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ON SOLVABILTY OF PSEUDODIFFERENTIAL OPERATORS
WITH CONSTANT COEFFICIENTS

C. BOUZAR

The paper presents a result on local solvability, in classical Sobolev
spaces, of pseudodifferential operators with constant coefficients. The
proof of this result is based on a new Hormander’s type inequality for
such pseudodifferential operators.

1. Introduction

The well known Poincaré inequality in L? for bounded intervals
lully < (b—a) [[Dully , Vu € CZ(Ja, b)),

where |-||, denotes the L? norm, is the one dimensional precursor of the fol-
lowing inequality of L. Hormander, see [4], for general linear partial differential
operators with constant coefficients P(D),

1(0“P) (D)ully < ClIP(D)ully , Vu € CZ(Q),

where Q is a bounded domain of R", @ € N” and C > 0 is independent of u.
Indeed, if P(D) = -4 then its complete symbol is P(§) = & and Z—Ig(D) is the
identity operator. A fundamental consequence of Hormander’s inequality is the
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L?—solvability of every non null linear partial differential operators with con-
stant complex coefficients.

The paper presents a result on local solvability, in classical Sobolev spaces,
of pseudodifferential operators with constant coefficients, i.e. independent of
the variable x, its proof is based on a new Hormander’s type inequality for
pseudodifferential operators with constant coefficients. Some variants of the
proposed inequality occur in the study of local solvability of pseudodifferential
equations with variable coefficients, see e.g. [1], [2], [3]. The proof of the re-
sult of the paper on local solvability is more close to linear partial differential
operators.

2. The solvability

We follow the notations and definitions of the theory of distributions and pseu-
dodifferential operators as in [5] and [6]. Let Q be an open set of R”, denote by
C(Q) the space of infinitely differentiable functions with compact support and
by H*,s € R, the Sobolev space on R” with inner product and norm respectively
(+-); and |[-[l-

Definition 1. The class S™,m € R, is the space of infinitely differentiable func-
tions P defined on R" satisfying : for every multi-index o € Z} there exists ¢ >0
such that

(@°P) () <e(1+[E)" 1, vE eR"

A pseudodifferential operator P (D) of order m with constant coefficients is
a linear operator acting on functions # € H* by the formula

PD)u(v) = [ EPE)@E)ME,

n

where P € §" is called the symbol of P (D), and u denotes the Fourier transform
of u. It holds that for every s € R there exists ¢ > 0 such that

IP(D)ulls < cllully,, , Yu € H™™.

s+m

The symbol of the pseudodifferential operators P (D) and (d%P) (D) are re-
spectively P (&) and (d*P) (&). It is clear that the formal adjoint P* (D) of the
operator P (D) is P (D), and we have

|P(D)ul|, = |P(D)ull;,Yu e H°.

Remark 1. As we deal exclusively with local a priori estimates, and in view
of the classical result on the decomposition of pseudodifferential operators, we
assume that all the pseudodifferential operators are properly supported.
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Recall the following result, see [6].

Lemma 2.1. Let s,t be two real numbers such that s <t and t > —% |, then
Ve > 0,3p > 0,V open set of R",diam(w) < p,Yu € Cj (w),

luall < &]fal] -

The proof of the result on local solvability is based on the following
Hormander’s type inequality which is proved in the next section.

Theorem 1. Let P(D) be a pseudodifferential operator of the class S”,s €
R,0 > 1 and o € N, then V6 > 0,3p > 0,3c > 0,Vu € Cj (Q) ,diam(Q) < p,
we have

1(0P) (D) ully < 8{|P (D) ully+cllully; g - (InApr)

Now let’s present the main result on local solvability.

Theorem 2. Let P (D) be a pseudodifferential operator of the class S™ such that
there exist so € R,mg € N,c > 0,VE € R”,

Y @) &P zc(1+16P)", (InAlg)

lee|<my

then for every xo € R" and s < 7, there exists a neighborhood @ of x( such that
Vf e H (0),3u € H™ (o) satisfying P(D)u = f .

Proof. From the estimate (InAlg) follows the existence of C > 0 such that Vu &
Hs+s0,
s <€ Y |[@PYDI

|a\<m0

N

Let Q be an open neighborhood of x(, due to the inequality (InApr) of Theorem
1, it holds that Vs € R,V0 > 1,V > 0,3p > 0,3c > 0,Vu € C° (Q) ,diam(Q) <
P,

el 150 < Cona (8 [P DY+l 1-6):

Lemma 1 with s € R and 6 > 1 such that m — 6 < sp and s > —so — 75, gives
Ve > 0 there exists an open neighborhood ® of x,Vu € C7° (@),

H Hs—&-m 6<8H ”s-&-so

Consequentelly, it follows that for an open neighborhood w of xy we have

< Gy (0 Hmu

s+so —

e

sts0)) VU € C(0),
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1.e.

(1 —&cCpy) [[u

0 < G [P

Vu e CZ (o),

Taking € > 0 such that 1 — £cC,,, > 0, then there exist an open neighborhood @
of xp and a constant C > 0 such that the following inequality holds

Il s, < C||PDY

LVueC (o).

Consider now for f € H*"% (@) the linear form
L: P(D)CT(w) — C
Pr(D)o - (/,9)
Then
(£ @) < A s [1@l515 S CUS N5 1P (D) @

This estimate implies that the linear form L can be extended to the whole Hilbert

space Hjj () :=C (a))H . Consequently, by the Riesz representation Theorem,
we obtain that Vs € R, —s —so < § and Vf € H*7% () there exists u € H* (@)
such that P (D)u = f . It follows then the local solvability result of the Theorem.

O

As a consequence we have the following result.

Corollary 1. Let P (D) be a linear partial differential operator with constant
coefficients, then for every xo € R" and s < 5 there exits an open neighborhood
o of xo such thatVf € H* (w) ,3u € H* (w) satisfying P(D)u = f.

Proof. For every non null linear partial differential operator with constant coef-
ficients P (D) there exists ¢ > 0,VE € R,

Y 1P (&) =e,

lot|<m

where m is the degree of the polynomial P(&). Then we apply Theorem 2 with
so = 0 and my = m. ]

3. Proof of the inequality

The following Lemma is well known.

Lemma 3.1. Let ¢ € C°(Q) and s € R, there exists ¢ > 0 such that

1 pully < max|@)| [[ulls +cllulls . Vu € H,

where 0 < s— 1.
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We recall the classical inequality Vs,r € R,
()] <l ]y - Vo € B W € B,

The open ball of center the origin and radius € > 0 is denoted by B.. Let
@ eC(R")suchthat0 < @ <1,¢ (x) =1 for|x| <1, and ¢ (x) =0 for |x| > 2.
Define ¢ (x) = ¢(%), and let P (D) be a pseudodifferential operator of the class
S™ . then the operator [P (D), ¢¢| denotes the commutator of the pseudodifferen-
tial operator P (D) and the operator of multiplication by the function @;.

Lemma 3.2. If0 < p < €, the operator [P (D), @¢] satisfies the following : for
every reals s and s' there exists ¢ > 0 such that

I[P (D), @elully < clully . Vu e C5(Bp).

Proof. The estimate is a consequence of the fact that the pseudodifferential op-
erator [P (D), @g] is of order —eo as its symbol is identically equals zero on a
neighbourhood of B, OJ

We give the proof of Theorem 1.

Proof. Letp € C2(R"),0< @ <1,¢(x)=1for |x| <1and ¢ (x) =0 for |x| > 2.
Define @¢ (x) = ¢(3),€ > 0,if 0 < p < &, then we have

u=@u ,YuecC>(Bp).
Denote by 8}‘ the derivation of order k with respect to the variable £;. We have
P (ixju) = ixjPu+ (9;P)u, (1)
s0,Vu € C (Bp) and 0 < p < g,
P(ixju) = ix;jQ¢ (x) Pu+ (djP)u+Tiu, (2)

where
T = ixj[P, ¢¢).

Hence

H(ajP) qu = (P (ixju),(9djP)u), — (ix;j@cPu,(d;P)u) — (Tiu, (d;P)u)

5"

It is clear that

(P (ixju),(djP)u), = ((9;P) (ix;u) ,Pu)s,

then

|(9;P) u||f = ((9;P) (ixju) ,Pu)s — (ix;@ePu, (9;P)u) — (Tiu, (d;P)u), .
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From (2), we have

(9P) (ixju) = ixj9e(Pyu-+ (9P )u+ Tou, (3)

where

T2 = ix.,-[(ajP), (,Dg]

Consequently, we obtain the following inequality

l@Pyull} < |{|ixoe(@Phu| 1Pull,+ || (92P) ll, 1Pl + | (o, Pu), | +
i pePul| || 0P ull + [(Tiu, (9P)u) | @)

Lemma 2 gives

< max Jixje (2) HWMHS +e0 () HW“H :

(e

|ixj0e (@)

S

A

2¢ [(9;P)ul| +cs0 () lutll gy »

and in the same way
ixj@ePul|, < 2€ | Pul + ¢ o (&) ull 5 -
For every real t we have

‘(TQM,FM)S‘ = |(PT2M7M)5’ < ||T2u||s—t+m ||u||s+t ’

(T, OsP)u),| = | ((35P) Tuae) | < Tl s,

From the above inequalities it follows that

[@Pf < 4elpul, @), + | (337)al, IPal, +
+5.o (&) [P ul| Nl g+ 5.0 (&) I1Pul s [[1tl] 54y +

+ HTll'tHs—z+m—1 ||”||s+t + ‘|T2”Hs7z+m Hu||s+t . &)

Due to the algebraic inequality 2ab < £a” + %bz,sz > 0,Va,b > 0, we obtain

1
l@Pyul} < 6ellPull+ae [(9P)ull} + - || (92P) |} +

[Cs,cr (8)]2 [C{v,c (8)]2

2 2 2
S s+ Wl el +

+

1 2 1 2
+t3 (VAT +t3 | Taully i -
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Lete >0 withl -4 >0and 6 =s— 0, 6 > 1, then using Lemma 3 to the
operators of infinite order 77 and 7; there exists a constant c; g (&) > 0 such that

6¢e

2 2 2 2
[@iPyall? < =g 1Pl + oy —gyge | TPVl + evo &) s
: 0 . . .
Taking € = m, 0 > 0, we obtain that the following estimate holds Vs €

(26 +3)*

R,V6 > 1,V6 > 0, there exist a(§) = 5

> 0and b, g (6) > 0, such that
1(0;P)ul|> < & |Pul? +a(5) H(afP)quMs,e )l - (6

0

Now by induction we show that for arbitrary s € R and 08 > 1 we have Vk €
N,V8; > 0 there exist ai () > 0,bx (6) > 0,& (&) > 0,Yu € C (Bp) ,p <
& (8)

f < &Pl +ac (30 || (9471P) qu+bk(5k) [ S

(@57

it is clear that only the constant by (d) depends on s and 6. The case k = 1 is
true by (6), where 51 = 6,611 (51) = 0(5) ,b1 (51) = bsﬁ (5) and 81(51) =& (5) .
Assume the inequality true for k, i.e. we have (7). The inequality (6) applied
to the operator (8}-‘P> gives Vo > 0 there exist a; (0) > 0,b;(6) > 0,&(8) >

0,Vu e CZ (Bp),p <& (6),

|(o5tp)
®)

2

Estimating H (a]’fp) u‘ in (8) by the inequality (7), it follows that Vi € C= (B,).
S

p <e<min{g (5),& (o)},

[(r)

N

S [[(a)ul e )] (212P) a1 B) e

2
+

N

< 55k||1>u||§+5ak(5k)H(ajf+lp)u

2
+

N

+861(80) |l a1 (3)] (9f2P) u
51 (8) 1l g -
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Then for § < (15 ) we have that Vu € C* (B,) ,p < min{g; (8),& (&)},
ax (6
2 55 a1 (5) 2
k < k 2 1 k+2
|(2p) |, < —oa (60 T+ T 50 (5 | (@2p) ] +

b1 (8)+ 0bi (&) a2
1 — by (6k) stm—6 -

Let &1 > 0 and taking

5 — G
& + Srrax (&)
a; (6
a1 (Bps1) = 1—(1511(1<E5k)’
b1 (8) + 6by (&)
1—8ay (&)

b1 (Gki1)
it holds that

[ (a5p) u”2 < St |Pull gt (Seer) || (2472P) ’

N

+

2
Fbri1 (Skr1) ully g

v . Ok+1
Yu € CC (Bp) P < Et1 (5k+1) = mln{&‘] (MM) , Ek (6]()} . Con-

sequently, the inequality (7) is proved.

Let O, ar (6),br (6) and & (&) ,k € N, be the respective constants of the
right member of the estimate (7). By iteration in the inequality (6), we obtain
VueCy (By),p <e<min{e (81),....& (&)}, k > 2, we have

[@P)ul? < (8i+a1(8)&+...+ar (81)..ar1 (1) &) [ Pul} +
2
+a1(51)....ak(6k)H<3J’~‘+1P)u n )
+(b1(01)+...+a1(01)...ak—1 (Ok—1) bi (&)) ””H?erw

N

Let 6 > 0 and take &y, ..., & as follows

0 0 0

o) = PRk (61)0 = PRRSLS (61)..ar—1 (Ok—1) 6 = 7

then define the constants d (&) and by (8) as respectively the coefficients of

(@),

2
and ||ul|? m_p in the inequality (9). Consequently, it holds that
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Vs € R,VO > 1,Vk € N,V§ > 0, there exist dx(8) > 0,b;(8) > 0,8 (8) >
0,Yu € CT (Bp), p < € < &(6) =min{g (5),...,&(8)}, such that

2 -~
|@i)ull? < 811Pull +a(8) | (317 P) ul| +Be(®) Il s - 10)

Choose k € N with k > 6 — 1, then there is ¢ ¢ (8) > 0,€ (8) > 0,Yu € C (By),
p <€(9),
2
1P ull; < 8 11Pully +exo () lullZ g - (11

Remark that the inequality (11) is also true for 8 = 1, as the operator (d;P) is of
order m — 1. Finally, we have proved that Vs € R,vV0 > 1,¥6 > 0,3p > 0,3c >
0,Vu € C (Q),diam(Q) < p,
2 2 2
|@Pyull* < 8 1Pull+ ¢l - (12)
Leta = (ay,...,a,) and o = (@, ..., 1,0+ 1,0j41..., Q) be two given
multi-indices. Assume that the hypothesis of induction : Vs € R,V > 1,V6 >
0,3p > 0,3c > 0,Vu € C (Q) ,diam(Q) < p,
1(@*P)ull} < & |[Pul +c|[ul> (13)
s = s s+m—0 >

is true and apply the inequality (12) to the operator (d*P), then we obtain
Vo', 3 > 0,YueCr (),
s+m—0 >

| (or) “Hf < 8[|@“P)ull; +¢'|ul

where Q' depends on ¢’. From the hypothesis of induction for (d%P), we have
for every 0 > 0 there is p > 0 such that

2
; 2 2 . 2
H (afq P) MHS < 8'8||Pull; +d'c 17| ¢ lullysme -

Vue Cr(QNQ'),diam(Q) < p. Take 6’ = 1 we obtain then the inequality (13)
for o’. This ends the proof of the Theorem 1. O
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