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L p,λ REGULARITY FOR DIVERGENCE FORM ELLIPTIC

EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

FRANCESCO MARINO

We will prove L p,λ regularity results for the gradient of the solution to
Dirichlet problem concerning the equation

−

n�

i, j=1

(ai j uxi )xj −

n�

i=1

(diu)xi + cu = f0 −

n�

i=1

( fi )xi

with coef�cients in V MO ∩ L∞ and Morrey spaces.

1. Introduction.

Let � be a bounded open set of R
n , n > 2, with smooth boundary ∂�.

In � we shall consider the following linear elliptic equation of second order in
divergence form

(1.1) −

n�

i, j=1

(ai j uxi )xj −

n�

i=1

(diu)xi + cu = f0 −

n�

i=1

( fi )xi ,

where the coef�cients ai j are in V MO (see Section 2 for de�nitions) and the
other coef�cients are in suitable Morrey spaces L p,λ . Several authors have
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studied linear elliptic equations of second order with coef�cients in V MO∩L∞

both in the variational and nonvariational case. These studies began with
the papers [3] and [4] by F. Chiarenza, M. Frasca and P. Longo, where the
authors proved the well-posedness of the Dirichlet Problem for the equation
�n

i, j=1 ai juxi xj = f in the class W 2,p(�)∩W
1,p
0 (�). These results were further

extended to equations containing lower order terms (see [13] and [14]) as well as
to the case of oblique derivative boundary conditions (see [7]) and quasilinear
equations (see [8]). The study of linear elliptic equations of second order in
divergence form with coef�cients in V MO began with the paper [6] of Di Fazio
who proved L p estimates for the solution to the Dirichlet problem for equation
(1.1) with c = 0, d = 0, and f0 = 0. Further M.A. Ragusa has continued in
[10] and [11] the study of the equations of type (1.1) (still under the assumptions
c = 0, d = 0, f0 = 0) obtaining L p,λ regularity results.

The general aim of the present paper is to extend the L p,λ regularity results
of [10] and [11] to the case when lower order terms are present. More precisely,
under the following assumptions

ai j ∈ VMO ∩ L∞(�), di ∈ L p,η(�), c ∈ L p,µ(�), f0 ∈ L p∗,λ∗ (�), fi ∈ L p,λ(�),

i = 1, 2, . . . , n, 2 < p < n, n − p < η, µ < n,
1

p∗

=
1

p
+
1

n
, λ∗ =

= λ
p∗

p
, 0 < λ < n,

we shall prove that the gradient ∇u of the solution u to the Dirichlet problem
for equation (1.1), for each value of ε in the range ]0, n − p[, belongs to the
space L p,λε (�), λε = min{λ, η − ε, µ − ε}, and the relative inequality holds
(see Sections 3 and 4).

Acknowledgments. The author wishes to thank Giuseppe Di Fazio for his help
and encouragement during the preparation of this work.

2. Some de�nitions and known results.

For reader�s convenience we recall some de�nitions. A functional space we
shall use throught this paper is the John-Nirenberg space BMO of the functions
of bounded mean oscillation and its subspace VMO introduced in [9] and [12]
respectively. We say that a locally integrable function f on R

n is in the space
BMO if

(2.1) � f �∗ := sup
B

1

|B|

�

B

| f (x )− fB | dx < +∞,
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where B ranges in the class of the balls in R
n and fB is the integral average

�

�
B f (x ) dx = 1

|B|

�
B f (x ) dx . For f ∈ BMO and r > 0, we set

(2.2) η(r) = sup
ρ≤r

1

|B|

�

B

| f (x )− fB | dx ,

where B ranges in the class of the balls with radius ρ less than or equal to r .
We will say that a function f ∈ BMO is in the space VMO if limr→0 η(r) = 0
and we will call η(r) the V MO modulus of the function f .
If � is a bounded open set of R

n and if 1 ≤ p < +∞, and 0 ≤ λ ≤ n, L p,λ(�)
denotes the space of the functions u ∈ L p(�) such that

�u�L p,λ(�) =

�

sup
(x,r)∈�δ

1

rλ

�

�(x,r)

|u(y)|p dy

� 1
p

< +∞,

where �(x , r) = {y ∈ � : |x − y| < r}, �δ = �×]0, δ], and δ = diam �.

Lemma 2.1. ([1]) Let 1 ≤ q ≤ p < +∞ and 0 ≤ λ, λ1 ≤ n. If
q(n − λ) ≤ p(n − λ1), then L p,λ(�) is continuously imbedded in Lq,λ1 (�).

Lemma 2.2. ([2]) If u ∈ W 1,p(�), 1 ≤ p < +∞, and uxi ∈ L p,λ(�),
i = 1, 2, . . . , n, 0 ≤ λ < n − p, then u ∈ L p,λ+p(�) and moreover there
exists a constant k, independent of u, such that

(2.3) �u�
L p,λ+p(�)

≤ k(�∇u�
L p,λ(�)

+ �u�
L p(�)

).

Let us give a result that will be useful later on. It could be proved by a
technique similar to that one used in [5], Lemma 4.1, in the case p = 2.

Lemma 2.3. Let u ∈W 1,p(�) and g ∈ L p,η(�), with 2 ≤ p < n, n − p < η <

n. If uxi ∈ L p,ν(�), i = 1, 2, . . . , n, for same ν ∈ [0, n − p[, then

gu ∈ L p,η+ν−n+p(�).

Moreover there exists a constant k, that does not depend on u and g, such that

�gu�
L p,η+ν−n+p(�)

≤ k�g�
L p,η(�)

(�∇u�
L p,ν(�)

+ �u�
L p(�)

).
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Let � be a bounded open set of R
n , n > 2, of generic point x =

(x1, x2, . . . , xn), with smooth boundary, say C
1,1. Let us consider the following

Dirichlet problem

(2.4)






−
n�

i, j=1

(ai j uxi )xj −
n�

i=1

(diu)xi + cu = f0 −
n�

i=1

( fi )xi in�,

u ∈W
1,p
0 (�) (1 < p < ∞) ,

where we assume (1),

(2.5)






i) ai j ∈ VMO ∩ L∞(�), i, j = 1, 2, . . . , n;

ii) ai j = aji , and ∃ν > 0 such that ν−1|ξ |2 ≤
�n

i, j=1 ai j ξi ξj ≤ ν|ξ |2,

∀ξ ∈ R
n, a.e. x ∈ �, i, j = 1, 2, . . . , n;

iii) d = (d1, d2, . . . , dn)∈ [L
p,η(�)]n c ∈ L p,µ(�),

f = ( f1, f2, . . . , fn)∈ [L
p,λ(�)]n, f0 ∈ L p∗,λ∗ (�), 2 < p < n,

n − p < η, µ < n, 0 < λ < n, 1
p∗

= 1
p

+ 1
n
, λ∗ = λ

p∗

p
.

Solution of Problem (2.4) will be a function u ∈W
1,p
0 (�) such that

(2.6)

�

�

� n�

i, j=1

ai j uxi ϕxj +

n�

i=1

diu ϕxi + cu ϕ
�
dx =

=

�

�

�
f0ϕ +

n�

i=1

fi ϕxi

�
dx , ∀ϕ ∈C∞

0 (�).

Our technique is the same introduced in [3] and [4] for non divergence form
equations. We estabilish interior and boundary L p,λ estimates for the gradient
of u in �small� balls, using a suitable representation formula. The representation
formula expresses locally the gradient of u by means of singular integral
operators and commutators of the kind already considered in [3] and [4].
In the sequel we shall set, for the sake of brevity

Lu = −

n�

i, j=1

(ai j uxi )xj .

Lemma 2.4. ([6]) Let i) and ii) in (2.5) hold true and let v be a solution of the
equation

Lv = div F + F0,

(1) If ϕ is a function which maps � in R
n , we often shall set, for the sake of brevity,

ϕ ∈ L p,η(�), instead of ϕ ∈ [L p,η(�)]n .
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whose support is contained in a ball Bσ ⊂⊂ �. Let us assume that F =

(F1, F2, . . . , Fn) and F0 are supported in Bσ , F ∈ [L p,λ(Bσ )]
n , 2 < p < n,

0 < λ < n, and F0 ∈ L p∗,λ∗(Bσ ),
1
p∗

= 1
p

+ 1
n
, λ∗ = λ

p∗

p
. Then

(2.7) vxi (x ) =

n�

h, j=1

P.V .

�

Bσ

�i j (x , x − y)
�
[ahj (x )− ahj (y)] vxh (y)−

− Fj (y)
�
dy −

�

Bσ

�i (x , x − y)F0(y)dy +

n�

h=1

cih (x )Fh(x ) , ∀x ∈ Bσ ,

where

cih (x ) =

�

|t |=1

�i (x , t)thdσt , �i (x , t) =
∂

∂ ti
�(x , t), �i j (x , t) =

∂2

∂ ti∂ tj
�(x , t),

and

�(x , t) =
1

(n − 2)ωn(det ai j (x ))
1
2

�
n�

i, j=1

Ai j (x )ti tj

� 2−n
2

a.e. x ∈ �, t �= 0,

with Ai j cofactor of ai j in the matrix (ai j ) and ωn surface area of the unit ball.

It is a well known fact that �i j are Calderon�Zygmund kernel in the t
variable for a.a. x ∈ �.

We conclude this section recalling two known existence and regularity
results for Problem (2.4), in the case d = 0, c = 0, and f0 = 0.

Theorem 2.1. ([6], Theorem 2.1) Let i) and ii) in (2.5) hold true. If fi ∈

L p(�), i = 1, 2, . . . , n, and 1 < p < +∞, then the Dirichlet problem (2.4),
with d = 0, c = 0, and f0 = 0, has a unique solution u and moreover there
exists a constant k, that does not depend on u and f , such that

(2.8) �∇u�
L p(�)

≤ k� f �
L p(�)

.

Theorem 2.2. ([11], Theorem 4.3) Let i) and ii) in (2.5) hold true. If fi ∈

L p,λ(�), i = 1, 2, . . . , n, 2 < p < +∞, and 0 < λ < n, then the gradient of
the solution u of Dirichlet problem (2.4), with d = 0, c = 0, and f0 = 0 (2),
belongs to L p,λ(�). Moreover there exists a constant k that does not depend on
u and f such that

(2.9) �∇u�
L p,λ(�)

≤ k� f �L p,λ(�).

(2) The existence and uniqueness of the solution u of Dirichlet problem (2.4) are
assured by Theorem 2.1.
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3. L p,λ regularity: the case d = f = 0.

In this section and in the next one we shall show regularity results for (2.4).
We shall study the effect of lower order terms looking at them one by one. The
�rst term we study is the one concerned with the potential c(x ). The study is
splitted into two parts. In the �rst one we prove a regularity result assuming
some extra technical hypotheses. Namely we assume that the term cu belongs
to a convenient Morrey space. These assumption will be removed later. Once
we get the result for the potential c(x ), we shall sketch the proof of the case
when the other lower order terms are present. Let us start with the following
lemma.

Lemma 3.1. Let i) and ii) in (2.5) hold true and let u ∈W 1,p(Bσ ), 2 < p < n,
be a solution in the ball Bσ ⊂⊂ � of the equation

Lu + cu = f0,

where f0 ∈ L p∗,λ∗(Bσ ),
1
p∗

= 1
p

+ 1
n
, λ∗ = λ

p∗

p
, 0 < λ < n. Let us suppose

that u ∈ L p,α(Bσ ), ∇u ∈ L p∗,α∗(Bσ ), and cu ∈ L p∗,β∗(Bσ ), with α∗ = α
p∗

p
,

β∗ = β
p∗

p
, and 0 < α, β < n. Then there exists σ̄ ∈ ]0, σ [ such that, for every

ball Bρ concentric to Bσ with ρ ≤ σ̄ , we have

a) ∇u ∈ L p,δ(B ρ

2
) ;

b) �∇u�
L p,δ(B ρ

2
)
≤ k(�u�

L p,α(Bρ )
+ �∇u�

L p∗,α∗(Bρ )
+ �cu�

L p∗,β∗ (Bρ )
+

� f0�L p∗,λ∗ (Bρ )
),

where δ = min{α, β, λ}.

Proof. We localize the solution. Fixed a ball Bρ concentric to Bσ with ρ < σ ,
let θ ∈ C∞

0 (Bρ ) a standard cut-off function identically 1 in B ρ

2
, 0 ≤ θ ≤ 1 and

|∇θ | < 2c
ρ
.

The function v = θu is supported in Bρ and it is a solution of the equation

Lv = div F + F0,

where F = (F1, F2, . . . , Fn), Fj = −
�n

i=1(ai j θxi u), F0 = −
�n

i, j=1(ai j θxj uxi )

+θ ( f0 − cu). Moreover we have F ∈ [L p,δ(Bρ)]
n , F0 ∈ L p∗,δ∗(Bρ ), with

δ∗ = δ
p∗

p
. Therefore the functions θu, F0 and F ful�ll the hypotheses of

Lemma 2.4, and we have

(θu)xi (x ) =

n�

h, j=1

P.V .

�

Bρ

�i j (x , x − y){[ahj (x )−ahj (y)](θu)xh (y)− Fj (y)}dy−
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−

�

Bρ

�i (x , x − y)F0(y)dy +

n�

h=1

cih (x )Fh(x ), x ∈ Bρ.

By virtue of the previous representation formula and by a similar argument of
that one used in [10], Theorem 4.2, based on the uniqueness of the �xed point
of a contraction, it is possible to prove the existence of a σ̄ ∈ ]0, σ [ such that,
for every ball Bρ concentric to Bσ with ρ ≤ σ̄ , one has

�
1

ρδ

�

Bρ

|(θu)xi |
p dx

� 1
p

≤ k(�F�
L p,δ (Bρ )

+ �F0�L p∗ ,δ∗(Bρ )
),

from which a) and b) follow easily. �

The next lemma removes the extra assumption on the potential term
c(x )u(x ). Namely we have

Lemma 3.2. Let i) and ii) in (2.5) hold true and let u ∈W 1,p(Bσ ), 2 < p < n,
be a solution in the ball Bσ ⊂⊂ � of the equation

Lu + cu = f0,

where c ∈ L p,µ(Bσ ), f0 ∈ L p∗,λ∗(Bσ ), n − p < µ < n, 1
p∗

= 1
p

+ 1
n
,

λ∗ = λ
p∗

p
, 0 < λ < n. Let us suppose that u ∈ L p,α(Bσ ), ∇u ∈ L p∗,α∗(Bσ ), with

0 < α < n, and α∗ = α
p∗

p
. Let ε > 0 such that ε < n − p. Then there exists

σ1 ∈ ]0, σ [ such that, for every ball Bρ concentric to Bσ with ρ ≤ σ1 , we have:

j ) ∇u ∈ L p,λ̃(ε)(Bρ );
j j ) �∇u�

L p,λ̃(ε) (Bρ )
≤ k(�u�

L p,α (Bσ )
+ �∇u�

L p∗,α∗ (Bσ )
+ �∇u�

L p(Bσ )
+

� f0�L p∗,λ∗ (Bσ )
) ,

where λ̃(ε) = min{α, λ, µ − ε}.

Proof. Since c ∈ L p,µ(Bσ ) and ∇u ∈ L p(Bσ ), thanks to Lemma 2.3 (with
η = µ and ν = 0), if µ̄ = µ − n + p, µ̄∗ = µ̄

p∗

p
, it results

(3.1) cu ∈ L p,µ̄(Bσ ),

and, for every ball Br concentric to Bσ with r ≤ σ , we have

(3.2) �cu�
L p,µ̄(Br )

≤ k�c�
L p,µ(Br )

(�∇u�
L p(Br )

+ �u�
L p(Br )

).
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From (3.1) and (3.2), thanks to the imbedding L p,µ̄(Bσ ) ⊂ L p∗,µ̄∗(Bσ ), it
follows that cu ∈ L p∗,µ̄∗(Bσ ) and, for every ball Br concentric to Bσ with r ≤ σ ,
we have

(3.3) �cu�
L p∗,µ̄∗ (Br )

≤ k�c�L p,µ(Br )(�∇u�
L p(Br )

+ �u�
L p(Br )

).

Let us consider now the following cases.

1) If µ̄ ≥ λ̃(ε) , one has δ = min{α, λ, µ̄} ≥ λ̃(ε) . On the other hand Lemma
3.1 (with β = µ̄) ensures that, there exists σ̄ ∈ ]0, σ [ such that, for every ball
Bρ concentric to Bσ with ρ ≤ σ̄ , it results

(3.4) ∇u ∈ L p,δ(B ρ

2
),

and the following estimate holds

(3.5) �∇u�
L p,δ(B ρ

2
)
≤ k(�u�

L p,α (Bρ )
+ �∇u�L p∗,α∗ (Bρ ) + �cu�

L p∗,µ̄∗(Bρ )
+

+ � f0�L p∗,λ∗ (Bρ )
).

j ) and j j ) are consequence of the inequality δ ≥ λ̃(ε) and of (3.4), (3.5), and
(3.3) (with r = ρ). In this case it is possible to assume σ1 = σ̄

2
.

2) If µ̄ < λ̃(ε) , and µ̄ ≥ n − p, one has δ = min{α, λ, µ̄} = µ̄ ≥ n − p >

n − p − ε . By Lemma 3.1 (with β = µ̄) we have ∇u ∈ L p,δ(B σ̄
2
) and estimate

(3.5) holds. Then, thanks to the inequality δ > n − p − ε we have, for every
ball Bρ concentric to Bσ with ρ ≤ σ̄ , ∇u ∈ L p,n−p−ε(B ρ

2
) and

(3.6) �∇u�
L p,n−p−ε(B ρ

2
)
≤ k(�u�

L p,α(Bρ )
+ �∇u�

L p∗,α∗ (Bρ )
+

+ �cu�
L p∗,µ̄∗ (Bρ )

+ � f0�L p∗,λ∗ (Bρ )
) ≤

≤ k(�u�
L p,α(Bσ )

+ �∇u�
L p∗,α∗ (Bσ )

+ �∇u�L p(Bσ ) + � f0�L p∗,λ∗ (Bσ )
).

By Lemma 2.3 (with � = B σ̄
2
, η = µ, and ν = n − p − ε) one has

cu ∈ L p,µ−ε(B σ̄
2
) and

(3.7) �cu�
L p,µ−ε(B σ̄

2
)
≤ k�c�

L p,µ(B σ̄
2
)
(�∇u�

L p,n−p−ε(B σ̄
2
)
+ �u�

L p(B σ̄
2
)
).

Thanks to the imbedding L p,µ−ε(B σ̄
2
) ⊂ L p∗,(µ−ε)∗(B σ̄

2
), (µ − ε)∗ = (µ − ε) p∗

p
,

and from (3.6) (with ρ = σ̄ ) and (3.7), we have cu ∈ L p∗,(µ−ε)∗(B σ̄
2
) and

(3.8) �cu�
L p∗,(µ−ε)∗(B σ̄

2
)
≤ k(�u�

L p,α(Bσ )
+ �∇u�

L p∗,α∗ (Bσ )
+
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+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
).

Lemma 3.1 (with β = µ − ε) ensures that there exists σ̄1 ∈ ]0, σ̄
2
[ such that, for

every ball Bρ concentric to Bσ with ρ ≤ σ̄1, it results ∇u ∈ L p,λ̃(ε) (B ρ

2
) and the

following inequalities hold

(3.9) �∇u�
L p,λ̃(ε) (B ρ

2
)
≤ k(�u�

L p,α(Bρ )
+ �∇u�

L p∗,α∗ (Bρ )
+

+�cu�
L p∗ ,(µ−ε)∗(Bρ )

+ � f0�L p∗,λ∗ (Bρ )
) ≤

≤ k(�u�
L p,α(Bσ )

+ �∇u�
L p∗,α∗ (Bσ )

+ �cu�
L p∗,(µ−ε)∗(B σ̄

2
)
+ � f0�L p∗,λ∗ (Bσ )

).

From (3.9) and (3.8) it follows that

�∇u�
L p,λ̃(ε) (B ρ

2
)
≤ k(�u�

L p,α(Bσ )
+ �∇u�

L p∗,α∗(Bσ )
+ �∇u�

L p(Bσ )
+ � f0�L p∗,λ∗ (Bσ )

)

and then j j ) with σ1 = σ̄1
2
.

3) If µ̄ < λ̃(ε) and µ̄ < n − p, one has δ = min{α, λ, µ̄} = µ̄. By Lemma
3.1 (with β = µ̄) we have ∇u ∈ L p,µ̄(B σ̄

2
) and

�∇u�
L p,µ̄(B σ̄

2
)
≤ k(�u�

L p,α (Bσ̄ )
+ �∇u�

L p∗,α∗ (Bσ̄ )
+ �∇u�

L p(Bσ̄ )
+ � f0�L p∗,λ∗ (Bσ̄ )

).

Thanks again to Lemma 2.3 (with � = B σ̄
2
, η = µ, and ν = µ̄) one has

cu ∈ L p,2µ̄(B σ̄
2
) ⊂ L p∗,(2µ̄)∗(B σ̄

2
) ((2µ̄)∗ = 2µ̄ p∗

p
) and the relative inequalities

hold. If 2µ̄ ≥ λ̃(ε) we may proceed as in 1). Otherwise iterating this procedure:
if h is the greatest positive integer such that hµ̄ < λ̃(ε) and hµ̄ < n − p, then
there exists σ̄h−1 ∈ ]0, σ [ such that ∇u ∈ L p,hµ̄(Bσ̄h−1

). Thanks to Lemma 2.3
(with � = Bσ̄h−1

, η = µ, and ν = hµ̄) we have cu ∈ L p,(h+1)µ̄(Bσ̄h−1
) ⊂

L p∗,((h+1)µ̄)∗(Bσ̄h−1
) (((h + 1)µ̄)∗ = (h + 1)µ̄ p∗

p
) and the relative inequalities

hold.
Now there are two possibilities

i) (h + 1)µ̄ ≥ λ̃(ε);
ii) (h + 1)µ̄ < λ̃(ε) .

If i) is true, then we may proceed exactly as in 1); if ii) is true, it results
(h + 1)µ̄ ≥ n − p, and then we may proceed as in 2). �

We can give now a �rst regularity result.



158 FRANCESCO MARINO

Theorem 3.1. Let i) and ii) in (2.5) hold true and let u ∈W 1,p(Bσ ), 2 < p <

n, be a solution in the ball Bσ ⊂⊂ � of the equation

Lu + cu = f0,

where c ∈ L p,µ(Bσ ), f0 ∈ L p∗,λ∗ (Bσ ), n − p < µ < n, 1
p∗

= 1
p

+ 1
n
, λ∗ = λ

p∗

p
,

0 < λ < n. Let ε > 0 such that ε < n − p. Then there exists σ ∗ ∈ ]0, σ [ such
that, for every ball Bρ concentric to Bσ with ρ ≤ σ ∗ , we have

i) ∇u ∈ L p∗,λ
(ε)
∗ (Bρ);

ii ) u ∈ L p,λ(ε)(Bρ ) ,

where λ
(ε)
∗ = λ(ε)

p∗

p
, λ(ε) = min{λ, µ − ε}. Moreover the following inequalities

hold

j ) �∇u�
L p∗,λ

(ε)
∗ (Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
);

j j ) �u�
L p,λ(ε) (Bρ )

≤ k(�u�L p∗ (Bσ )
+ �∇u�L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
),

where 1
p∗ = 1

p
− 1

n
.

Proof. We know that u ∈ L p∗

(Bσ ) ⊂ L p,p(Bσ ) and ∇u ∈ L p(Bσ ) ⊂

L p∗,p∗(Bσ ). If p ≥ λ(ε) we have �nished.
Let us consider the case p < λ(ε) . Thanks to Lemma 3.2, there exists
σ
(1)
1 ∈ ]0, σ [ such that, for every ball Bρ concentric to Bσ with ρ ≤ σ

(1)
1 , we

have

(3.10) ∇u ∈ L p,p(Bρ)

and

(3.11) �∇u�
L p, p(Bρ )

≤ k(�u�
L p, p(Bσ )

+ �∇u�
L p∗, p∗ (Bσ )

+ �∇u�
L p(Bσ )

+

+ � f0�L p∗,λ∗ (Bσ )
) ≤ k(�u�

L p∗ (Bσ )
+ �∇u�

L p(Bσ )
+ � f0�L p∗,λ∗ (Bσ )

).

From (3.10) and (3.11), since L p,p(Bρ) ⊂ L p∗,2p∗(Bρ ), for every ball Bρ

concentric to Bσ with ρ ≤ σ
(1)
1 , it follows that

(3.12) ∇u ∈ L p∗,2p∗(Bρ)

and

(3.13) �∇u�
L p∗,2p∗ (Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗ ,λ∗ (Bσ )
).
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Let us consider the following cases.

1) If 2p ≥ λ(ε) and p ≥ n − p, then i) and j ) are immediate consequence
of (3.12) and (3.13). Moreover, from the estimate p > n − p − ε , we get
∇u ∈ L p,n−p−ε(Bρ); thus, thanks to Lemma 2.2 and (3.11) we have

(3.14) u ∈ L p,n−ε(Bρ)

and

(3.15) �u�
L p,n−ε(Bρ )

≤ k(�∇u�
L p,n−p−ε (Bρ )

+ �u�
L p(Bρ )

) ≤

≤ k(�∇u�L p, p(Bρ )
+ �u�L p(Bρ )

) ≤

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
).

From (3.14) and (3.15), since n − ε > λ(ε) we have ii) and j j ).

2) If 2p ≥ λ(ε) , p < n−p, as in 1), i) and j ) are immediate consequence of
(3.12) and (3.13), with σ ∗ = σ

(1)
1 . Moreover, from Lemma 2.2 and (3.10), since

p < n − p, it follows that, for every ball Bρ concentric to Bσ with ρ ≤ σ
(1)
1 ,

(3.16) u ∈ L p,2p(Bρ )

and

(3.17) �u�
L p,2p(Bρ )

≤ k(�∇u�
L p, p(Bρ )

+ �u�
L p(Bρ )

).

Thanks to (3.11), (3.16) and (3.17), and because 2p ≥ λ(ε) , we have ii) and
j j ), with σ ∗ = σ

(1)
1 .

3) If 2p < λ(ε) , one has p < n − p. Now from (3.10), taking into
account Lemma 2.2 and (3.11), one has, for every ball Bρ concentric to Bσ

with ρ ≤ σ
(1)
1 , u ∈ L p,2p(Bρ) and

(3.18) �u�
L p,2p(Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
) .

We know that u ∈ L p,2p(B
σ
(1)
1
) and ∇u ∈ L p∗,2p∗(B

σ
(1)
1
), then, Lemma 3.2 ensures

the existence of σ
(1)
2 < σ

(1)
1 such that, for every ball Bρ concentric to Bσ with

ρ ≤ σ
(1)
2 , one has

(3.19) ∇u ∈ L p,2p(Bρ)
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and, thanks to (3.13) and (3.18), it follows

(3.20) �∇u�
L p,2p(Bρ )

≤ k(�u�
L p,2p (B

σ
(1)
1

)
+

+ �∇u�
L p∗,2p∗ (B

σ
(1)
1

)
+ �∇u�

L p(Bσ )
+ � f0�L p∗,λ∗ (Bσ )

) ≤

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )).

From (3.19) and (3.20), because L p,2p(Bρ) ⊂ L p∗,3p∗(Bρ), for every ball Bρ

concentric to Bσ with ρ ≤ σ
(1)
2 , it follows ∇u ∈ L p∗,3p∗(Bρ ) and

�∇u�
L p∗,3p∗ (Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
).

If 3p ≥ λ(ε) and 2p ≥ n − p we may proceed as in 1).
If 3p ≥ λ(ε) and 2p < n − p we may proceed as in 2).
If 3p < λ(ε) , we may iterate this technique, and let h be the greatest positive
integer such that hp < λ(ε) . As before, it is possible to �nd σ

(1)
h−1 ∈ ]0, σ [

such that, for every ρ ≤ σ
(1)
h−1, we have u ∈ L p,hp(Bρ) and ∇u ∈ L p∗,hp∗(Bρ).

Moreover the following inequalities hold

(3.21) �∇u�
L p∗,hp∗ (Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
)

and

(3.22) �u�
L p,hp(Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
).

Thanks to Lemma 3.2 there exists σ
(1)
h ∈ ]0, σ

(1)
h−1[ such that, for every ball Bρ

concentric to Bσ with ρ ≤ σ
(1)
h , one has

(3.23) ∇u ∈ L p,hp(Bρ )

and, thanks also to (3.21) and (3.22), we have

(3.24) �∇u�L p,hp(Bρ )
≤ k(�u�L p,hp(B

σ
(1)
h−1

) +

+ �∇u�
L p∗,hp∗ (B

σ
(1)
h−1

)
+ �∇u�

L p(Bσ )
+ � f0�L p∗,λ∗ (Bσ )

) ≤

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
).
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From (3.23) and (3.24), since L p,hp(Bρ) ⊂ L p∗,(h+1)p∗(Bρ ), it follows, for every

ball Bρ concentric to Bσ with ρ ≤ σ
(1)
h , ∇u ∈ L p∗,(h+1)p∗(Bρ) and

�∇u�
L p∗,(h+1) p∗(Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
).

Finally we have to consider the cases

a) (h + 1)p ≥ λ(ε) , hp ≥ n − p;
b) (h + 1)p ≥ λ(ε) , hp < n − p.

If a) is true we may proceed as in 1).
If instead b) is true, then we may proceed as in 2). �

Now we are able to prove the main regularity result concerning the poten-
tial term c(x ).

Theorem 3.2. Let i) and ii) in (2.5) hold true and let u ∈W 1,p(Bσ ), 2 < p <

n, be a solution in the ball Bσ ⊂⊂ � of the equation

Lu + cu = f0,

where c ∈ L p,µ(Bσ ), f0 ∈ L p∗,λ∗ (Bσ ), n − p < µ < n, 1
p∗

= 1
p

+ 1
n
, λ∗ = λ

p∗

p
,

0 < λ < n. Let ε > 0 such that ε < n − p. Then there exist σ̃ ∈ ]0, σ [ such
that, for every ball Bρ concentric to Bσ with ρ ≤ σ̃ we have

i) ∇u ∈ L p,λ(ε) (Bρ);
ii) �∇u�

L p,λ(ε) (Bρ )
≤ k(�u�

L p∗ (Bσ )
+ �∇u�

L p(Bσ )
+ � f0�L p∗,λ∗ (Bσ )

),

where λ(ε) = min{λ, µ − ε}, 1
p∗ = 1

p
− 1

n
.

Proof. Thanks to Theorem 3.1 there exists σ ∗ ∈ ]0, σ [ such that, for every ball

Bρ concentric to Bσ with ρ ≤ σ ∗ , we have ∇u ∈ L p∗,λ
(ε)
∗ (Bρ ), u ∈ L p,λ(ε) (Bρ),

λ
(ε)
∗ = λ(ε)

p∗

p
, and the following inequalities hold

(3.25) �∇u�
L p∗,λ

(ε)
∗ (Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
)

and

(3.26) �u�
L p,λ(ε) (Bρ )

≤ k(�u�
L p∗ (Bσ )

+ �∇u�
L p(Bσ )

+ � f0�L p∗,λ∗ (Bσ )
).

Now we may use Lemma 3.2 (with σ = σ ∗ , α = λ(ε)), then it is possible to �nd
σ ∗
1 ∈ ]0, σ ∗[ such that, for every ball Bρ concentric to Bσ with ρ ≤ σ ∗

1 , one has

(3.27) ∇u ∈ L p,λ(ε)(Bρ )



162 FRANCESCO MARINO

and

(3.28) �∇u�
L p,λ(ε) (Bρ )

≤ k(�u�
L p,λ(ε) (Bσ∗ )

+ �∇u�
L p∗,λ

(ε)
∗ (Bσ∗ )

+

+ �∇u�
L p(Bσ∗ )

+ � f0�L p∗,λ∗ (Bσ∗ )
).

i) and ii) are consequence of (3.25)�(3.28): we can choose σ̃ = σ ∗
1 . �

As an immediate consequence of Theorem 3.2 we have the following
corollary:

Corollary 3.1. Let i) and ii) in (2.5) hold true and let u ∈W 1,p(�), 2 < p <

n, be a solution in � of the equation

Lu + cu = f0,

where c ∈ L p,µ(�), f0 ∈ L p∗,λ∗ (�), n − p < µ < n, 1
p∗

= 1
p

+ 1
n
, λ∗ = λ

p∗

p
,

0 < λ < n. Let ε > 0 such that ε < n − p. Then, if λ(ε) = min{λ, µ − ε}, it

results ∇u ∈ L
p,λ(ε)

loc (�) and, for every ball B ⊂⊂ �, we have

�∇u�
L p,λ(ε) (B)

≤ k(�u�
L p∗ (�)

+ �∇u�
L p(�)

+ � f0�L p∗,λ∗ (�)
),

where 1
p∗ = 1

p
− 1

n
.

Remark 3.1. All the above results can be proved in the case when the ball
Bσ intersect the boundary ∂� of �. Further, via a standard �attening of the
boundary and partition of unity, we obtain global L p,λ regolarity results.

4. L p,λ regularity: the case c = f0 = 0.

Let us consider now Problem (2.4) with c = f0 = 0. We prove the
following result.

Theorem 4.1. Let (2.5) holds true (with c = f0 = 0) and let u ∈ W
1,p
0 (�),

2 < p < n, be a solution of Problem (2.4). Let ε > 0 such that ε < n − p.
Then we have

a) ∇u ∈ L p,λε(�);
b) �∇u�

L p,λε (�)
≤ k(�u�

L p (�)
+ �∇u�

L p(�)
+ � f �

L p,λ(�)
),

where λε = min{λ, η − ε}.
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Proof. Since u ∈ W
1,p
0 (�), thanks to Lemma 2.3 (with ν = 0), one has

du ∈ L p,η̄(�), where η̄ = η − n + p, and

�du�
L p,η̄(�)

≤ k�d�
L p,η(�)

(�∇u�
L p(�)

+ �u�
L p(�)

) .

Therefore f − du ∈ L p,min{λ,η̄}(�) and then, thanks to Theorem 2.2, we have

(4.1) ∇u ∈ L p,min{λ,η̄}(�)

and

(4.2) �∇u�
L p,min{λ,η̄}(�)

≤ k� f − du�
L p,min{λ,η̄}(�)

≤

≤ k(� f �
L p,λ(�)

+ �du�
L p,η̄(�)

) ≤

≤ k(�u�
L p (�)

+ �∇u�
L p(�)

+ � f �
L p,λ(�)

).

Let us consider the following cases.

1) If η̄ ≥ λ, of course min{λ, η̄} = λ, then a) and b) are consequences of
(4.1) and (4.2).

2) If η̄ < λ and η̄ ≥ n − p, of course min{λ, η̄} = η̄, then, thanks to (4.1)
and (4.2), we have ∇u ∈ L p,η̄(�) and

(4.3) �∇u�
L p,η̄(�)

≤ k(�u�
L p (�)

+ �∇u�
L p(�)

+ � f �
L p,λ(�)

) .

Since η̄ ≥ n − p > n − p − ε , ∇u ∈ L p,n−p−ε(�), and

�∇u�
L p,n−p−ε(�)

≤ k�∇u�
L p,η̄ (�)

from which, thanks to (4.3), it follows that

(4.4) �∇u�
L p,n−p−ε(�)

≤ k(�u�
L p(�)

+ �∇u�
L p(�)

+ � f �
L p,λ(�)

).

Now thanks to Lemma 2.3 (with ν = n − p − ε), it results du ∈ L p,η−ε(�) and

(4.5) �du�
L p,η−ε(�)

≤ k�d�
L p,η(�)

(�∇u�
L p,n−p−ε(�)

+ �u�
L p(�)

),

therefore f −du ∈ L p,λε (�). Theorem 2.2 ensures a) and the following estimate

�∇u�
L p,λε (�)

≤ k� f − du�
L p,λε (�)

≤ k(� f �
L p,λ(�)

+ �du�
L p,η−ε(�)

),
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from which, thanks to (4.5), we have

(4.6) �∇u�L p,λε (�) ≤ k(� f �L p,λ(�) + �∇u�L p,n−p−ε(�) + �u�L p(�)).

Inequality b) is consequence of (4.6) and (4.4).

3) If η̄ < λ and η̄ < n − p we have, as in 2), ∇u ∈ L p,η̄(�), and estimate
(4.3) holds. Now Lemma 2.3 (with ν = η̄) ensures that du ∈ L p,2η̄(�) and,
thanks also to (4.3)

(4.7) �du�
L p,2η̄(�)

≤ k�d�
L p,η(�)

(�∇u�
L p,η̄(�)

+ �u�
L p(�)

) ≤

≤ k�d�
L p,η(�)

(�u�
L p(�)

+ �∇u�
L p(�)

+ � f �
L p,λ(�)

).

Therefore f − du ∈ L p,min{λ,2η̄}(�), then, if 2η̄ ≥ λ, a) and b) are consequence
of Theorem 2.2 and of (4.7). If 2η̄ < λ and 2η̄ ≥ n − p we may proceed as in
2). If instead 2η̄ < λ and 2η̄ < n − p, iterating this procedure, and if h is the
greatest integer such that hη̄ < λ and hη̄ < n − p one has ∇u ∈ L p,hη̄(�) and

(4.8) �∇u�
L p,hη̄(�)

≤ k(�u�
L p (�)

+ �∇u�
L p(�)

+ � f �
L p,λ(�)

).

Since hη̄ < n−p, Lemma 2.3 (with ν = hη̄) ensures that du ∈ L p,(h+1)η̄(�)
and, thanks also to (4.8)

�du�
L p,(h+1)η̄(�)

≤ k�d�
L p,η (�)

(�∇u�
L p,hη̄(�)

+ �u�
L p(�)

) ≤

≤ k�d�
L p,η(�)

(�u�
L p(�)

+ �∇u�
L p(�)

+ � f �
L p,λ(�)

).

Then f − du ∈ L p,min{λ,(h+1)η̄}(�). If (h + 1)η̄ ≥ λ we have �nished; if instead
(h + 1)η̄ < λ, it must result (h + 1)η̄ ≥ n − p, then we may proceed as in 2).

�

Remark 4.1. The techniques used in Sections 3 and 4 allow to prove, under
assumptions (2.5), the L p,λ regularity for the gradient of the solution to Dirichlet
problem (2.4) with c �= 0, f0 �= 0, d �= 0, and f �= 0.
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derni Scuola Norm. Sup. Pisa, 1980.

[3] F. Chiarenza - M. Frasca - P. Longo, Interior W 2,p estimates for non-divergence
elliptic equations with discontinuous coef�cients, Ricerche di Mat., 40 (1991),
pp. 149�168.

[4] F. Chiarenza - M. Frasca - P. Longo, W 2,p-solvability of the Dirichlet problem
for nondivergence elliptic equations with V MO coef�cients, Trans. Amer. Math.
Soc., 336 (1993), pp. 841�853.

[5] G. Di Fazio, On Dirichlet problem in Morrey spaces, Differential Integral Equa-
tions, 6 (1993), pp. 383�391.

[6] G. Di Fazio, L p estimates for divergence form elliptic equations with discontinuos
coef�cients, Boll. Un. Mat. Ital., (7) 10-A (1996), pp. 409�420.

[7] G. Di Fazio - D.K. Palagachev, Oblique derivative problem for elliptic equations
in non divergence form with V MO coef�cients, Comment. Math. Univ. Carolinae,
37 (1996), pp. 537�556.

[8] G. Di Fazio - D. K. Palagachev, Oblique derivative problem for quasi-linear
elliptic equations with V MO coef�cients, Bull. Austral. Math. Soc., 53 (1996),
pp. 501�513.

[9] F. John - L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure
Appl. Math., 14 (1961), pp. 415�426.

[10] M.A. Ragusa, Regularity of solutions of divergence form elliptic equations, Proc.
Amer. Math. Soc., 128 (1999), pp. 533�540.

[11] M.A. Ragusa, C(0,α) -regularity of the solution of the Dirichlet problem for elliptic
equations in divergence form, Int. J. Diff. Eq. Appl., 1 (2000), pp. 113�125.

[12] D. Sarason , Functions of vanishing mean oscillation, Trans. Amer. Math. Soc.,
207 (1975), pp. 391�405.

[13] C. Vitanza, W 2,p-regularity for a class of elliptic second order equations with
discontinuous coef�cients, Le Matematiche, 47 (1992), pp. 177�186.

[14] C. Vitanza, A new contribution to the W 2,p regularity for a class of elliptic sec-
ond order equations with discontinuous coef�cients, Le Matematiche, 48 (1993),
pp. 287�296.

Dipartimento di Matematica e Informatica,
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