (2.4). We shall study the effect of lower order terms looking at them one by one. The first term we study is the one concerned with the potential $c(x)$. The study is splitted into two parts. In the first one we prove a regularity result assuming some extra technical hypotheses. Namely we assume that the term $c u$ belongs to a convenient Morrey space. These assumption will be removed later. Once we get the result for the potential $c(x)$, we shall sketch the proof of the case when the other lower order terms are present. Let us start with the following lemma.

Lemma 3.1. Let i) and ii) in (2.5) hold true and let $u \in W^{1, p}\left(B_{\sigma}\right), 2<p<n$, be a solution in the ball $B_{\sigma} \subset \subset \Omega$ of the equation

$$
L u+c u=f_{0},
$$

where $f_{0} \in L^{p_{*}, \lambda_{*}}\left(B_{\sigma}\right), \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}, \lambda_{*}=\lambda \frac{p_{*}}{p}, 0<\lambda<n$. Let us suppose that $u \in L^{p, \alpha}\left(B_{\sigma}\right), \nabla u \in L^{p_{*}, \alpha_{*}}\left(B_{\sigma}\right)$, and $c u \in L^{p_{*}, \beta_{*}}\left(B_{\sigma}\right)$, with $\alpha_{*}=\alpha \frac{p_{*}}{p}$, $\beta_{*}=\beta \frac{p_{*}}{p}$, and $0<\alpha, \beta<n$. Then there exists $\left.\bar{\sigma} \in\right] 0, \sigma[$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \bar{\sigma}$, we have
a) $\nabla u \in L^{p, \delta}\left(B_{\frac{\rho}{2}}\right)$;
b) $\|\nabla u\|_{L^{p, \delta}\left(B_{\frac{\rho}{2}}\right)} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\rho}\right)}+\|\nabla u\|_{L^{p *, \alpha *}\left(B_{\rho}\right)}+\|c u\|_{L^{p *, \beta_{*}\left(B_{\rho}\right)}}+\right.$

$$
\left.\left\|f_{0}\right\|_{L^{p_{*}, \lambda_{*}\left(B_{\rho}\right)}}\right)
$$

where $\delta=\min \{\alpha, \beta, \lambda\}$.
Proof. We localize the solution. Fixed a ball B_{ρ} concentric to B_{σ} with $\rho<\sigma$, let $\theta \in C_{0}^{\infty}\left(B_{\rho}\right)$ a standard cut-off function identically 1 in $B_{\frac{\rho}{2}}, 0 \leq \theta \leq 1$ and $|\nabla \theta|<\frac{2 c}{\rho}$.
The function $v=\theta u$ is supported in B_{ρ} and it is a solution of the equation

$$
L v=\operatorname{div} F+F_{0}
$$

where $F=\left(F_{1}, F_{2}, \ldots, F_{n}\right), F_{j}=-\sum_{i=1}^{n}\left(a_{i j} \theta_{x_{i}} u\right), F_{0}=-\sum_{i, j=1}^{n}\left(a_{i j} \theta_{x_{j}} u_{x_{i}}\right)$ $+\theta\left(f_{0}-c u\right)$. Moreover we have $F \in\left[L^{p, \delta}\left(B_{\rho}\right)\right]^{n}, F_{0} \in L^{p_{*}, \delta_{*}}\left(B_{\rho}\right)$, with $\delta_{*}=\delta \frac{p_{*}}{p}$. Therefore the functions $\theta u, F_{0}$ and F fulfill the hypotheses of Lemma 2.4, and we have
$(\theta u)_{x_{i}}(x)=\sum_{h, j=1}^{n} P . V . \int_{B_{\rho}} \Gamma_{i j}(x, x-y)\left\{\left[a_{h j}(x)-a_{h j}(y)\right](\theta u)_{x_{h}}(y)-F_{j}(y)\right\} d y-$

$$
-\int_{B_{\rho}} \Gamma_{i}(x, x-y) F_{0}(y) d y+\sum_{h=1}^{n} c_{i h}(x) F_{h}(x), \quad x \in B_{\rho}
$$

By virtue of the previous representation formula and by a similar argument of that one used in [10], Theorem 4.2, based on the uniqueness of the fixed point of a contraction, it is possible to prove the existence of a $\bar{\sigma} \in] 0, \sigma$ [such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \bar{\sigma}$, one has

$$
\left(\frac{1}{\rho^{\delta}} \int_{B_{\rho}}\left|(\theta u)_{x_{i}}\right|^{p} d x\right)^{\frac{1}{p}} \leq k\left(\|F\|_{L^{p, \delta}\left(B_{\rho}\right)}+\left\|F_{0}\right\|_{L^{p_{*}, \delta_{*}\left(B_{\rho}\right)}}\right)
$$

from which a) and b) follow easily.
The next lemma removes the extra assumption on the potential term $c(x) u(x)$. Namely we have

Lemma 3.2. Let i) and ii) in (2.5) hold true and let $u \in W^{1, p}\left(B_{\sigma}\right), 2<p<n$, be a solution in the ball $B_{\sigma} \subset \subset \Omega$ of the equation

$$
L u+c u=f_{0}
$$

where $c \in L^{p, \mu}\left(B_{\sigma}\right), f_{0} \in L^{p_{*}, \lambda_{*}}\left(B_{\sigma}\right), n-p<\mu<n, \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}$, $\lambda_{*}=\lambda \frac{p_{*}}{p}, 0<\lambda<n$. Let us suppose that $u \in L^{p, \alpha}\left(B_{\sigma}\right), \nabla u \in L^{p_{*}, \alpha_{*}}\left(B_{\sigma}\right)$, with $0<\alpha<n$, and $\alpha_{*}=\alpha \frac{p_{*}}{p}$. Let $\varepsilon>0$ such that $\varepsilon<n-p$. Then there exists $\left.\sigma_{1} \in\right] 0, \sigma\left[\right.$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{1}$, we have:

$$
\begin{aligned}
& \text { j) } \nabla u \in L^{p, \tilde{\lambda}^{(\varepsilon)}}\left(B_{\rho}\right) \\
& \text { jj) }\|\nabla u\|_{L^{p, \tilde{\lambda}^{(\varepsilon)}}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p_{*}, \alpha_{*}\left(B_{\sigma}\right)}}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\right. \\
& \left.\quad\left\|f_{0}\right\|_{L^{p *, \lambda_{*}}\left(B_{\sigma}\right)}\right)
\end{aligned}
$$

where $\tilde{\lambda}^{(\varepsilon)}=\min \{\alpha, \lambda, \mu-\varepsilon\}$.
Proof. Since $c \in L^{p, \mu}\left(B_{\sigma}\right)$ and $\nabla u \in L^{p}\left(B_{\sigma}\right)$, thanks to Lemma 2.3 (with $\eta=\mu$ and $v=0)$, if $\bar{\mu}=\mu-n+p, \bar{\mu}_{*}=\bar{\mu} \frac{p_{*}}{p}$, it results

$$
\begin{equation*}
c u \in L^{p, \bar{\mu}}\left(B_{\sigma}\right) \tag{3.1}
\end{equation*}
$$

and, for every ball B_{r} concentric to B_{σ} with $r \leq \sigma$, we have

$$
\begin{equation*}
\|c u\|_{L^{p, \bar{u}}\left(B_{r}\right)} \leq k\|c\|_{L^{p, \mu}\left(B_{r}\right)}\left(\|\nabla u\|_{L^{p}\left(B_{r}\right)}+\|u\|_{L^{p}\left(B_{r}\right)}\right) . \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), thanks to the imbedding $L^{p, \bar{\mu}}\left(B_{\sigma}\right) \subset L^{p_{*}, \bar{\mu}_{*}}\left(B_{\sigma}\right)$, it follows that $c u \in L^{p_{*}, \bar{\mu}_{*}}\left(B_{\sigma}\right)$ and, for every ball B_{r} concentric to B_{σ} with $r \leq \sigma$, we have

$$
\begin{equation*}
\|c u\|_{L^{p * *} \bar{\mu}_{*}\left(B_{r}\right)} \leq k\|c\|_{L^{p, \mu}\left(B_{r}\right)}\left(\|\nabla u\|_{L^{p}\left(B_{r}\right)}+\|u\|_{L^{p}\left(B_{r}\right)}\right) \tag{3.3}
\end{equation*}
$$

Let us consider now the following cases.

1) If $\bar{\mu} \geq \tilde{\lambda}^{(\varepsilon)}$, one has $\delta=\min \{\alpha, \lambda, \bar{\mu}\} \geq \tilde{\lambda}^{(\varepsilon)}$. On the other hand Lemma 3.1 (with $\beta=\bar{\mu}$) ensures that, there exists $\bar{\sigma} \in] 0, \sigma[$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \bar{\sigma}$, it results

$$
\begin{equation*}
\nabla u \in L^{p, \delta}\left(B_{\frac{\rho}{2}}\right) \tag{3.4}
\end{equation*}
$$

and the following estimate holds

$$
\begin{gather*}
\|\nabla u\|_{L^{p, \delta}\left(B_{\frac{\rho}{2}}\right)} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\rho}\right)}+\|\nabla u\|_{L^{p *, \alpha_{*}}\left(B_{\rho}\right)}+\|c u\|_{L^{p^{*, \bar{\mu}_{*}}\left(B_{\rho}\right)}}+\right. \tag{3.5}\\
\left.+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}}\left(B_{\rho}\right)}\right)
\end{gather*}
$$

$j)$ and $j j$) are consequence of the inequality $\delta \geq \tilde{\lambda}^{(\varepsilon)}$ and of (3.4), (3.5), and (3.3) (with $r=\rho$). In this case it is possible to assume $\sigma_{1}=\frac{\bar{\sigma}}{2}$.
2) If $\bar{\mu}<\tilde{\lambda}^{(\varepsilon)}$, and $\bar{\mu} \geq n-p$, one has $\delta=\min \{\alpha, \lambda, \bar{\mu}\}=\bar{\mu} \geq n-p>$ $n-p-\varepsilon$. By Lemma 3.1 (with $\beta=\bar{\mu}$) we have $\nabla u \in L^{p, \delta}\left(B_{\bar{\sigma}}\right)$ and estimate (3.5) holds. Then, thanks to the inequality $\delta>n-p-\varepsilon$ we have, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \bar{\sigma}, \nabla u \in L^{p, n-p-\varepsilon}\left(B_{\frac{\rho}{2}}\right)$ and

$$
\begin{gather*}
\|\nabla u\|_{L^{p, n-p-\varepsilon}\left(B_{\frac{\rho}{2}}\right)} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\rho}\right)}+\|\nabla u\|_{L^{p *, \alpha *}\left(B_{\rho}\right)}+\right. \tag{3.6}\\
\left.+\|c u\|_{L^{p *, \tilde{\mu}_{*}\left(B_{\rho}\right)}}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}}\left(B_{\rho}\right)}\right) \leq \\
\leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p *, \alpha_{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}\left(B_{\sigma}\right)}}\right)
\end{gather*}
$$

By Lemma 2.3 (with $\Omega=B_{\frac{\tilde{\partial}}{2}}, \eta=\mu$, and $v=n-p-\varepsilon$) one has $c u \in L^{p, \mu-\varepsilon}\left(B_{\frac{\bar{\sigma}}{2}}\right)$ and

$$
\begin{equation*}
\|c u\|_{L^{p, \mu-\varepsilon}\left(B_{\frac{\bar{\sigma}}{2}}\right)} \leq k\|c\|_{L^{p, \mu}\left(B_{\frac{\bar{\sigma}}{2}}\right)}\left(\|\nabla u\|_{L^{p, n-p-\varepsilon}\left(B_{\frac{\bar{\sigma}}{2}}\right)}+\|u\|_{L^{p}\left(B_{\frac{\bar{\sigma}}{2}}\right)}\right) \tag{3.7}
\end{equation*}
$$

Thanks to the imbedding $L^{p, \mu-\varepsilon}\left(B_{\frac{\bar{\sigma}}{2}}\right) \subset L^{p_{*},(\mu-\varepsilon)_{*}}\left(B_{\frac{\bar{\sigma}}{2}}\right),(\mu-\varepsilon)_{*}=(\mu-\varepsilon) \frac{p_{*}}{p}$, and from (3.6) (with $\rho=\bar{\sigma}$) and (3.7), we have $c u \in L^{p_{*},(\mu-\varepsilon)_{*}}\left(B_{\frac{\bar{\sigma}}{2}}\right)$ and

$$
\begin{equation*}
\|c u\|_{L^{p *,(\mu-\varepsilon) *\left(B_{\bar{\sigma}}^{2}\right)}} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p *, \alpha *}\left(B_{\sigma}\right)}+\right. \tag{3.8}
\end{equation*}
$$

$$
\left.+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \alpha_{*}}\left(B_{\sigma}\right)}\right) .
$$

Lemma 3.1 (with $\beta=\mu-\varepsilon$) ensures that there exists $\left.\bar{\sigma}_{1} \in\right] 0, \frac{\bar{\sigma}}{2}[$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \bar{\sigma}_{1}$, it results $\nabla u \in L^{p, \tilde{\hat{~}}^{(s)}}\left(B_{\frac{\rho}{2}}\right)$ and the following inequalities hold

$$
\begin{align*}
& \|\nabla u\|_{L^{\left.p, \bar{\chi}^{(e}\right)}\left(B_{\left.\frac{\rho}{2}\right)}\right.} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\rho}\right)}+\|\nabla u\|_{L^{p, \alpha, \alpha_{*}}\left(B_{\rho}\right)}+\right. \tag{3.9}\\
& \left.+\|c u\|_{L^{p *}(\mu-\theta) *\left(B_{p}\right)}+\left\|f_{0}\right\|_{L^{p *, k *}\left(B_{p}\right)}\right) \leq \\
& \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p, \alpha, \alpha}\left(B_{\sigma}\right)}+\|c u\|_{L^{p *,(\mu-\theta)}\left(B_{\overline{\bar{\sigma}}}\right)}+\left\|f_{0}\right\|_{L^{p_{*}, \alpha_{*}\left(B_{\sigma}\right)}}\right) .
\end{align*}
$$

From (3.9) and (3.8) it follows that
$\|\nabla u\|_{L^{p, \chi^{(\epsilon)}}\left(B_{\frac{\rho}{2}}\right)} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p_{*}, \alpha_{*}\left(B_{\sigma}\right)}}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p^{*}, \lambda_{*}\left(B_{\sigma}\right)}}\right)$
and then $j j$) with $\sigma_{1}=\frac{\bar{\sigma}_{1}}{2}$.
3) If $\bar{\mu}<\tilde{\lambda}^{(\varepsilon)}$ and $\bar{\mu}<n-p$, one has $\delta=\min \{\alpha, \lambda, \bar{\mu}\}=\bar{\mu}$. By Lemma 3.1 (with $\beta=\bar{\mu}$) we have $\nabla u \in L^{p, \bar{\mu}}\left(B_{\frac{\bar{\partial}}{2}}\right)$ and
$\|\nabla u\|_{L^{p, \bar{\epsilon}}\left(B_{\overline{\bar{\sigma}}}^{2}\right)} \leq k\left(\|u\|_{L^{p, \alpha}\left(B_{\bar{\sigma}}\right)}+\|\nabla u\|_{L^{p *, \alpha *}\left(B_{\bar{\sigma}}\right)}+\|\nabla u\|_{L^{p}\left(B_{\bar{\sigma}}\right)}+\left\|f_{0}\right\|_{L^{p, \alpha_{k}, \alpha_{(}\left(B_{\bar{\sigma}}\right)}}\right)$.
Thanks again to Lemma 2.3 (with $\Omega=B_{\frac{\bar{\partial}}{2}}, \eta=\mu$, and $v=\bar{\mu}$) one has $c u \in L^{p, 2 \bar{\mu}}\left(B_{\frac{\bar{\sigma}}{2}}\right) \subset L^{p_{*}(2 \bar{\mu})_{*}}\left(B_{\frac{\bar{\partial}}{2}}\right)\left((2 \bar{\mu})_{*}=2 \bar{\mu} \frac{p_{*}}{p}\right)$ and the relative inequalities hold. If $2 \bar{\mu} \geq \tilde{\lambda}^{(\varepsilon)}$ we may proceed as in 1). Otherwise iterating this procedure: if h is the greatest positive integer such that $h \bar{\mu}<\tilde{\lambda}^{(\varepsilon)}$ and $h \bar{\mu}<n-p$, then there exists $\left.\bar{\sigma}_{h-1} \in\right] 0, \sigma\left[\right.$ such that $\nabla u \in L^{p, h \bar{h}}\left(B_{\bar{\sigma}_{h-1}}\right)$. Thanks to Lemma 2.3 (with $\Omega=B_{\bar{\sigma}_{h-1}}, \eta=\mu$, and $\left.v=h \bar{\mu}\right)$ we have $c u \in L^{p,(h+1) \bar{\mu}}\left(B_{\bar{\sigma}_{h-1}}\right) \subset$
 hold.
Now there are two possibilities
i) $(h+1) \bar{\mu} \geq \tilde{\lambda}^{(\varepsilon)}$;
ii) $(h+1) \bar{\mu}<\tilde{\lambda}^{(\varepsilon)}$.

If i) is true, then we may proceed exactly as in 1); if $i i$) is true, it results $(h+1) \bar{\mu} \geq n-p$, and then we may proceed as in 2).

We can give now a first regularity result.

Theorem 3.1. Let i) and ii) in (2.5) hold true and let $u \in W^{1, p}\left(B_{\sigma}\right), 2<p<$ n, be a solution in the ball $B_{\sigma} \subset \subset \Omega$ of the equation

$$
L u+c u=f_{0},
$$

where $c \in L^{p, \mu}\left(B_{\sigma}\right), f_{0} \in L^{p_{*}, \lambda_{*}}\left(B_{\sigma}\right), n-p<\mu<n, \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}, \lambda_{*}=\lambda \frac{p_{*}}{p}$, $0<\lambda<n$. Let $\varepsilon>0$ such that $\varepsilon<n-p$. Then there exists $\left.\sigma^{*} \in\right] 0, \sigma[$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma^{*}$, we have
i) $\nabla u \in L^{p_{*}, \lambda_{*}^{(\varepsilon)}}\left(B_{\rho}\right)$;
ii) $u \in L^{p, \lambda^{(\varepsilon)}}\left(B_{\rho}\right)$,
where $\lambda_{*}^{(\varepsilon)}=\lambda^{(\varepsilon)} \frac{p_{*}}{p}, \lambda^{(\varepsilon)}=\min \{\lambda, \mu-\varepsilon\}$. Moreover the following inequalities hold

$$
\begin{aligned}
j) & \|\nabla u\|_{L^{p *, \lambda_{*}^{(\varepsilon)}}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}\left(B_{\sigma}\right)}}\right) \\
j j) & \|u\|_{L^{p, \lambda^{(\varepsilon)}\left(B_{\rho}\right)}} \leq k\left(\|u\|_{L^{p^{*}\left(B_{\sigma}\right)}}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}\left(B_{\sigma}\right)}}\right),
\end{aligned}
$$

where $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}$.
Proof. We know that $u \in L^{p^{*}}\left(B_{\sigma}\right) \subset L^{p, p}\left(B_{\sigma}\right)$ and $\nabla u \in L^{p}\left(B_{\sigma}\right) \subset$ $L^{p_{*}, p_{*}}\left(B_{\sigma}\right)$. If $p \geq \lambda^{(\varepsilon)}$ we have finished.
Let us consider the case $p<\lambda^{(\varepsilon)}$. Thanks to Lemma 3.2, there exists $\left.\sigma_{1}^{(1)} \in\right] 0, \sigma$ [such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{1}^{(1)}$, we have

$$
\begin{equation*}
\nabla u \in L^{p, p}\left(B_{\rho}\right) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{align*}
&\|\nabla u\|_{L^{p, p}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p, p}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p *, p *}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\right. \tag{3.11}\\
&\left.+\left\|f_{0}\right\|_{L^{p_{*}, \lambda_{*}}\left(B_{\sigma}\right)}\right) \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p^{p,}, \lambda_{*}\left(B_{\sigma}\right)}}\right)
\end{align*}
$$

From (3.10) and (3.11), since $L^{p, p}\left(B_{\rho}\right) \subset L^{p_{*}, 2 p_{*}}\left(B_{\rho}\right)$, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{1}^{(1)}$, it follows that

$$
\begin{equation*}
\nabla u \in L^{p_{*}, 2 p_{*}}\left(B_{\rho}\right) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\nabla u\|_{L^{p *, 2 p^{*}\left(B_{\rho}\right)}} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}\left(B_{\sigma}\right)}}\right) . \tag{3.13}
\end{equation*}
$$

Let us consider the following cases.

1) If $2 p \geq \lambda^{(\varepsilon)}$ and $p \geq n-p$, then i) and j) are immediate consequence of (3.12) and (3.13). Moreover, from the estimate $p>n-p-\varepsilon$, we get $\nabla u \in L^{p, n-p-\varepsilon}\left(B_{\rho}\right)$; thus, thanks to Lemma 2.2 and (3.11) we have

$$
\begin{equation*}
u \in L^{p, n-\varepsilon}\left(B_{\rho}\right) \tag{3.14}
\end{equation*}
$$

and

$$
\begin{gather*}
\|u\|_{L^{p, n-\varepsilon}\left(B_{\rho}\right)} \leq k\left(\|\nabla u\|_{L^{p, n-p-\varepsilon}\left(B_{\rho}\right)}+\|u\|_{L^{p}\left(B_{\rho}\right)}\right) \leq \tag{3.15}\\
\leq k\left(\|\nabla u\|_{L^{p, p}\left(B_{\rho}\right)}+\|u\|_{L^{p}\left(B_{\rho}\right)}\right) \leq \\
\leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p_{*}, \lambda_{*}\left(B_{\sigma}\right)}}\right)
\end{gather*}
$$

From (3.14) and (3.15), since $n-\varepsilon>\lambda^{(\varepsilon)}$ we have ii) and $j j$).
2) If $2 p \geq \lambda^{(\varepsilon)}, p<n-p$, as in 1), $\left.i\right)$ and j) are immediate consequence of (3.12) and (3.13), with $\sigma^{*}=\sigma_{1}^{(1)}$. Moreover, from Lemma 2.2 and (3.10), since $p<n-p$, it follows that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{1}^{(1)}$,

$$
\begin{equation*}
u \in L^{p, 2 p}\left(B_{\rho}\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{L^{p, 2 p}\left(B_{\rho}\right)} \leq k\left(\|\nabla u\|_{L^{p, p}\left(B_{\rho}\right)}+\|u\|_{L^{p}\left(B_{\rho}\right)}\right) \tag{3.17}
\end{equation*}
$$

Thanks to (3.11), (3.16) and (3.17), and because $2 p \geq \lambda^{(\varepsilon)}$, we have ii) and $j j)$, with $\sigma^{*}=\sigma_{1}^{(1)}$.
3) If $2 p<\lambda^{(\varepsilon)}$, one has $p<n-p$. Now from (3.10), taking into account Lemma 2.2 and (3.11), one has, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{1}^{(1)}, u \in L^{p, 2 p}\left(B_{\rho}\right)$ and

$$
\begin{equation*}
\|u\|_{L^{p, 2 p}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}}\left(B_{\sigma}\right)}\right) . \tag{3.18}
\end{equation*}
$$

We know that $u \in L^{p, 2 p}\left(B_{\sigma_{1}^{(1)}}\right)$ and $\nabla u \in L^{p_{*}, 2 p_{*}}\left(B_{\sigma_{1}^{(1)}}\right)$, then, Lemma 3.2 ensures the existence of $\sigma_{2}^{(1)}<\sigma_{1}^{(1)}$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{2}^{(1)}$, one has

$$
\begin{equation*}
\nabla u \in L^{p, 2 p}\left(B_{\rho}\right) \tag{3.19}
\end{equation*}
$$

and, thanks to (3.13) and (3.18), it follows

$$
\begin{gather*}
\|\nabla u\|_{L^{p, 2 p}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p, 2 p}\left(B_{\sigma_{1}^{(1)}}\right.}+\right. \tag{3.20}\\
\left.+\|\nabla u\|_{L^{p *, 2 p *}\left(B_{\sigma_{1}^{(1)}}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda *}\left(B_{\sigma}\right)}\right) \leq \\
\leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}\left(B_{\sigma}\right)}}\right) .
\end{gather*}
$$

From (3.19) and (3.20), because $L^{p, 2 p}\left(B_{\rho}\right) \subset L^{p_{*}, 3 p_{*}}\left(B_{\rho}\right)$, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{2}^{(1)}$, it follows $\nabla u \in L^{p_{*}, 3 p_{*}}\left(B_{\rho}\right)$ and

$$
\|\nabla u\|_{L^{p_{*}, 3 p_{*}\left(B_{\rho}\right)}} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p_{*}, \lambda_{*}\left(B_{\sigma}\right)}}\right)
$$

If $3 p \geq \lambda^{(\varepsilon)}$ and $2 p \geq n-p$ we may proceed as in 1).
If $3 p \geq \lambda^{(\varepsilon)}$ and $2 p<n-p$ we may proceed as in 2).
If $3 p<\lambda^{(\varepsilon)}$, we may iterate this technique, and let h be the greatest positive integer such that $h p<\lambda^{(\varepsilon)}$. As before, it is possible to find $\left.\sigma_{h-1}^{(1)} \in\right] 0, \sigma[$ such that, for every $\rho \leq \sigma_{h-1}^{(1)}$, we have $u \in L^{p, h p}\left(B_{\rho}\right)$ and $\nabla u \in L^{p_{*}, h p_{*}}\left(B_{\rho}\right)$. Moreover the following inequalities hold

$$
\begin{equation*}
\|\nabla u\|_{L^{p *, h p^{*}\left(B_{\rho}\right)}} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda^{*}\left(B_{\sigma}\right)}}\right) \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{L^{p, h p}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}\left(B_{\sigma}\right)}}\right) . \tag{3.22}
\end{equation*}
$$

Thanks to Lemma 3.2 there exists $\left.\sigma_{h}^{(1)} \in\right] 0, \sigma_{h-1}^{(1)}\left[\right.$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{h}^{(1)}$, one has

$$
\begin{equation*}
\nabla u \in L^{p, h p}\left(B_{\rho}\right) \tag{3.23}
\end{equation*}
$$

and, thanks also to (3.21) and (3.22), we have

$$
\begin{gather*}
\|\nabla u\|_{L^{p, h p}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p, h p}\left(B_{\left.\sigma_{h-1}^{(1)}\right)}\right.}+\right. \tag{3.24}\\
\left.+\|\nabla u\|_{L^{p * h p *}\left(B_{\left.\sigma_{h-1}^{(1)}\right)}\right.}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, \lambda_{*}\left(B_{\sigma}\right)}}\right) \leq \\
\leq k\left(\|u\|_{L^{p^{*}\left(B_{\sigma}\right)}}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p_{*}, \lambda_{*}\left(B_{\sigma}\right)}}\right) .
\end{gather*}
$$

From (3.23) and (3.24), since $L^{p, h p}\left(B_{\rho}\right) \subset L^{p_{*},(h+1) p_{*}}\left(B_{\rho}\right)$, it follows, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{h}^{(1)}, \nabla u \in L^{p_{*},(h+1) p_{*}}\left(B_{\rho}\right)$ and

$$
\|\nabla u\|_{L^{p_{*}(k+1) p *}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p *, * *}\left(B_{\sigma}\right)}\right) .
$$

Finally we have to consider the cases
a) $(h+1) p \geq \lambda^{(\varepsilon)}, h p \geq n-p$;
b) $(h+1) p \geq \lambda^{(\varepsilon)}, h p<n-p$.

If a) is true we may proceed as in 1).
If instead b) is true, then we may proceed as in 2).
Now we are able to prove the main regularity result concerning the potential term $c(x)$.
Theorem 3.2. Let i) and ii) in (2.5) hold true and let $u \in W^{1, p}\left(B_{\sigma}\right), 2<p<$ n, be a solution in the ball $B_{\sigma} \subset \subset \Omega$ of the equation

$$
L u+c u=f_{0},
$$

where $c \in L^{p, \mu}\left(B_{\sigma}\right), f_{0} \in L^{p_{*}, \lambda_{*}}\left(B_{\sigma}\right), n-p<\mu<n, \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}, \lambda_{*}=\lambda \frac{p_{*}}{p}$, $0<\lambda<n$. Let $\varepsilon>0$ such that $\varepsilon<n-p$. Then there exist $\tilde{\sigma} \in] 0, \sigma[$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \tilde{\sigma}$ we have
i) $\nabla u \in L^{p, \lambda^{(s)}}\left(B_{\rho}\right)$;
ii) $\|\nabla u\|_{L^{p, \alpha^{(\varepsilon)}}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p^{*}, \alpha_{*}\left(B_{\sigma}\right)}}\right)$,
where $\lambda^{(\varepsilon)}=\min \{\lambda, \mu-\varepsilon\}, \frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}$.
Proof. Thanks to Theorem 3.1 there exists $\left.\sigma^{*} \in\right] 0, \sigma[$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma^{*}$, we have $\nabla u \in L^{p_{*}, \lambda_{*}^{(s)}}\left(B_{\rho}\right), u \in L^{p, \lambda^{(s)}}\left(B_{\rho}\right)$, $\lambda_{*}^{(\varepsilon)}=\lambda^{(\varepsilon)} \frac{p_{*}}{p}$, and the following inequalities hold

$$
\begin{equation*}
\|\nabla u\|_{L^{p * *}, \lambda_{*}^{(s)}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p * *},\left(B_{\sigma}\right)}\right) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{L^{p, \lambda^{(s)}}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p^{*}}\left(B_{\sigma}\right)}+\|\nabla u\|_{L^{p}\left(B_{\sigma}\right)}+\left\|f_{0}\right\|_{L^{p, *},\left(B_{\sigma}\right)}\right) \tag{3.26}
\end{equation*}
$$

Now we may use Lemma 3.2 (with $\sigma=\sigma^{*}, \alpha=\lambda^{(\varepsilon)}$), then it is possible to find $\left.\sigma_{1}^{*} \in\right] 0, \sigma^{*}\left[\right.$ such that, for every ball B_{ρ} concentric to B_{σ} with $\rho \leq \sigma_{1}^{*}$, one has

$$
\begin{equation*}
\nabla u \in L^{p, \lambda^{(\epsilon)}}\left(B_{\rho}\right) \tag{3.27}
\end{equation*}
$$

and

$$
\begin{gather*}
\|\nabla u\|_{L^{p, \lambda^{(\varepsilon)}}\left(B_{\rho}\right)} \leq k\left(\|u\|_{L^{p, \lambda^{(\varepsilon)}}\left(B_{\left.\sigma^{*}\right)}\right.}+\|\nabla u\|_{L^{p *, \lambda_{*}^{(\varepsilon)}\left(B_{\sigma^{*}}\right)}}+\right. \tag{3.28}\\
\left.+\|\nabla u\|_{L^{p}\left(B_{\sigma^{*}}\right)}+\left\|f_{0}\right\|_{L^{p_{*}, \lambda_{*}\left(B_{\sigma^{*}}\right)}}\right)
\end{gather*}
$$

$i)$ and $i i$) are consequence of (3.25)-(3.28): we can choose $\tilde{\sigma}=\sigma_{1}^{*}$.
As an immediate consequence of Theorem 3.2 we have the following corollary:
Corollary 3.1. Let i) and ii) in (2.5) hold true and let $u \in W^{1, p}(\Omega), 2<p<$ n, be a solution in Ω of the equation

$$
L u+c u=f_{0}
$$

where $c \in L^{p, \mu}(\Omega), f_{0} \in L^{p_{*}, \lambda_{*}}(\Omega), n-p<\mu<n, \frac{1}{p_{*}}=\frac{1}{p}+\frac{1}{n}, \lambda_{*}=\lambda \frac{p_{*}}{p}$, $0<\lambda<n$. Let $\varepsilon>0$ such that $\varepsilon<n-p$. Then, if $\lambda^{(\varepsilon)}=\min \{\lambda, \mu-\varepsilon\}$, it results $\nabla u \in L_{\text {loc }}^{p, \lambda^{(\varepsilon)}}(\Omega)$ and, for every ball $B \subset \subset \Omega$, we have

$$
\|\nabla u\|_{L^{p, \lambda(\varepsilon)}(B)} \leq k\left(\|u\|_{L^{p^{*}}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\left\|f_{0}\right\|_{L^{p *, \lambda^{*}}(\Omega)}\right),
$$

where $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}$.
Remark 3.1. All the above results can be proved in the case when the ball B_{σ} intersect the boundary $\partial \Omega$ of Ω. Further, via a standard flattening of the boundary and partition of unity, we obtain global $L^{p, \lambda}$ regolarity results.

4. $L^{p, \lambda}$ regularity: the case $c=f_{0}=0$.

Let us consider now Problem (2.4) with $c=f_{0}=0$. We prove the following result.
Theorem 4.1. Let (2.5) holds true (with $c=f_{0}=0$) and let $u \in W_{0}^{1, p}(\Omega)$, $2<p<n$, be a solution of Problem (2.4). Let $\varepsilon>0$ such that $\varepsilon<n-p$. Then we have
a) $\nabla u \in L^{p, \lambda_{\varepsilon}}(\Omega) ;$
b) $\|\nabla u\|_{L^{p, \lambda_{\varepsilon}}(\Omega)} \leq k\left(\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\|f\|_{L^{p, \lambda}(\Omega)}\right)$,
where $\lambda_{\varepsilon}=\min \{\lambda, \eta-\varepsilon\}$.

Proof. Since $u \in W_{0}^{1, p}(\Omega)$, thanks to Lemma 2.3 (with $v=0$), one has $d u \in L^{p, \bar{\eta}}(\Omega)$, where $\bar{\eta}=\eta-n+p$, and

$$
\|d u\|_{L^{p, \bar{\eta}}(\Omega)} \leq k\|d\|_{L^{p, \eta}(\Omega)}\left(\|\nabla u\|_{L^{p}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right)
$$

Therefore $f-d u \in L^{p, \min \{\lambda, \bar{\eta}\}}(\Omega)$ and then, thanks to Theorem 2.2, we have

$$
\begin{equation*}
\nabla u \in L^{p, \min \{\lambda, \bar{\eta}\}}(\Omega) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\|\nabla u\|_{L^{p, \text { min }}(\lambda, \bar{n})(\Omega)} \leq k\|f-d u\|_{L^{p, \text { min }}(\lambda, \bar{n})}(\Omega) \tag{4.2}\\
\leq k\left(\|f\|_{L^{p, \lambda}(\Omega)} \leq\|d u\|_{L^{p, \bar{j}}(\Omega)}\right) \leq \\
\leq k\left(\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\|f\|_{L^{p, \lambda}(\Omega)}\right) .
\end{gather*}
$$

Let us consider the following cases.

1) If $\bar{\eta} \geq \lambda$, of course $\min \{\lambda, \bar{\eta}\}=\lambda$, then a) and b) are consequences of (4.1) and (4.2).
2) If $\bar{\eta}<\lambda$ and $\bar{\eta} \geq n-p$, of course $\min \{\lambda, \bar{\eta}\}=\bar{\eta}$, then, thanks to (4.1) and (4.2), we have $\nabla u \in L^{p, \bar{\eta}}(\Omega)$ and

$$
\begin{equation*}
\|\nabla u\|_{L^{p, \bar{\eta}}(\Omega)} \leq k\left(\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\|f\|_{L^{p, \lambda}(\Omega)}\right) \tag{4.3}
\end{equation*}
$$

Since $\bar{\eta} \geq n-p>n-p-\varepsilon, \nabla u \in L^{p, n-p-\varepsilon}(\Omega)$, and

$$
\|\nabla u\|_{L^{p, n-p-\varepsilon}(\Omega)} \leq k\|\nabla u\|_{L^{p, \bar{n}}(\Omega)}
$$

from which, thanks to (4.3), it follows that

$$
\begin{equation*}
\|\nabla u\|_{L^{p, n-p-\varepsilon}(\Omega)} \leq k\left(\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\|f\|_{L^{p, \lambda}(\Omega)}\right) \tag{4.4}
\end{equation*}
$$

Now thanks to Lemma 2.3 (with $v=n-p-\varepsilon$), it results $d u \in L^{p, \eta-\varepsilon}(\Omega)$ and

$$
\begin{equation*}
\|d u\|_{L^{p, \eta-\varepsilon}(\Omega)} \leq k\|d\|_{L^{p, \eta}(\Omega)}\left(\|\nabla u\|_{L^{p, n-p-\varepsilon}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right) \tag{4.5}
\end{equation*}
$$

therefore $f-d u \in L^{p, \lambda_{\varepsilon}}(\Omega)$. Theorem 2.2 ensures $\left.a\right)$ and the following estimate

$$
\|\nabla u\|_{L^{p, \lambda_{\varepsilon}}(\Omega)} \leq k\|f-d u\|_{L^{p, \lambda_{\varepsilon}}(\Omega)} \leq k\left(\|f\|_{L^{p, \lambda}(\Omega)}+\|d u\|_{L^{p, \eta-\varepsilon}(\Omega)}\right)
$$

from which, thanks to (4.5), we have

$$
\begin{equation*}
\|\nabla u\|_{L^{p, \lambda_{e}}(\Omega)} \leq k\left(\|f\|_{L^{p, \lambda}(\Omega)}+\|\nabla u\|_{L^{p, n-p-\varepsilon}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right) . \tag{4.6}
\end{equation*}
$$

Inequality b) is consequence of (4.6) and (4.4).
3) If $\bar{\eta}<\lambda$ and $\bar{\eta}<n-p$ we have, as in 2), $\nabla u \in L^{p, \bar{\eta}}(\Omega)$, and estimate (4.3) holds. Now Lemma 2.3 (with $v=\bar{\eta}$) ensures that $d u \in L^{p, 2 \bar{\eta}}(\Omega)$ and, thanks also to (4.3)

$$
\begin{gather*}
\|d u\|_{L^{p, 2 \pi}(\Omega)} \leq k\|d\|_{L^{p, n}(\Omega)}\left(\|\nabla u\|_{L^{p, \eta}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right) \leq \tag{4.7}\\
\leq k\|d\|_{L^{p, n}(\Omega)}\left(\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\|f\|_{L^{p, \lambda}(\Omega)}\right) .
\end{gather*}
$$

Therefore $f-d u \in L^{p, \min \{\lambda, 2 \bar{\eta}\rangle}(\Omega)$, then, if $\left.2 \bar{\eta} \geq \lambda, a\right)$ and b) are consequence of Theorem 2.2 and of (4.7). If $2 \bar{\eta}<\lambda$ and $2 \bar{\eta} \geq n-p$ we may proceed as in 2). If instead $2 \bar{\eta}<\lambda$ and $2 \bar{\eta}<n-p$, iterating this procedure, and if h is the greatest integer such that $h \bar{\eta}<\lambda$ and $h \bar{\eta}<n-p$ one has $\nabla u \in L^{p, h \bar{\eta}}(\Omega)$ and

$$
\begin{equation*}
\|\nabla u\|_{L^{p, h \bar{i}}(\Omega)} \leq k\left(\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\|f\|_{L^{p, \lambda}(\Omega)}\right) . \tag{4.8}
\end{equation*}
$$

Since $h \bar{\eta}<n-p$, Lemma 2.3 (with $v=h \bar{\eta}$) ensures that $d u \in L^{p,(h+1) \bar{\eta}}(\Omega)$ and, thanks also to (4.8)

$$
\begin{gathered}
\|d u\|_{L^{p,(k+1)}(\Omega)} \leq k\|d\|_{L^{p, \eta}(\Omega)}\left(\|\nabla u\|_{L^{p, h}(\Omega)}+\|u\|_{L^{p}(\Omega)}\right) \leq \\
\leq k\|d\|_{L^{p, n}(\Omega)}\left(\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}+\|f\|_{L^{p, \lambda}(\Omega)}\right) .
\end{gathered}
$$

Then $f-d u \in L^{p, \min \{\lambda,(h+1) \bar{\eta}\}}(\Omega)$. If $(h+1) \bar{\eta} \geq \lambda$ we have finished; if instead $(h+1) \bar{\eta}<\lambda$, it must result $(h+1) \bar{\eta} \geq n-p$, then we may proceed as in 2$)$.

Remark 4.1. The techniques used in Sections 3 and 4 allow to prove, under assumptions (2.5), the $L^{p, \lambda}$ regularity for the gradient of the solution to Dirichlet problem (2.4) with $c \neq 0, f_{0} \neq 0, d \neq 0$, and $f \neq 0$.

REFERENCES

[1] S. Campanato, Caratterizzazione delle tracce di funzioni appartanenti ad una classe di Morrey insieme con le loro derivate prime, Ann. Scuola Norm. Sup. Pisa (3), 15 (1961), pp. 263-281.
[2] S. Campanato, Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni Scuola Norm. Sup. Pisa, 1980.
[3] F. Chiarenza - M. Frasca - P. Longo, Interior $W^{2, p}$ estimates for non-divergence elliptic equations with discontinuous coefficients, Ricerche di Mat., 40 (1991), pp. 149-168.
[4] F. Chiarenza - M. Frasca - P. Longo, $W^{2, p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with V MO coefficients, Trans. Amer. Math. Soc., 336 (1993), pp. 841-853.
[5] G. Di Fazio, On Dirichlet problem in Morrey spaces, Differential Integral Equations, 6 (1993), pp. 383-391.
[6] G. Di Fazio, L^{p} estimates for divergence form elliptic equations with discontinuos coefficients, Boll. Un. Mat. Ital., (7) 10-A (1996), pp. 409-420.
[7] G. Di Fazio - D.K. Palagachev, Oblique derivative problem for elliptic equations in non divergence form with VMO coefficients, Comment. Math. Univ. Carolinae, 37 (1996), pp. 537-556.
[8] G. Di Fazio - D. K. Palagachev, Oblique derivative problem for quasi-linear elliptic equations with VMO coefficients, Bull. Austral. Math. Soc., 53 (1996), pp. 501-513.
[9] F. John - L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), pp. 415-426.
[10] M.A. Ragusa, Regularity of solutions of divergence form elliptic equations, Proc. Amer. Math. Soc., 128 (1999), pp. 533-540.
[11] M.A. Ragusa, $C^{(0, \alpha)}$-regularity of the solution of the Dirichlet problem for elliptic equations in divergence form, Int. J. Diff. Eq. Appl., 1 (2000), pp. 113-125.
[12] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), pp. 391-405.
[13] C. Vitanza, $W^{2, p}$-regularity for a class of elliptic second order equations with discontinuous coefficients, Le Matematiche, 47 (1992), pp. 177-186.
[14] C. Vitanza, A new contribution to the $W^{2, p}$ regularity for a class of elliptic second order equations with discontinuous coefficients, Le Matematiche, 48 (1993), pp. 287-296.

Dipartimento di Matematica e Informatica,
Università di Catania, Viale Andrea Doria, 6, 95125 Catania (ITALY)

[^0]: ${ }^{1}$) If φ is a function which maps Ω in \mathbb{R}^{n}, we often shall set, for the sake of brevity, $\varphi \in L^{p, \eta}(\Omega)$, instead of $\varphi \in\left[L^{p, \eta}(\Omega)\right]^{n}$.

[^1]: $\left(^{2}\right)$ The existence and uniqueness of the solution u of Dirichlet problem (2.4) are assured by Theorem 2.1.

