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A LIOUVILLE-TYPE THEOREM FOR THE

HOMOGENEOUS WAVE EQUATION

FILIPPO CAMMAROTO - ANTONIA CHINNI�

In this paper, we characterize those bounded from below solutions of

the homogeneous wave equation ∂ 2 f
∂ x2 −

∂ 2 f
∂y2 = 0 on R

2 which are constant.

1. Introduction.

Motivated by the classical result of Liouville on harmonic functions, one
generically calls Liouville-type theorem any result ensuring that the solutions
of a given differential equation, which satisfy a suitable growth condition, are
constant.

In this paper, we are interested in the classical homogeneous wave equation

(1)
∂2 f

∂x 2
−

∂2 f

∂y2
= 0

on R
2.
Our starting point is the observation that there are bounded solutions of (1)

which are not constant. For instance, consider f (x , y) = sin(x + y).
So, it is our aim to characterize those solutions of (1), bounded from below,

which are constant. Our result is Theorem 2.2, proved in the next section.
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2. The result.

For the reader�s convenience, let us �rst recall a result, proved in [1], which
is the main tool in proving Theorem 2.2.

Theorem 2.1. Let X be a real Banach space, f : X → R a lower semicontin-
uous and G�ateaux differentiable function, bounded from below. Assume that

lim sup
�x�→+∞

f (x )

�x�
< +∞.

Then, for every � > lim sup
�x�→+∞

f (x)
�x�

one has

conv({x ∈ X : � f �(x )�X ∗ ≤ �}) = X .

In the sequel, for a differentiable function f : R
2 → R, we denote

by fx and fy its �rst-order partial derivatives and by ∇ f its gradient, that is

∇ f = ( fx , fy ). Also, if (x , y) ∈ R
2, we put |(x , y)| =

�
x 2 + y2.

Theorem 2.2. Let f ∈ C
3(R2) be a solution of equation (1), bounded from

below. Assume that

(2) lim
|(x,y)|→+∞

f (x , y)

|(x , y)|
= 0.

Then the function f is constant if and only if the inequality

(3) Gx (x , y) ≥ |Gy(x , y)|

holds for every (x , y) ∈ R
2, where

G(x , y) = fx (x , y) fxx (x , y) + f y(x , y) fxy(x , y)

for every (x , y) ∈ R
2.

Proof. Obviously, if f is a constant, (3) holds. Now let�s prove the opposite
implication. It suf�ces to prove that

sup
(x,y)∈R2

|∇ f (x , y)| = 0.
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Arguing by contradiction, suppose that the above number is strictly greater then
zero. Then we can choose � satisfying

(4) 0 = lim
|(x,y)|→+∞

f (x , y)

|(x , y)|
< � < sup

(x,y)∈R2

|∇ f (x , y)|.

Therefore Theorem 2.1 assures that

conv({(x , y) ∈ R
2 : |∇ f (x , y)| ≤ �}) = R

2

and, because of the �nite dimensionality, this fact is equivalent (see [2]) to

conv({(x , y) ∈ R
2 : |∇ f (x , y)| ≤ �}) = R

2
.

Now we show that the set {(x , y) ∈ R
2 : |∇ f (x , y)| ≤ �} is convex. To this aim,

it suf�ces to prove that the function |∇ f |2 is convex.
So, put H = f 2

x + f 2
y . Since H ∈ C2(R2) (recall that f ∈ C3(R2)), by a

classical result, to prove that the function H is convex, we have to show that

(i) Hxx ≥ 0;
(ii) Hxx Hyy − H 2

xy ≥ 0

pointwise in R
2.

In order to prove (i) we make use of (3), obtaining, in particular Gx(x , y) ≥

0. In fact one has

Hxx = 2
∂

∂x
( fx fxx + fy fxy ) = 2Gx(x , y) ≥ 0.

Moreover, being fxx = fyy , condition (ii) holds; in fact

Hxx Hyy − H 2
xy = 4( f 2

xx + f 2
xy + fx fxxx + f y fxxy )

2−

−4(2 fxx fxy + fx fxxy + fy fxxx )2 = 4(G2
x − G2

y) ≥ 0

thanks to (3).
Then one has

{(x , y) ∈ R
2 : |∇ f (x , y)| ≤ �} = R

2

and this is a contradiction with (4).
Hence the function f has to be a constant because its gradient is identically

zero in R
2. �

It is worth noticing that condition (2) is not super�uous for the validity of
the conclusion of Theorem 2.2. In this connection, consider the function ex+y :
it is a non constant, bounded from below solution of equation (1) which
satis�es (3).
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