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EQUILIBRATION IN A TWO-SPECIES–TWO-CHEMICALS
CHEMOTAXIS-COMPETITION SYSTEM

M. MIZUKAMI - T. YOKOTA - N. YOSHIMIYA

This paper is concerned with stabilization in the two-species–two-
chemicals chemotaxis-competition system

ut = ∆u−χ1∇ · (u∇v)+µ1u(1−u−a1w) in Ω× (0,∞),

0 = ∆v− v+w in Ω× (0,∞),

wt = ∆w−χ2∇ · (w∇z)+µ2w(1−a2u−w) in Ω× (0,∞),

0 = ∆z− z+u in Ω× (0,∞),

where Ω is a bounded domain in Rn (n ≥ 2) with smooth boundary,
χ1,χ2 and µ1,µ2 are constants satisfying some conditions. About this
system Tu–Mu–Zheng–Lin (Discrete Contin. Dyn. Syst.;2018;38;3617–
3636) showed global existence and stabilization of solutions under some
smallness conditions for χ1 and χ2. Here energy arguments for seeing
stabilization in the previous work were based on ideas in Bai–Winkler
(Indiana Univ. Math. J.;2016;65;553–583); however, these ideas were
recently improved by the first author (Discrete Contin. Dyn. Syst. Ser.
S;2020;13;269–278), which implies that the result about stabilization in
the previous work seems not to be the best. This paper gives an improve-
ment of conditions for stabilization in the previous work. The feature of
the proof is to use the Sylvester criterion in deriving energy estimates.
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1. Introduction and results

In this paper we study a two-species–two-chemicals chemotaxis-competition
system. More precisely, we consider the parabolic–elliptic–parabolic–elliptic
system which represents the situation that two competitive biological species
diffuse randomly and move toward higher concentration of the chemical sub-
stance produced by the other species:

ut = ∆u−χ1∇ · (u∇v)+µ1u(1−u−a1w) in Ω× (0,∞),

0 = ∆v− v+w in Ω× (0,∞),

wt = ∆w−χ2∇ · (w∇z)+µ2w(1−a2u−w) in Ω× (0,∞),

0 = ∆z− z+u in Ω× (0,∞),

∇u ·ν = ∇v ·ν = ∇w ·ν = ∇z ·ν = 0 on ∂Ω× (0,∞),

u(x,0) = u0(x), w(x,0) = w0(x) in Ω,

(1.1)

where Ω is a bounded domain in Rn (n ≥ 2) with smooth boundary ∂Ω and ν

is the outward normal vector to ∂Ω; a1,a2 ≥ 0, χ1,χ2,µ1,µ2 > 0 are constants;
u0,w0 are initial data. In this setting the unknown functions u(x, t) and w(x, t)
show the population densities of the two species; the unknown functions v(x, t)
and z(x, t) represent the concentrations of the chemical substances produced by
w(x, t) and u(x, t), respectively, at place x and time t. Here we note that each
species moves according to the chemical stimulus produced by not itself but the
other species. Moreover, we assume that these species have the Lotka–Volterra
competitive kinetics.

An important theme in mathematical studies of the problem (1.1) is to show
global existence and large time behavior. One of the mathematical difficulties
of the problem (1.1) is to deal with the chemotaxis term (e.g., χ1∇ · (u∇v)) and
the competition term (e.g., µ1u(1− u− a1w)). In order to explain our purpose
we introduce known results about the problem (1.1). In this case Tao–Winkler
[12] studied boundedness vs. blow-up in the problem (1.1) with µ1 = µ2 = 0
under some conditions for the initial data. In the case that µ1 6= 0 and µ2 6= 0,
Zhang–Liu–Yang [18] showed global existence and boundedness under the con-
dition that χ1χ2 < µ1µ2, and derived stabilization under the additional condi-
tions that a1,a2 ∈ (0,1), χ1 < a1µ1, χ2 < a2µ2; Tu–Mu–Zheng–Lin [14] es-
tablished global existence under some conditions which partially improve those
in [18]. Moreover, they showed stabilization and its convergence rate under
some smallness conditions for χ2

1
µ1
,

χ2
2

µ2
. More related works which dealt with

a two-species–one-chemical chemotaxis-competition system were in [1, 2, 5–
11, 13, 15–17]; especially, Bai–Winkler [1] established energy arguments for
obtaining stabilization, and these arguments were improved in [8, 10]. Here a



EQUILIBRATION IN A CHEMOTAXIS-COMPETITION SYSTEM 173

strategy for stabilization in [14] is based on the energy arguments in [1]; there-
fore, we could expect to improve the conditions for stabilization in [14] by ap-
plying ideas in [8, 10]. Thus we can come across the following natural question:

What are the best conditions for stabilization
in the case that χ1,χ2 are constants?

(Q)

The purpose of this paper is to improve the conditions for stabilization in [14].
Now the main theorems read as follows. The first one is concerned with

asymptotic stability in (1.1) in the case that a1,a2 ∈ (0,1).

Theorem 1.1. Let a1,a2 ∈ (0,1) and assume that X := µ1
χ2

1
, Y := µ2

χ2
2

satisfy that

D :=
XY
256

(
256(1−a1a2)XY − (a1a2 +2)u∗w∗

−16(a2
1w∗X +a2

2u∗Y )+
u∗2w∗2

256XY

)
> 0 (1.2)

and that (
8(2−a1a2)X−

a2
2u∗

2

)
Y +16

√
D >

u∗w∗

16
, (1.3)

where

u∗ :=
1−a1

1−a1a2
, w∗ :=

1−a2

1−a1a2
.

If (u,v,w,z) is a global classical solution of (1.1) and satisfies

‖u‖
Cθ , θ

2 (Ω×[t,t+1])
+‖v‖

Cθ , θ
2 (Ω×[t,t+1])

+‖w‖
Cθ , θ

2 (Ω×[t,t+1])
+‖z‖

Cθ , θ
2 (Ω×[t,t+1])

≤ K

for all t ≥ 1 with some θ ∈ (0,1) and K > 0, then there exist C > 0 and ` > 0
such that

‖u(·, t)−u∗‖L∞(Ω)+‖v(·, t)−w∗‖L∞(Ω)

+‖w(·, t)−w∗‖L∞(Ω)+‖z(·, t)−u∗‖L∞(Ω) ≤Ce−`t

for all t > 0.

The second theorem derives asymptotic stability in (1.1) in the case that
a1 ≥ 1 > a2 > 0.
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Theorem 1.2. Let a1 ≥ 1 > a2 > 0 and assume that

Y :=
µ2

χ2
2
>

1
16(1−a2)

. (1.4)

If (u,v,w,z) is a global classical solution of (1.1) and satisfies

‖u‖
Cθ , θ

2 (Ω×[t,t+1])
+‖v‖

Cθ , θ
2 (Ω×[t,t+1])

+‖w‖
Cθ , θ

2 (Ω×[t,t+1])
+‖z‖

Cθ , θ
2 (Ω×[t,t+1])

≤ K

for all t ≥ 1 with some θ ∈ (0,1) and K > 0, then the following properties hold:

(i) If a1 > 1, then there exist C > 0 and ` > 0 satisfying

‖u(·, t)‖L∞(Ω)+‖v(·, t)−1‖L∞(Ω)

+‖w(·, t)−1‖L∞(Ω)+‖z(·, t)‖L∞(Ω) ≤Ce−`t

for all t > 0.

(ii) If a1 = 1, then there exist C > 0 and ` > 0 satisfying

‖u(·, t)‖L∞(Ω)+‖v(·, t)−1‖L∞(Ω)

+‖w(·, t)−1‖L∞(Ω)+‖z(·, t)‖L∞(Ω) ≤C(t +1)−`

for all t > 0.

Remark 1.3. Suppose that a1≥ 1> a2. Then, noting that a2(1−a1a2)< 1−a2,
we derive that the condition (1.4) is better than that assumed in [14]:

µ2

χ2
2
>

a1

16a2(1− `)
(` > a1a2).

On the other hand, in the case that a1,a2 ∈ (0,1), we can also confirm that the
conditions are better than those in [14]: there are k1,k2 ∈ (0,1) such that

k1k2 > a1a2,
µ1

χ2
1
>

a2u∗

16a1(1− k2)
,

µ2

χ2
2
>

a1w∗

16a2(1− k1)
. (1.5)

Indeed, although the conditions (1.2) and (1.3) in Theorem 1.1 cannot be ex-
plicitly compared with the condition (1.5) in [14], the viewpoint of methods in
construction of energy functions tells us to improve the conditions; moreover,
by using a numerical analysis, we can see that the conditions (1.2) and (1.3)
improve the condition (1.5) (see Figure 1 below).
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Remark 1.4. This result shows stabilization in (1.1) under the conditions that
X = µ1

χ2
1

and Y = µ2
χ2

2
are large and that there is a global classical solution of (1.1).

Here global existence of solutions to (1.1) is shown in [14] under the conditions
that

χ1

µ1
<

a1n
n−2

and
χ2

µ2
<

a2n
n−2

(1.6)

hold. Thus, in view of Remark 1.3, these results exactly improve that in [14].

The proofs of Theorems 1.1 and 1.2 are based on a new method which is a
combination of those in [10, 14]. One of the keys for the proof of Theorem 1.1
is to derive the following inequality:

d
dt

E1(t)

≤−ε0

∫
Ω

[
(u(·, t)−u∗)2 +(v(·, t)−w∗)2 +(w(·, t)−w∗)2 +(z(·, t)−u∗)2]

for all t > 0 and some constant ε0 > 0, where

E1(t) := a2µ2

∫
Ω

(
u(·, t)−u∗−u∗ log

u(·, t)
u∗

)
+a1µ1δ1

∫
Ω

(
w(·, t)−w∗−w∗ log

w(·, t)
w∗

)
and (u∗,w∗,w∗,u∗) ∈ R4 is a solution of (1.1). Here an energy function used
in the proof of [14, Theorem 1.2] is defined as the function E1 specialized by
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setting δ1 = 1, whereas the optimization by δ1 enables us to improve conditions
for χ1,χ2. In Section 3 we use the Sylvester criterion to prove Theorem 1.1.

This paper is organized as follows. In Section 2 we provide some lemmas
which will be used later. Sections 3 and 4 are devoted to the proof of asymptotic
stability (Theorems 1.1 and 1.2).

2. Preliminaries

In the following we assume that (u,v,w,z) is a classical solution of (1.1) such
that

‖u‖
Cθ , θ

2 (Ω×[t,t+1])
+‖v‖

Cθ , θ
2 (Ω×[t,t+1])

+‖w‖
Cθ , θ

2 (Ω×[t,t+1])
+‖z‖

Cθ , θ
2 (Ω×[t,t+1])

≤ K

for all t ≥ 1 with some θ ∈ (0,1) and K > 0, and will establish convergence of
the solution as t → ∞ in the cases that a1,a2 ∈ (0,1) and a1 ≥ 1 > a2 > 0. We
first recall an important lemma for the proofs of Theorems 1.1 and 1.2 (see [4,
Lemma 4.6]).

Lemma 2.1. Let f ∈C0(Ω× [0,∞)) satisfy

‖ f‖
Cθ∗ , θ∗

2 (Ω×[t,t+1])
≤C∗

for all t ≥ 1 with some C∗ > 0 and θ ∗ > 0, and assume that there exists a
constant F∗ > 0 such that∫

∞

0

∫
Ω

( f (x, t)−F∗)2 dxdt < ∞.

Then
‖ f (·, t)−F∗‖L∞(Ω)→ 0

as t→ ∞.

In order to upgrade the L2-convergence rate to the L∞-convergence rate we
next give the following lemma.

Lemma 2.2. Let (u,w,w,u) ∈ R4 be a solution of (1.1), and assume that there
exists a function h : [0,∞)→ R such that

‖u(·, t)−u‖L2(Ω)+‖w(·, t)−w‖L2(Ω) ≤ h(t)

for all t > 0. Then there exists a constant C > 0 such that

‖u(·, t)−u‖L∞(Ω)+‖v(·, t)−w‖L∞(Ω)

+‖w(·, t)−w‖L∞(Ω)+‖z(·, t)−u‖L∞(Ω) ≤C(h(t−1))
1

n+1

for all t ≥ 1.
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Proof. We first verify that

‖u(·, t)−u‖Lp(Ω)+‖w(·, t)−w‖Lp(Ω)

≤ ‖u(·, t)−u‖
1− 2

p

L∞(Ω)‖u(·, t)−u‖
2
p

L2(Ω)
+‖w(·, t)−w‖

1− 2
p

L∞(Ω)‖w(·, t)−w‖
2
p

L2(Ω)

≤C
1− 2

p
1 (h(t))

2
p

for all t > 0 with some C1 > 0, where we have used the boundedness of u and
w. Therefore, since the function v satisfies

−∆(v−w)+(v−w) = w−w in Ω× (0,∞), (2.1)

an elliptic regularity argument (see [3, Theorem 9.26]) derives that

‖v(·, t)−w‖W 2,2n+2(Ω) ≤CE‖w(·, t)−w‖L2n+2(Ω)

≤CEC
n

n+1
1 (h(t))

1
n+1

for all t > 0 with some CE > 0. In particular, we obtain

‖∇v(·, t)‖L2n+2(Ω) = ‖∇(v(·, t)−w)‖L2n+2(Ω)

≤ ‖v(·, t)−w‖W 2,2n+2(Ω)

≤CEC
n

n+1
1 (h(t))

1
n+1

for all t > 0. Similarly we see that

‖∇z(·, t)‖L2n+2(Ω) ≤CEC
n

n+1
1 (h(t))

1
n+1

for all t > 0. Now, applying the variation of constants formula to the first and
third equations in (1.1), we obtain

u(·, t)−u = e∆(u(·, t−1)−u)

−χ1

∫ t

t−1
e(t−s)∆

∇ · (u(·,s)∇v(·,s))ds

+µ1

∫ t

t−1
e(t−s)∆u(·,s)(1−u(·,s)−a1w(·,s))ds

and

w(·, t)−w = e∆(w(·, t−1)−w)

−χ2

∫ t

t−1
e(t−s)∆

∇ · (w(·,s)∇z(·,s))ds

+µ2

∫ t

t−1
e(t−s)∆w(·,s)(1−a2u(·,s)−w(·,s))ds
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for all t ≥ 1. Then, using an argument similar to that in the proof of [1, Lemma
3.6], we infer that

‖u(·, t)−u‖L∞(Ω)+‖w(·, t)−w‖L∞(Ω) ≤C2(h(t−1))
1

n+1 (2.2)

for all t ≥ 1 with some C2 > 0. Therefore, since the function v−w satisfies (2.1),
the maximum principle for elliptic equations enables us to find some C3 > 0 such
that

‖v(·, t)−w‖L∞(Ω) ≤C3‖w(·, t)−w‖L∞(Ω)

≤C3C2(h(t−1))
1

n+1 (2.3)

for all t ≥ 1. Similarly we can have that

‖z(·, t)−u‖L∞(Ω) ≤C4(h(t−1))
1

n+1 (2.4)

for all t ≥ 1 with some C4 > 0. Collecting (2.2), (2.3) and (2.4) yields the
conclusion of this lemma.

For the sake of convenience in the next two sections we present a lemma
which is nothing but a special case of the Sylvester criterion for quadratic forms.
The lemma is stated as follows and proved by a similar argument as in the proof
of [10, Lemma 2.1].

Lemma 2.3. Let a,b,c,d,e, f ,g,h, i, j ∈ R.

(I) Suppose that

a > 0,

ae− b2

4
> 0,

aeh− a f 2

4
− b2h

4
+

bc f
4
− c2e

4
> 0,

aeh j− aei2

4
− a f 2 j

4
+

a f gi
4
− ag2h

4
− b2h j

4

+
b2i2

16
+

bc f j
4
− bd f i

8
− bcgi

8
+

bdgh
4

−c2e j
4

+
cdei

4
+

c2g2

16
− cd f g

8
− d2eh

4
+

d2 f 2

16
> 0.

(2.5)

Then there exists ε0 > 0 such that

ax2 +bxy+ cxz+dxw+ ey2 + f yz+gyw+hz2 + izw+ jw2

≥ ε0(x2 + y2 + z2 +w2)

holds for all x,y,z,w ∈ R.
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(II) Suppose that 

a > 0,

ad− b2

4
> 0,

ad f − ae2

4
− b2 f

4
+

bce
4
− c2d

4
> 0.

(2.6)

Then there exists ε ′0 > 0 such that

ax2 +bxy+ cxz+dy2 + eyz+ f z2 ≥ ε
′
0(x

2 + y2 + z2)

holds for all x,y,z ∈ R.

3. Convergence. Case I: a1,a2 ∈ (0,1)

In this section we derive stabilization in the case that a1,a2 ∈ (0,1). We first
verify the following lemma which is utilized to confirm that the assumption of
Lemma 2.1 is satisfied.

Lemma 3.1. Let a1,a2 ∈ (0,1). Assume that (1.2) and (1.3) are satisfied. Then
there exists δ1 > 0 such that the function E1 : (0,∞)→ R defined as

E1 := a2µ2

∫
Ω

(
u−u∗−u∗ log

u
u∗

)
+a1µ1δ1

∫
Ω

(
w−w∗−w∗ log

w
w∗

)
(3.1)

satisfies

d
dt

E1(t)

≤−ε0

∫
Ω

[
(u(·, t)−u∗)2 +(v(·, t)−w∗)2 +(w(·, t)−w∗)2 +(z(·, t)−u∗)2]

(3.2)

for all t > 0 with some ε0 > 0, where

u∗ =
1−a1

1−a1a2
, w∗ =

1−a2

1−a1a2
.

Proof. We shall show that there is a constant δ > 0 such that

δ >
a2u∗

16a1X
(3.3)
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and

G(δ ) := X
(

a1a2

4
Y +

a1w∗

16a2

)
δ

2−
(

1
2
(2−a1a2)XY +

u∗w∗

256

)
δ

+
a2u∗

16a1
Y +

a1a2

4
XY < 0, (3.4)

where X = µ1
χ2

1
, Y = µ2

χ2
2
. Thanks to the condition (1.2), the discriminant D of

G(δ ) is positive:

D :=
(

1
2
(2−a1a2)XY +

u∗w∗

256

)2

−4X
(

a1a2

4
Y +

a1w∗

16a2

)(
a2u∗

16a1
Y +

a1a2

4
XY
)

=

(
1−a1a2 +

a2
1a2

2
4

)
X2Y 2 +

(2−a1a2)u∗w∗

256
XY +

u∗2w∗2

2562

−
(

a2
1a2

2
4

XY +
a2

2u∗

16
Y +

a2
1w∗

16
X +

u∗w∗

64

)
XY

=
XY
256

(
256(1−a1a2)XY − (a1a2 +2)u∗w∗

−16(a2
1w∗X +a2

2u∗Y )+
u∗2w∗2

256XY

)
> 0.

Hence two solutions of the equation G(δ ) = 0 are given by

δ± :=
a2
(
8(2−a1a2)XY + u∗w∗

16 ±16
√

D
)

2a1X(4a2
2Y +w∗)

and (3.4) holds for all δ ∈ (δ−,δ+). Here we can take δ = δ1 satisfying not only
(3.4) but also (3.3) if

δ+ =
a2
(
8(2−a1a2)XY + u∗w∗

16 +16
√

D
)

2a1(4a2
2Y +w∗)X

>
a2u∗

16a1X
. (3.5)

This is verified by the condition (1.3). Indeed, adding a2
2u∗

2 Y + u∗w∗
16 to the both

sides of (1.3), we infer

8(2−a1a2)XY +
u∗w∗

16
+16
√

D >
u∗(4a2

2Y +w∗)
8

,
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which multiplied by a2
2a1(4a2

2Y+w∗)X derives (3.5). Therefore we can choose δ1 > 0

such that max
{

δ−,
a2u∗

16a1X

}
< δ1 < δ+ and both (3.3) and (3.4) hold with δ = δ1.

By the first and third equations in (1.1) we have that the function E1 defined as
(3.1) satisfies

d
dt

E1(t) = a2µ2

∫
Ω

(
ut(·, t)−

u∗ut(·, t)
u(·, t)

)
+a1µ1δ1

∫
Ω

(
wt(·, t)−

w∗wt(·, t)
w(·, t)

)
= a2µ1µ2

∫
Ω

(u(·, t)−u∗)(1−u(·, t)−a1w(·, t))

+a1µ1µ2δ1

∫
Ω

(w(·, t)−w∗)(1−a2u(·, t)−w(·, t))

−a2µ2u∗
∫

Ω

|∇u(·, t)|2

u2(·, t)
+a2µ2u∗χ1

∫
Ω

∇u(·, t) ·∇v(·, t)
u(·, t)

−a1µ1w∗δ1

∫
Ω

|∇w(·, t)|2

w2(·, t)
+a1µ1w∗χ2δ1

∫
Ω

∇w(·, t) ·∇z(·, t)
w(·, t)

.

(3.6)

Here, recalling that u∗ = 1−a1
1−a1a2

and w∗ = 1−a2
1−a1a2

, and noting that 1− u∗ = 1−
1−a1

1−a1a2
= a1(1−a2)

1−a1a2
= a1w∗ and 1−w∗ = a2u∗, we have that the first and second

terms of (3.6) are rewritten as

(u−u∗)(1−u−a1w) =−(u−u∗)2 +(u−u∗)(1−u∗−a1w)

=−(u−u∗)2−a1(u−u∗)(w−w∗)

and

(w−w∗)(1−a2u−w) =−(w−w∗)2−a2(w−w∗)(u−u∗),

which together with (3.6) imply that

d
dt

E1(t) =−a2µ1µ2

∫
Ω

(u(·, t)−u∗)2−a1µ1µ2δ1

∫
Ω

(w(·, t)−w∗)2

−a1a2µ1µ2(1+δ1)
∫

Ω

(u(·, t)−u∗)(w(·, t)−w∗)

−a2µ2u∗
∫

Ω

|∇u(·, t)|2

u2(·, t)
+a2µ2u∗χ1

∫
Ω

∇u(·, t) ·∇v(·, t)
u(·, t)

−a1µ1w∗δ1

∫
Ω

|∇w(·, t)|2

w2(·, t)
+a1µ1w∗χ2δ1

∫
Ω

∇w(·, t) ·∇z(·, t)
w(·, t)

.

(3.7)
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Thus, noting from the Young inequality that

χ1

∫
Ω

∇u ·∇v
u

≤
∫

Ω

|∇u|2

u2 +
χ2

1
4

∫
Ω

|∇v|2

and

χ2

∫
Ω

∇w ·∇z
w

≤
∫

Ω

|∇w|2

w2 +
χ2

2
4

∫
Ω

|∇z|2,

we establish from (3.7) that

d
dt

E1(t)≤−a2µ1µ2

∫
Ω

(u(·, t)−u∗)2−a1µ1µ2δ1

∫
Ω

(w(·, t)−w∗)2

−a1a2µ1µ2(1+δ1)
∫

Ω

(u(·, t)−u∗)(w(·, t)−w∗)

+
a2µ2u∗χ2

1
4

∫
Ω

|∇v(·, t)|2 + a1µ1w∗χ2
2 δ1

4

∫
Ω

|∇z(·, t)|2. (3.8)

Here the second equation in (1.1) enables us to obtain that∫
Ω

|∇v|2 =−
∫

Ω

(v−w∗)∆v

=−
∫

Ω

(v−w∗)2 +
∫

Ω

(v−w∗)(w−w∗). (3.9)

Similarly we infer that∫
Ω

|∇z|2 =−
∫

Ω

(z−u∗)2 +
∫

Ω

(z−u∗)(u−u∗).

Therefore we derive from (3.8) that

d
dt

E1(t)≤ F1(t) (3.10)

for all t > 0, where

F1(t) :=−a2µ1µ2

∫
Ω

(u(·, t)−u∗)2−a1µ1µ2δ1

∫
Ω

(w(·, t)−w∗)2

−a1a2µ1µ2(1+δ1)
∫

Ω

(u(·, t)−u∗)(w(·, t)−w∗)

+
a2µ2u∗χ2

1
4

(∫
Ω

(v(·, t)−w∗)(w(·, t)−w∗)−
∫

Ω

(v(·, t)−w∗)2
)

+
a1µ1w∗χ2

2 δ1

4

(∫
Ω

(z(·, t)−u∗)(u(·, t)−u∗)−
∫

Ω

(z(·, t)−u∗)2
)
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for all t > 0. In order to see that (3.2) holds it is enough to find ε0 > 0 such that

F1(t)

≤−ε0

∫
Ω

[
(u(·, t)−u∗)2 +(v(·, t)−w∗)2 +(w(·, t)−w∗)2 +(z(·, t)−u∗)2]

(3.11)

for all t > 0. To see this we shall show that the condition (2.5) in Lemma 2.3 (I)
is satisfied with

a = a2µ1µ2, b = 0,

c = a1a2µ1µ2(1+δ1), d =−a1µ1w∗χ2
2 δ1

4
,

e =
a2µ2u∗χ2

1
4

, f =−e,

g = 0, h = a1µ1µ2δ1,

i = 0, j =−d

and

x = u(·, t)−u∗, y = v(·, t)−w∗, z = w(·, t)−w∗, w = z(·, t)−u∗.

In order to see that the condition (2.5) holds we shall prove that

a = a2µ1µ2 > 0, (3.12)

ae− b2

4
= ae =

a2
2µ1µ2

2 u∗χ2
1

4
> 0, (3.13)

aeh− a f 2

4
− b2h

4
+

bc f
4
− c2e

4
= aeh− a f 2

4
− c2e

4

= e
(

ah− ae
4
− c2

4

)
> 0, (3.14)

aeh j− aei2

4
− a f 2 j

4
+

a f gi
4
− ag2h

4
− b2h j

4
+

b2i2

16
+

bc f j
4
− bd f i

8

− bcgi
8

+
bdgh

4
− c2e j

4
+

cdei
4

+
c2g2

16
− cd f g

8
− d2eh

4
+

d2 f 2

16

= aeh j− a f 2 j
4
− c2e j

4
− d2eh

4
+

d2 f 2

16

= e j
[

ah− ae
4
− c2

4
+

j
4

(
−h+

e
4

)]
> 0. (3.15)
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The conditions (3.12) and (3.13) are obvious. The conditions (3.14) and (3.15)
hold if either

ah− ae
4
− c2

4
> 0 and −h+

e
4
≥ 0 (3.16)

or

−h+
e
4
< 0 and ah− ae

4
− c2

4
+

j
4

(
−h+

e
4

)
> 0. (3.17)

However, (3.16) dose not hold, since the second inequality in (3.16) implies that

ah− ae
4
− c2

4
=−a

(
−h+

e
4

)
− c2

4
< 0.

Recalling that δ = δ1 satisfies (3.3) and (3.4), we have that (3.17) holds with
δ = δ1:

−h+
e
4
= µ2χ

2
1

(
−a1Xδ1 +

a2u∗

16

)
< 0

and

ah− ae
4
− c2

4
− jh

4
+

e j
16

=−a1a2µ1µ2χ
2
1 χ

2
2

[
X
(

a1a2

4
Y +

a1w∗

16a2

)
δ

2
1 −

(
1
2
(2−a1a2)XY +

u∗w∗

256

)
δ1

+
a2u∗

16a1
Y +

a1a2

4
XY
]

=−a1a2µ1µ2χ
2
1 χ

2
2 ·G(δ1)> 0.

Therefore from Lemma 2.3 (I) we can find ε0 > 0 such that (3.11) holds. Thus
a combination of (3.10) and (3.11) yields (3.2).

Next we will establish the convergence result for u and w in the case that
a1,a2 ∈ (0,1).

Lemma 3.2. Let a1,a2 ∈ (0,1). Assume that (1.2) and (1.3) are satisfied. Then

‖u(·, t)−u∗‖L∞(Ω)+‖w(·, t)−w∗‖L∞(Ω)→ 0

as t→ ∞.

Proof. Integration of (3.2) over (0,∞) together with Lemma 2.1 derives this
lemma.
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We see the following lemma which gives an L2-convergence rate for the
solution.

Lemma 3.3. Let a1,a2 ∈ (0,1). Assume that (1.2) and (1.3) are satisfied. Then
there exist C > 0 and ` > 0 such that

‖u(·, t)−u∗‖L2(Ω)+‖w(·, t)−w∗‖L2(Ω) ≤Ce−`t

for all t > 0.

Proof. A similar argument as in the proof of [9, Lemma 3.6] enables us to show
this lemma.

Proof of Theorem 1.1. A combination of Lemmas 2.2 and 3.3 immediately
leads to the conclusion of this theorem.

4. Convergence. Case II: a1 ≥ 1 > a2 > 0

In this section we show stabilization in the case that a1 ≥ 1 > a2 > 0. We first
derive the following lemma which is utilized to confirm that the assumption of
Lemma 2.1 is satisfied.

Lemma 4.1. Let a1 ≥ 1 > a2 > 0. Assume that (1.4) is satisfied. Then there
exist a′1 ∈ [1,a1] and δ2 > 0 such that the function E2 : (0,∞)→ R defined as

E2 := a2µ2

∫
Ω

u+a′1µ1δ2

∫
Ω

(w−1− logw)

satisfies

d
dt

E2(t)≤−a2µ1µ2(a′1−1)
∫

Ω

u(·, t)− ε
′
0

∫
Ω

[
u2(·, t)+(w(·, t)−1)2 + z2(·, t)

]
(4.1)

for all t > 0 with some ε ′0 > 0.

Proof. From the condition (1.4) there exists a′1 ∈ [1,a1] such that

a′1a2 < 1, Y =
µ2

χ2
2
>

a′21
16(1−a′1a2)

. (4.2)

Then we shall show that there is a constant δ ′ > 0 such that

H(δ ′) :=
[(

a′1a2

4
Y +

a′1
16a2

)
δ
′2− 1

2
(2−a′1a2)Y δ

′+
a′1a2

4
Y
]
< 0. (4.3)
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Thanks to (4.2), the discriminant D′ of H(δ ′) is positive:

D′ :=
(

1
2
(2−a′1a2)

)2

Y 2−
(

a′1a2

4
Y +

a′1
16a2

)
·a′1a2Y

= (1−a′1a2)Y
(

Y − a′21
16(1−a′1a2)

)
> 0.

Hence two solutions of the equation H(δ ′) = 0 are given by

δ
′
± :=

a2

(
4(2−a′1a2)Y ±8

√
D′
)

a′1(4a2
2Y +1)

and (4.3) holds for all δ ′ ∈ (δ ′−,δ
′
+). Therefore we can choose δ2 > 0 such that

δ
′
− < δ2 < δ

′
+.

Then we infer from the fact a′1 ∈ [1,a1] and the Young inequality that

d
dt

E2(t) = a2µ2

∫
Ω

ut(·, t)+a′1µ1δ2

∫
Ω

(
wt(·, t)−

wt(·, t)
w(·, t)

)
≤ a2µ1µ2

∫
Ω

u(·, t)(1−u(·, t)−a′1w(·, t))

+a′1µ1δ2

∫
Ω

(w(·, t)−1)(1−a2u(·, t)−w(·, t))

−a′1µ1δ2

∫
Ω

|∇w(·, t)|2

w2(·, t)
+a′1µ1χ2δ2

∫
Ω

∇w(·, t) ·∇z(·, t)
w(·, t)

. (4.4)

Now, noticing that the first and second terms are rewritten as

u(1−u−a′1w) =−(a′1−1)u−u2−a′1u(w−1),

(w−1)(1−a2u−w) =−(w−1)2−a2u(w−1),
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we obtain from (4.4) that

d
dt

E2(t)≤−a2µ1µ2(a′1−1)
∫

Ω

u(·, t)−a2µ1µ2

∫
Ω

u2(·, t)

−a′1a2µ1µ2(1+δ2)
∫

Ω

u(·, t)(w(·, t)−1)

−a′1µ1µ2δ2

∫
Ω

(w(·, t)−1)2

−a′1µ1δ2

∫
Ω

|∇w(·, t)|2

w2(·, t)
+a′1µ1χ2δ2

∫
Ω

∇w(·, t) ·∇z(·, t)
w(·, t)

≤−a2µ1µ2(a′1−1)
∫

Ω

u(·, t)−a2µ1µ2

∫
Ω

u2(·, t)

−a′1a2µ1µ2(1+δ2)
∫

Ω

u(·, t)(w(·, t)−1)

−a′1µ1µ2δ2

∫
Ω

(w(·, t)−1)2 +
a′1µ1χ2

2 δ2

4

∫
Ω

|∇z(·, t)|2.

Here, since a similar argument as in (3.9) implies that∫
Ω

|∇z|2 =−
∫

Ω

z2 +
∫

Ω

zu,

we infer that
d
dt

E2(t)≤−a2µ1µ2(a′1−1)
∫

Ω

u(·, t)+F2(t) (4.5)

for all t > 0, where

F2(t) :=−a2µ1µ2

∫
Ω

u2(·, t)−a′1a2µ1µ2(1+δ2)
∫

Ω

u(·, t)(w(·, t)−1)

−a′1µ1µ2δ2

∫
Ω

(w(·, t)−1)2

+
a′1µ1χ2

2 δ2

4

(∫
Ω

z(·, t)u(·, t)−
∫

Ω

z2(·, t)
)

for all t > 0. In order to show that (4.1) holds it suffices to find ε ′0 > 0 such that

F2(t)≤−ε
′
0

∫
Ω

[
u2(·, t)+(w(·, t)−1)2 + z2(·, t)

]
(4.6)

for all t > 0. To see this we shall show that the condition (2.6) in Lemma 2.3
(II) is satisfied with

a = a2µ1µ2, b = a′1a2µ1µ2(1+δ2),

c =−a′1µ1χ2
2 δ2

4
, d = a′1µ1µ2δ2,

e = 0, f =−c
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and
x = u(·, t), y = w(·, t)−1, z = z(·, t).

In order to see that the condition (2.6) holds we shall prove that

a = a2µ1µ2 > 0, (4.7)

ad− b2

4
> 0, (4.8)

ad f − ae2

4
− b2 f

4
+

bce
4
− c2d

4
= ad f − b2 f

4
− c2d

4
= f

(
ad− b2

4
− d f

4

)
> 0.

(4.9)

The condition (4.7) is obvious. Since (4.8) is a consequence of (4.9) from the
inequality

ad− b2

4
> ad− b2

4
− d f

4
,

it suffices to show the relation (4.9). We infer from (4.3) with δ ′ = δ2 that

ad− b2

4
− d f

4
=−a′1a2µ

2
1 µ2χ

2
2 ·H(δ2)> 0.

Therefore we can find ε ′0 > 0 such that (4.6) holds. Thus a combination of (4.5)
and (4.6) completes the proof of this lemma.

Next we will establish the convergence result for u and w in the case that
a1 ≥ 1 > a2 > 0.

Lemma 4.2. Let a1 ≥ 1 > a2 > 0. Assume that (1.4) is satisfied. Then

‖u(·, t)‖L∞(Ω)+‖w(·, t)−1‖L∞(Ω)→ 0

as t→ ∞.

Proof. Integration of (4.1) over (0,∞) together with Lemma 2.1 derives this
lemma.

Finally we shall establish a convergence rate for the solution of (1.1). We
see the following lemma which gives an L2-convergence rate for the solution.

Lemma 4.3. Suppose that (1.4) holds. Then the following properties hold:

(i) Let a1 > 1 and a2 ∈ (0,1). Then there exist C > 0 and ` > 0 such that

‖u(·, t)‖L2(Ω)+‖w(·, t)−1‖L2(Ω) ≤Ce−`t

for all t > 0.
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(ii) Let a1 = 1 and a2 ∈ (0,1). Then there exists C > 0 such that

‖u(·, t)‖L2(Ω)+‖w(·, t)−1‖L2(Ω) ≤
C√
t +2

for all t > 0.

Proof. Similar arguments as in the proofs of [9, Lemmas 3.9 and 3.10] lead to
this lemma.

Proof of Theorem 1.2. A combination of Lemmas 2.2 and 4.3 immediately
gives the conclusion of this theorem.
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