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ON SOLVABILTY OF PSEUDODIFFERENTIAL OPERATORS
WITH CONSTANT COEFFICIENTS

C. BOUZAR

The paper presents a result on local solvability, in classical Sobolev
spaces, of pseudodifferential operators with constant coefficients. The
proof of this result is based on a new Hörmander’s type inequality for
such pseudodifferential operators.

1. Introduction

The well known Poincaré inequality in L2 for bounded intervals

‖u‖0 ≤ (b−a)‖Du‖0 , ∀u ∈C∞
c (]a,b[),

where ‖·‖0 denotes the L2 norm, is the one dimensional precursor of the fol-
lowing inequality of L. Hörmander, see [4], for general linear partial differential
operators with constant coefficients P(D),

‖(∂ αP)(D)u‖0 ≤C‖P(D)u‖0 , ∀u ∈C∞
c (Ω) ,

where Ω is a bounded domain of Rn,α ∈ Nn and C > 0 is independent of u.
Indeed, if P(D) = d

idx then its complete symbol is P(ξ ) = ξ and dP
dξ
(D) is the

identity operator. A fundamental consequence of Hörmander’s inequality is the
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L2−solvability of every non null linear partial differential operators with con-
stant complex coefficients.

The paper presents a result on local solvability, in classical Sobolev spaces,
of pseudodifferential operators with constant coefficients, i.e. independent of
the variable x, its proof is based on a new Hörmander’s type inequality for
pseudodifferential operators with constant coefficients. Some variants of the
proposed inequality occur in the study of local solvability of pseudodifferential
equations with variable coefficients, see e.g. [1], [2], [3]. The proof of the re-
sult of the paper on local solvability is more close to linear partial differential
operators.

2. The solvability

We follow the notations and definitions of the theory of distributions and pseu-
dodifferential operators as in [5] and [6]. Let Ω be an open set of Rn, denote by
C∞

c (Ω) the space of infinitely differentiable functions with compact support and
by Hs,s∈R, the Sobolev space on Rn with inner product and norm respectively
(·, ·)s and ‖·‖s.

Definition 1. The class Sm,m ∈ R, is the space of infinitely differentiable func-
tions P defined on Rn satisfying : for every multi-index α ∈Zn

+ there exists c> 0
such that

|(∂ αP)(ξ )| ≤ c(1+ |ξ |)m−|α| , ∀ξ ∈ Rn.

A pseudodifferential operator P(D) of order m with constant coefficients is
a linear operator acting on functions u ∈ Hs by the formula

P(D)u(x) =
∫
Rn

eix·ξ P(ξ ) û(ξ )dξ ,

where P∈ Sm is called the symbol of P(D) , and û denotes the Fourier transform
of u. It holds that for every s ∈ R there exists c > 0 such that

‖P(D)u‖s ≤ c‖u‖s+m ,∀u ∈ Hs+m.

The symbol of the pseudodifferential operators P(D) and (∂ αP)(D) are re-
spectively P(ξ ) and (∂ αP)(ξ ). It is clear that the formal adjoint P∗ (D) of the
operator P(D) is P(D) , and we have∥∥P(D)u

∥∥
s = ‖P(D)u‖s ,∀u ∈ Hs.

Remark 1. As we deal exclusively with local a priori estimates, and in view
of the classical result on the decomposition of pseudodifferential operators, we
assume that all the pseudodifferential operators are properly supported.
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Recall the following result, see [6].

Lemma 2.1. Let s, t be two real numbers such that s < t and t ≥ −n
2 , then

∀ε > 0,∃ρ > 0,∀ω open set of Rn,diam(ω)< ρ,∀u ∈C∞
0 (ω) ,

‖u‖s ≤ ε ‖u‖t .

The proof of the result on local solvability is based on the following
Hörmander’s type inequality which is proved in the next section.

Theorem 1. Let P(D) be a pseudodifferential operator of the class Sm,s ∈
R,θ ≥ 1 and α ∈Nn, then ∀δ > 0,∃ρ > 0,∃c > 0,∀u ∈C∞

0 (Ω) ,diam(Ω)< ρ,
we have

‖(∂ αP)(D)u‖s ≤ δ ‖P(D)u‖s + c‖u‖s+m−θ
. (InApr)

Now let’s present the main result on local solvability.

Theorem 2. Let P(D) be a pseudodifferential operator of the class Sm such that
there exist s0 ∈ R,m0 ∈ N,c > 0,∀ξ ∈ Rn,

∑
|α|≤m0

|(∂ αP)(ξ )|2 ≥ c
(

1+ |ξ |2
)s0

, (InAlg)

then for every x0 ∈ Rn and s≤ n
2 , there exists a neighborhood ω of x0 such that

∀ f ∈ Hs (ω) ,∃u ∈ Hs+s0 (ω) satisfying P(D)u = f .

Proof. From the estimate (InAlg) follows the existence of C > 0 such that ∀u ∈
Hs+s0 ,

‖u‖s+s0
≤C ∑

|α|≤m0

∥∥∥(∂ αP)(D)u
∥∥∥

s

Let Ω be an open neighborhood of x0, due to the inequality (InApr) of Theorem
1, it holds that ∀s∈R,∀θ ≥ 1,∀δ > 0,∃ρ > 0,∃c > 0,∀u∈C∞

c (Ω) ,diam(Ω)<
ρ,

‖u‖s+s0
≤Cm0(δ

∥∥∥P(D)u
∥∥∥

s
+ c‖u‖s+m−θ

),

Lemma 1 with s ∈ R and θ ≥ 1 such that m− θ < s0 and s ≥ −s0− n
2 , gives

∀ε > 0 there exists an open neighborhood ω of x0,∀u ∈C∞
c (ω) ,

‖u‖s+m−θ
≤ ε ‖u‖s+s0

Consequentelly, it follows that for an open neighborhood ω of x0 we have

‖u‖s+s0
≤Cm0(δ

∥∥∥P(D)u
∥∥∥

s
+ εc‖u‖s+s0

),∀u ∈C∞
c (ω) ,
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i.e.
(1− εcCm0)‖u‖s+s0

≤Cm0δ

∥∥∥P(D)u
∥∥∥

s
,∀u ∈C∞

c (ω) ,

Taking ε > 0 such that 1−εcCm0 > 0, then there exist an open neighborhood ω

of x0 and a constant C > 0 such that the following inequality holds

‖u‖s+s0
≤C

∥∥∥P(D)u
∥∥∥

s
,∀u ∈C∞

c (ω) .

Consider now for f ∈ H−s−s0 (ω) the linear form

L : P∗ (D)C∞
c (ω) → C

P∗ (D)ϕ → ( f ,ϕ)

Then
|( f ,ϕ)| ≤ ‖ f‖−s−s0

‖ϕ‖s+s0
≤C‖ f‖−s−s0

‖P∗ (D)ϕ‖s

This estimate implies that the linear form L can be extended to the whole Hilbert
space Hs

0 (ω) :=C∞
c (ω)

Hs

. Consequently, by the Riesz representation Theorem,
we obtain that ∀s∈R,−s−s0≤ n

2 and ∀ f ∈H−s−s0 (ω) there exists u∈H−s (ω)
such that P(D)u= f . It follows then the local solvability result of the Theorem.

As a consequence we have the following result.

Corollary 1. Let P(D) be a linear partial differential operator with constant
coefficients, then for every x0 ∈ Rn and s≤ n

2 there exits an open neighborhood
ω of x0 such that ∀ f ∈ Hs (ω) ,∃u ∈ Hs (ω) satisfying P(D)u = f .

Proof. For every non null linear partial differential operator with constant coef-
ficients P(D) there exists c > 0,∀ξ ∈ Rn,

∑
|α|≤m

|(∂ αP)(ξ )|2 ≥ c,

where m is the degree of the polynomial P(ξ ). Then we apply Theorem 2 with
s0 = 0 and m0 = m.

3. Proof of the inequality

The following Lemma is well known.

Lemma 3.1. Let ϕ ∈C∞
c (Ω) and s ∈ R , there exists c > 0 such that

‖ϕu‖s ≤max
x
|ϕ(x)|‖u‖s + c‖u‖

σ
,∀u ∈ Hs,

where σ < s−1.
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We recall the classical inequality ∀s, t ∈ R,

|(u,v)s| ≤ ‖u‖s−t ‖v‖s+t , ∀u ∈ Hs−t ,∀v ∈ Hs+t .

The open ball of center the origin and radius ε > 0 is denoted by Bε . Let
ϕ ∈C∞

c (Rn) such that 0≤ ϕ ≤ 1,ϕ (x) = 1 for |x| ≤ 1, and ϕ (x) = 0 for |x|> 2.
Define ϕε (x) = ϕ( x

ε
), and let P(D) be a pseudodifferential operator of the class

Sm, then the operator [P(D) ,ϕε ] denotes the commutator of the pseudodifferen-
tial operator P(D) and the operator of multiplication by the function ϕε .

Lemma 3.2. If 0 < ρ < ε, the operator [P(D) ,ϕε ] satisfies the following : for
every reals s and s′ there exists c > 0 such that

‖[P(D) ,ϕε ]u‖s ≤ c‖u‖s′ , ∀u ∈C∞
0 (Bρ).

Proof. The estimate is a consequence of the fact that the pseudodifferential op-
erator [P(D) ,ϕε ] is of order −∞ as its symbol is identically equals zero on a
neighbourhood of Bρ .

We give the proof of Theorem 1.

Proof. Let ϕ ∈C∞
c (Rn),0≤ϕ ≤ 1,ϕ (x)= 1 for |x| ≤ 1 and ϕ (x)= 0 for |x|> 2.

Define ϕε (x) = ϕ( x
ε
),ε > 0, if 0 < ρ < ε, then we have

u = ϕεu , ∀u ∈C∞
c
(
Bρ

)
.

Denote by ∂ k
j the derivation of order k with respect to the variable ξ j. We have

P(ix ju) = ix jPu+(∂ jP)u, (1)

so, ∀u ∈C∞
c
(
Bρ

)
and 0 < ρ < ε,

P(ix ju) = ix jϕε (x)Pu+(∂ jP)u+T1u, (2)

where
T1 = ix j[P,ϕε ].

Hence∥∥(∂ jP)u
∥∥2

s = (P(ix ju) ,(∂ jP)u)s− (ix jϕεPu,(∂ jP)u)s− (T1u,(∂ jP)u)s .

It is clear that
(P(ix ju) ,(∂ jP)u)s = ((∂ jP)(ix ju) ,Pu)s,

then∥∥(∂ jP)u
∥∥2

s = ((∂ jP)(ix ju) ,Pu)s− (ix jϕεPu,(∂ jP)u)s− (T1u,(∂ jP)u)s .
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From (2), we have

(∂ jP)(ix ju) = ix jϕε(∂ jP)u+
(

∂ 2
j P
)

u+T2u, (3)

where
T2 = ix j[(∂ jP),ϕε ].

Consequently, we obtain the following inequality∥∥(∂ jP)u
∥∥2

s ≤
∥∥∥ix jϕε(∂ jP)u

∥∥∥
s
‖Pu‖s +

∥∥(∂ 2
j P
)

u
∥∥

s
‖Pu‖s +

∣∣(T2u,Pu
)

s

∣∣+
+
∥∥ix jϕεPu

∥∥
s

∥∥(∂ jP)u
∥∥

s +
∣∣(T1u,(∂ jP)u)s

∣∣ . (4)

Lemma 2 gives∥∥∥ix jϕε(∂ jP)u
∥∥∥

s
≤ max

x

∣∣ix jϕε (x)
∣∣∥∥∥(∂ jP)u

∥∥∥
s
+ cs,σ (ε)

∥∥∥(∂ jP)u
∥∥∥

σ

,

≤ 2ε
∥∥(∂ jP)u

∥∥
s + cs,σ (ε)‖u‖

σ+m−1 ,

and in the same way∥∥ix jϕεPu
∥∥

s ≤ 2ε ‖Pu‖s + c′s,σ (ε)‖u‖
σ+m .

For every real t we have∣∣(T2u,Pu
)

s

∣∣= |(PT2u,u)s| ≤ ‖T2u‖s−t+m ‖u‖s+t ,

∣∣(T1u,(∂ jP)u)s

∣∣= ∣∣∣((∂ jP
)

T1u,u
)

s

∣∣∣≤ ‖T1u‖s−t+m−1 ‖u‖s+t .

From the above inequalities it follows that∥∥(∂ jP)u
∥∥2

s ≤ 4ε ‖Pu‖s

∥∥(∂ jP)u
∥∥

s +
∥∥(∂ 2

j P
)

u
∥∥

s
‖Pu‖s +

+c′s,σ (ε)
∥∥(∂ jP)u

∥∥
s ‖u‖σ+m + cs,σ (ε)‖Pu‖s ‖u‖σ+m−1 +

+‖T1u‖s−t+m−1 ‖u‖s+t +‖T2u‖s−t+m ‖u‖s+t . (5)

Due to the algebraic inequality 2ab≤ εa2 + 1
ε
b2,∀ε > 0,∀a,b≥ 0, we obtain

∥∥(∂ jP)u
∥∥2

s ≤ 6ε ‖Pu‖2
s +4ε

∥∥(∂ jP)u
∥∥2

s +
1

8ε

∥∥(∂ 2
j P
)

u
∥∥2

s +

+
[cs,σ (ε)]2

8ε
‖u‖2

σ+m−1 +

[
c′s,σ (ε)

]2
8ε

‖u‖2
σ+m +‖u‖2

s+t +

+
1
2
‖T1u‖2

s−t+m−1 +
1
2
‖T2u‖2

s−t+m .
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Let ε > 0 with 1− 4ε > 0 and σ = s− θ , θ > 1, then using Lemma 3 to the
operators of infinite order T1 and T2 there exists a constant cs,θ (ε)> 0 such that

∥∥(∂ jP)u
∥∥2

s ≤
6ε

1−4ε
‖Pu‖2

s +
1

(1−4ε)8ε

∥∥(∂ 2
j P
)

u
∥∥2

s
+ cs,θ (ε)‖u‖2

s+m−θ

Taking ε =
δ

2(2δ +3)
,δ > 0, we obtain that the following estimate holds ∀s ∈

R,∀θ > 1,∀δ > 0, there exist a(δ ) =
(2δ +3)2

12δ
> 0 and bs,θ (δ )> 0, such that

∥∥(∂ jP)u
∥∥2

s ≤ δ ‖Pu‖2
s +a(δ )

∥∥(∂ 2
j P
)

u
∥∥2

s
+bs,θ (δ )‖u‖2

s+m−θ
, (6)

∀u ∈C∞
c
(
Bρ

)
,ρ < ε (δ ) =

δ

2(2δ +3)
.

Now by induction we show that for arbitrary s ∈R and θ > 1 we have ∀k ∈
N,∀δk > 0 there exist ak (δk) > 0,bk (δk) > 0,εk (δk) > 0,∀u ∈ C∞

c
(
Bρ

)
,ρ <

εk (δk) ,∥∥∥(∂
k
j P
)

u
∥∥∥2

s
≤ δk ‖Pu‖2

s +ak (δk)
∥∥∥(∂

k+1
j P

)
u
∥∥∥2

s
+bk (δk)‖u‖2

s+m−θ
, (7)

it is clear that only the constant bk (δk) depends on s and θ . The case k = 1 is
true by (6), where δ1 = δ ,a1 (δ1) = a(δ ) ,b1 (δ1) = bs,θ (δ ) and ε1(δ1) = ε (δ ) .
Assume the inequality true for k, i.e. we have (7). The inequality (6) applied
to the operator

(
∂ k

j P
)

gives ∀δ > 0 there exist a1 (δ ) > 0,b1 (δ ) > 0,ε1(δ ) >

0,∀u ∈C∞
c
(
Bρ

)
,ρ < ε1 (δ ) ,∥∥∥(∂

k+1
j P

)
u
∥∥∥2

s
≤ δ

∥∥∥(∂
k
j P
)

u
∥∥∥2

s
+a1 (δ )

∥∥∥(∂
k+2
j P

)
u
∥∥∥2

s
+b1 (δ )‖u‖2

s+m−θ
.
(8)

Estimating
∥∥∥(∂ k

j P
)

u
∥∥∥2

s
in (8) by the inequality (7), it follows that ∀u∈C∞

c
(
Bρ

)
,

ρ < ε ≤min{ε1 (δ ) ,εk (δk)} ,∥∥∥(∂
k+1
j P

)
u
∥∥∥2

s
≤ δδk ‖Pu‖2

s +δak (δk)
∥∥∥(∂

k+1
j P

)
u
∥∥∥2

s
+

+δbk (δk)‖u‖2
s+m−θ

+a1 (δ )
∥∥∥(∂

k+2
j P

)
u
∥∥∥2

s
+

+b1 (δ )‖u‖2
s+m−θ

.
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Then for δ <
1

ak (δk)
we have that ∀u ∈C∞

c
(
Bρ

)
,ρ < min{ε1 (δ ) ,εk (δk)} ,

∥∥∥(∂
k
j P
)

u
∥∥∥2

s
≤ δδk

1−δak (δk)
‖Pu‖2

s +
a1 (δ )

1−δak (δk)

∥∥∥(∂
k+2
j P

)
u
∥∥∥2

s
+

+
b1 (δ )+δbk (δk)

1−δbk (δk)
‖u‖2

s+m−θ
.

Let δk+1 > 0 and taking

δ =
δk+1

δk +δk+1ak (δk)
,

ak+1 (δk+1) =
a1 (δ )

1−δak (δk)
,

bk+1 (δk+1) =
b1 (δ )+δbk (δk)

1−δak (δk)
,

it holds that∥∥∥(∂
k+1
j P

)
u
∥∥∥2

s
≤ δk+1 ‖Pu‖2

s +ak+1 (δk+1)
∥∥∥(∂

k+2
j P

)
u
∥∥∥2

s
+

+bk+1 (δk+1)‖u‖2
s+m−θ

,

∀u ∈ C∞
c
(
Bρ

)
,ρ < εk+1 (δk+1) = min

{
ε1

(
δk+1

δk +δk+1ak (δk)

)
,εk (δk)

}
. Con-

sequently, the inequality (7) is proved.
Let δk,ak (δk) ,bk (δk) and εk (δk) ,k ∈ N, be the respective constants of the

right member of the estimate (7). By iteration in the inequality (6), we obtain
∀u ∈C∞

c
(
Bρ

)
,ρ < ε ≤min{ε1 (δ1) , ...,εk (δk)} ,k ≥ 2, we have∥∥(∂ jP)u

∥∥2
s ≤ (δ1 +a1 (δ1)δ2 + ...+a1 (δ1) ...ak−1 (δk−1)δk)‖Pu‖2

s +

+a1 (δ1) ....ak (δk)
∥∥∥(∂

k+1
j P

)
u
∥∥∥2

s
+ (9)

+(b1 (δ1)+ ...+a1 (δ1) ...ak−1 (δk−1)bk (δk))‖u‖2
s+m−θ

Let δ > 0 and take δ1, ...,δk as follows

δ1 =
δ

k
,a1 (δ1)δ2 =

δ

k
, ...,a1 (δ1) ...ak−1 (δk−1)δk =

δ

k
,

then define the constants ãk (δ ) and b̃k (δ ) as respectively the coefficients of∥∥∥(∂
k+1
j P

)
u
∥∥∥2

s
and ‖u‖2

s+m−θ
in the inequality (9). Consequently, it holds that
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∀s ∈ R,∀θ > 1,∀k ∈ N,∀δ > 0, there exist ãk (δ ) > 0, b̃k (δ ) > 0, ε̃k (δ ) >
0,∀u ∈C∞

c
(
Bρ

)
, ρ < ε ≤ ε̃k (δ ) = min{ε1 (δ ) , ...,εk (δ )} , such that

∥∥(∂ jP)u
∥∥2

s ≤ δ ‖Pu‖2
s + ãk (δ )

∥∥∥(∂
k+1
j P

)
u
∥∥∥2

s
+ b̃k (δ )‖u‖2

s+m−θ
. (10)

Choose k ∈N with k≥ θ−1, then there is cs,θ (δ )> 0, ε̃ (δ )> 0,∀u∈C∞
c
(
Bρ

)
,

ρ < ε̃ (δ ), ∥∥(∂ jP)u
∥∥2

s ≤ δ ‖Pu‖2
s + cs,θ (δ )‖u‖2

s+m−θ
. (11)

Remark that the inequality (11) is also true for θ = 1, as the operator (∂ jP) is of
order m−1. Finally, we have proved that ∀s ∈ R,∀θ ≥ 1,∀δ > 0,∃ρ > 0,∃c >
0,∀u ∈C∞

c (Ω) ,diam(Ω)< ρ,∥∥(∂ jP)u
∥∥2

s ≤ δ ‖Pu‖2
s + c‖u‖2

s+m−θ
. (12)

Let α = (α1, ...,αn) and α ′ = (α1, ...,α j−1,α j +1,α j+1...,αn) be two given
multi-indices. Assume that the hypothesis of induction : ∀s ∈ R,∀θ ≥ 1,∀δ >
0,∃ρ > 0,∃c > 0,∀u ∈C∞

c (Ω) ,diam(Ω)< ρ,

‖(∂ αP)u‖2
s ≤ δ ‖Pu‖2

s + c‖u‖2
s+m−θ

, (13)

is true and apply the inequality (12) to the operator (∂ αP) , then we obtain
∀δ ′,∃c′ > 0,∀u ∈C∞

c (Ω′) ,∥∥∥(∂
α ′P
)

u
∥∥∥2

s
≤ δ

′ ‖(∂ αP)u‖2
s + c′ ‖u‖s+m−θ

,

where Ω′ depends on δ ′. From the hypothesis of induction for (∂ αP) , we have
for every δ > 0 there is ρ > 0 such that∥∥∥(∂

α ′
j P
)

u
∥∥∥2

s
≤ δ

′
δ ‖Pu‖2

s +δ
′c‖u‖2

s+m−θ
+ c′ ‖u‖2

s+m−θ
,

∀u∈C∞
c (Ω∩Ω′) ,diam(Ω)< ρ. Take δ ′ = 1 we obtain then the inequality (13)

for α ′. This ends the proof of the Theorem 1.



170 C. BOUZAR

REFERENCES

[1] Bouzar C., Local estimates for pseudodifferential operators. Dokl. Nats. Akad.
Nauk Belarusi, T. 44, N◦ 4, p. 18–20, (2000)

[2] Bouzar C., Kuleshov A. A., Local solvability of pseudodifferential equations of
constant strength I. Differential Equations, T. 24, N◦ 5, p. 548–553, (1988).

[3] Bouzar C., Kuleshov A. A., Local solvability of pseudodifferential equations of
constant strength II. Differential Equations, T. 24, N◦ 6, p. 663–668, (1988).
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