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SCHUR�S LEMMA AND BEST CONSTANTS

IN WEIGHTED NORM INEQUALITIES

GORD SINNAMON

Strong forms of Schur�s Lemma and its converse are proved for maps
taking non-negative functions to non-negative functions and having formal
adjoints. These results are applied to give best constants in a large class
of weighted Lebesgue norm inequalities for non-negative integral operators.
Since general measures are used, norms of non-negative matrix operators may
be calculated by the same method.

1. Introduction.

Schur�s Lemma is primarily a way of establishing the boundedness of
integral operators with non-negative kernels, or of matrix operators with non-
negative entries, between Lebesgue spaces. As a suf�cient condition [1], [3],
[4], [7], [11] it has been proved in many different forms and applied in a great
many situations. In a typical application, the lemma deduces the boundedness of
the operator in question from the hypothesis that there exist a positive function,
or sequence, satisfying a certain inequality. The clever choice of such a function,
or sequence, then �nishes the proof. After a great many clever choices have been
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made, one begins to suspect that there is always some choice that will serve. The
converses to Schur�s Lemma [2], [3], [5], [7], [8], [9], [10], [13] assert just that.

Naturally enough, Schur�s Lemma provides not only boundedness but also
an estimate of the norm of the integral or matrix operator. The various converses
generally show that the actual norm can be approximated arbitrarily closely by
such estimates. The question of whether or not the operator norm can be reached
has been addressed for sequences in [2], [9] and for certain integral operators in
[3], [4], [7].

In this paper we prove strong forms of Schur�s Lemma and its converse for
maps between non-negative functions on general measure spaces. The maps are
only required to have formal adjoints so they include integral operators with
non-negative kernels, non-negative matrix operators, composition operators,
and multiplication operators. These results are given in Section 2 but some
of the proofs have been deferred to Section 4 where we also give an iterative
procedure for approximating the norm of such an operator. For matrix operators,
the procedure is easily implemented on a computer and convergence is rapid.
The delicate iteration introduced in the proofs of Lemma 4.3 and Theorem 2.5
may be of independent interest as a �xed point result.

In Section 3, Schur�s Lemma and its converse are applied to establish best
constants for a large class of weighted Lebesgue norm inequalities, including
essentially all such inequalities for non-negative integral operators when the
Lebesgue index in the domain space is larger than the index in the codomain.
The method of generating inequalities with best constants is quite simple and
the calculations can be readily carried out by hand, with a computer algebra
system, or numerically. Several examples are given. Although these speci�c
examples may be of direct interest to the specialist, they are included here
simply as applications of Theorem 3.1 and illustrations of the method. The
reader is encouraged to start with a favorite positive operator, select a domain
space weight, �x a positive function, and see how simple it is to generate a
weighted norm inequality with best constant.

A great deal of progress has been made recently in the understanding of
weighted norm inequalities but the focus has been on establishing the �niteness
of the constant rather than its best (smallest) possible value. Boyd�s work [3,
4] as well as that of Howard and Schep [7] are exceptions to this and do �nd
best constants. There is some overlap between Boyd�s approach and this one but
the methods and objectives are quite different. Some of the standard proofs of
Schur and Gagliardo appear again here in no greater generality than in Howard
and Schep�s work but in a somewhat different context.

Throughout the paper we work with the extended real numbers under the
convention that 0 · ∞ = 0. The dual of the Lebesgue index p is denoted p� so
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that 1/p + 1/p� = 1.

2. Schur�s Lemma and its converse.

Let L+
µ and L+

ν denote the non-negative, extended real valued functions
on the measure spaces (X, dµ) and (Y, dν) respectively. We say that a map
T : L+

ν → L+
µ has a formal adjoint T ∗ : L+

µ → L+
ν provided

�

(T f )g dµ =

�

f (T ∗g) dν

for all f ∈ L+
ν and g ∈ L+

µ . For �xed indices p and q with 1 < q ≤ p < ∞ we
de�ne �T� by

�T� = sup{�T f �L
q
µ
: f ∈ L+

ν , � f �L
p
ν

≤ 1}

and the map S : L+
ν → L+

ν by

Sϕ = (T ∗((Tϕ)q−1))p
�−1.

An extremal function for T from L
p
ν to L

q
µ is a non-zero function f ∈ L+

ν

satisfying �T f �L
q
µ

= �T�� f �L
p
ν

< ∞.
Although the results of this section apply to any map T having a formal

adjoint we are most interested in the class of non-negative integral operators. If
k(x , t) is a non-negative, extended real valued, µ × ν-measurable function then
the maps Tk : L

+
ν → L+

µ and T ∗
k : L+

µ → L+
ν de�ned by

Tk f (x ) =

�

Y

k(x , y) f (y) dν(y) and T ∗
k g(y) =

�

X

k(x , y)g(x ) dµ(x )

are easily seen to be formal adjoints. Moreover, �T� is just the usual norm of Tk
considered as a linear transformation from L

p
ν to L

q
µ . The (non-linear) operator

Sk corresponding to S is

Skϕ(y) =

��

Y

k(x , y)
�
�

X

k(x , z)ϕ(z) dν(z)
�q−1

dµ(x )
�p�−1

.

Maps having formal adjoints inherit positive homogeneity, additivity, mono-
tonicity, and Hölder�s inequality from integration.
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Lemma 2.1. Suppose that T : L+
ν → L+

µ has a formal adjoint, that a ≥ 0, and
that f1, f2 ∈ L+

ν . Then T (a f1) = aT f1, T ( f1 + f2) = T f1 + T f2, T f1 ≤ T f2

whenever f1 ≤ f2 , and if 1 < q < ∞ then T ( f1 f2) ≤ [T ( f
q
1 )]

1/q [T ( f
q �

2 )]1/q
�

.
Also, the formal adjoint of T is unique.

Proof. Standard arguments show that if g1, g2 ∈ L+
µ and

�
g1g dµ ≤

�
g2g dµ

for all g ∈ L+
µ then g1 ≤ g2 µ-almost everywhere. Consequently, if g1, g2 ∈ L+

µ

and
�
g1g dµ =

�
g2g dµ for all g ∈ L+

µ then g1 = g2 µ-almost everywhere.
Let T ∗ be a formal adjoint of T . For all g ∈ L+

µ ,

�

T (a f1)g dµ =

�

a f1T
∗g dν = a

�

f1T
∗g dν =

�

aT f1g dµ

so we have T (a f1) = aT f1. In just the same way we show that T ( f1 + f2) =

T f1 + T f2. If f1 ≤ f2 and g ∈ L+
µ then

�

T f1g dµ =

�

f1T
∗g dν ≤

�

f2T
∗g dν =

�

T f2g dµ

so T f1 ≤ T f2.
The analogue of Hölder�s inequality is proved using the positive homo-

geneity and additivity of T and the well-known inequality AB ≤ (1/q)Aq +

(1/q �)Bq �

for A, B ≥ 0 but �rst we must dispense with the case where
the right hand side is zero. Let g ∈ L+

µ be supported on the set where

[T ( f
q
1 )]

1/q[T ( f
q �

2 )]1/q
�

vanishes and write g = g1 + g2 where T ( f
q
1 )g1 = 0

and T ( f
q �

2 )g2 = 0. We have

0 =

�

T ( f
q
1 )g1 dµ =

�

f
q
1 T

∗g1 dν

and hence
�

f1 f2T
∗g1 dν = 0. Similarly,

�
f1 f2T

∗g2 dν = 0. Putting these
together yields

�

T ( f1 f2)g dµ =

�

T ( f1 f2)g1 dµ +

�

T ( f1 f2)g2 dµ =

=

�

f1 f2T
∗g1 dν +

�

f1 f2T
∗g2 dν = 0.

Since the only restriction on g was its support, we see that T ( f1 f2) vanishes

whenever [T ( f
q
1 )]

1/q[T ( f
q �

2 )]1/q
�

does.
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It remains to establish the analogue of Hölder�s inequality on the set where

both T ( f
q
1 ) and T ( f

q �

2 ) are positive. If either is in�nite then there is nothing to
prove so

α1 ≡ [T ( f
q
1 )]

−1/q ∈ (0, ∞) and α2 ≡ [T ( f
q �

2 )]−1/q �

∈ (0, ∞).

Now,

α1α2T ( f1 f2) = T (α1 f1α2 f2) ≤ T ((α1 f1)
q/q + (α2 f2)

q �

/q �) =

= (α
q
1/q)T ( f

q
1 ) + (α

q �

2 /q �)T ( f
q �

2 ) = 1/q + 1/q � = 1

and we have T ( f1 f2) ≤ [T ( f
q
1 )]

1/q [T ( f
q �

2 )]1/q
�

as desired.
If T # is also a formal adjoint of T and g ∈ L+

µ then for all f ∈ L+
ν ,

�

f T #g dν =

�

T f g dµ =

�

f T ∗g dν.

Thus T #g = T ∗g and so the formal adjoint is unique.

Our �rst version of Schur�s Lemma is in the next theorem. Although it
applies to any map having a formal adjoint it is essentially the standard result:
If the positive function ϕ satis�es the appropriate inequality then the map T is
bounded and an estimate of the norm of T is given.

Theorem 2.2. Let 1 < q ≤ p < ∞. Suppose that T : L+
ν → L+

µ

has a formal adjoint T ∗ : L+
µ → L+

ν and that there exist an A > 0 and
a positive, ν-measurable function ϕ which is �nite ν-almost everywhere and
satis�es Sϕ ≤ Aϕ ν-almost everywhere in Y . If p = q then

�T� ≤ A(p−1)/p.

If q < p then
�T� ≤ A(p−1)/q�ϕ�

(p−q)/q

L
p
ν

.

Proof. Let f ∈ L+
ν . The hypotheses on ϕ ensure that ϕ−1/q �

ϕ1/q �

= 1 ν-almost
everywhere. Using the analogue of Hölder�s inequality given in Lemma 2.1, we
have

�T f �
q

L
p
ν

=

�

[T ( f ϕ−1/q �

ϕ1/q �

)]q dµ ≤

�

T ( f qϕ1−q)(Tϕ)q−1 dµ.
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Introducing the formal adjoint, T ∗ , the last expression becomes

�

f qϕ1−qT ∗((T ϕ)q−1) dν =

�

f qϕ1−q(Sϕ)p−1 dν ≤ Ap−1

�

f qϕ p−q dν.

Here we have used the de�nition of S and the hypothesis Sϕ ≤ Aϕ .
If q = p this simpli�es to �T f �

p

L
p
µ

≤ Ap−1� f �
p

L
p
ν
and, since f was

arbitrary, �T� ≤ A(p−1)/p as required. If q < p we apply Hölder�s inequality
with indices p/q and p/(p − q) to get

�T f �
q

L
q
µ

≤ Ap−1
��

f p dν
�q/p��

ϕ p dν
�(p−q)/p

= Ap−1�ϕ�
p−q

L
p
ν

� f �
q

L
p
ν

and, since f was arbitrary, we conclude that �T� ≤ A(p−1)/q�ϕ�
(p−q)/q

L
p
ν

to

complete the proof.

In our second version we make stronger hypotheses and get a stronger
conclusion.

Theorem 2.3. Let 1 < q ≤ p < ∞. Suppose that T : L+
ν → L+

µ has a
formal adjoint T ∗ : L+

µ → L+
ν and that there exist an A > 0 and a positive,

ν-measurable function ϕ ∈ L
p
ν which satis�es Sϕ = Aϕ ν-almost everywhere

in Y . Then

(2.1) �T� = A(p−1)/q�ϕ�
(p−q)/q

L
p
ν

,

the constant multiples of ϕ are extremal functions for T from L
p
ν to L

q
µ and if

q < p they are the only ones.

Proof. Since ϕ ∈ L
p
ν it is necessarily �nite ν-almost everywhere. Thus

Theorem 2.2 applies and we have �T� ≤ A(p−1)/q�ϕ�
(p−q)/q

L
p
ν

for 1 < q ≤

p < ∞. (Since ϕ ∈ L
p
ν the second factor vanishes in the case q = p.) To prove

the reverse inequality we use the de�nitions of S and �T�.

Ap−1�ϕ�
p

L
p
ν

=

�

ϕ(Aϕ)p−1 dν =

�

ϕ(Sϕ)p−1 dν =

�

ϕT ∗((Tϕ)q−1) dν

=

�

Tϕ(Tϕ)q−1 dµ =

�

(Tϕ)q dµ ≤ �T�q�ϕ�
q

L
p
ν
.

This may be rearranged to yield �T� ≥ A(p−1)/q�ϕ�
(p−q)/q

L
p
ν

. Not only do we

have (2.1) but we also see that the inequality in the above calculation is an
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equality. That is, �Tϕ�L
q
µ

= �T��ϕ�L
p
ν
, and therefore ϕ (and its constant

multiples) are extremal functions for T from L
p
ν to L

q
µ.

If q < p and f is an extremal function for T from L
p
ν to L

q
µ then we

consider the argument of Theorem 2.2 applied to f . Since f is extremal,
all inequalities necesarily become equalities. In particular, the application of
Hölder�s inequality that gave

�

f qϕ p−q dν ≤

��

f p dν
�q/p� �

ϕ p dν
�(p−q)/p

is an equality. This occurs only when f is a constant multiple of ϕ .

The next two theorems explore the extent to which these versions of
Schur�s Lemma are reversible. First we note that if (Y, ν) is not σ -�nite then
there is no positive function in L

p
ν so, with the possible exception of the case

q = p in Theorem 2.2, the above results hold vacuously and no converse is
to be expected. It may be possible to give a partial converse to Theorem 2.2
in the case q = p with (Y, ν) non-σ -�nite but at very least it would have to be
assumed that Y contain no in�nite atoms. We will not investigate this possibility
further here.

The iteration used to prove Theorem 2.4 is essentially given in [5], [13]. A
re�nement of this iteration scheme is used to prove Theorem 2.5. Both proofs
will be deferred to Section 4.

Theorem 2.4. Suppose that (Y, ν) is σ -�nite, 1 < q = p < ∞, T : L+
ν → L+

µ

has a formal adjoint T ∗ : L+
µ → L+

ν and �T� < ∞. Then for every ε > 0

there exists an A > 0 and a positive ϕ ∈ L
p
ν such that Sϕ ≤ Aϕ and

−ε + A(p−1)/p ≤ �T� ≤ A(p−1)/p.

The next theorem gives the converse of Theorem 2.2 in the case q < p and
shows that A may be taken to be 1. It also gives the converse to Theorem 2.3 in
the case q < p. In Example 2.7 it is shown that a converse to Theorem 2.3 is
not possible when q = p.

In addition to the σ -�niteness of (Y, ν) there is another mild but necessary
assumption for a converse to Theorem 2.3:

(2.2) T ∗g > 0 whenever g > 0.

For the integral operator Tk , this asserts that k(x , y) does not vanish identically
on any tube X × Y0 with ν(Y0) > 0 so that the domain of Tk is not arti�cially
too large. Stated in terms of the map T , (2.2) becomes:
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There is no set of positive ν measure such
that T f = 0 for all f ∈ L+

ν supported there.

The assumption is necessary because if there were such a set then for all f
supported there and all g ∈ L+

µ we would have

�

f T ∗g dν =

�

T f g dµ = 0

so T ∗g = 0 on the set. If Sϕ = Aϕ for some positive real number A then
ϕ = A−1(T ∗((Tϕ)q−1))p

�−1 would be zero on the set and hence ϕ could not be
positive and there could be no converse to Theorem 2.3. We view the condition
(2.2) as a non-degeneracy condition on the map T .

Theorem 2.5. Suppose that (Y, ν) is σ -�nite, 1 < q < p < ∞, T : L+
ν → L+

µ

has a formal adjoint T ∗ : L+
µ → L+

ν and �T� < ∞. Then for every ε > 0
there exists a positive ϕ , �nite ν-almost everywhere, such that Sϕ ≤ ϕ and

−ε + �ϕ�
(p−q)/q

L
p
ν

≤ �T� ≤ �ϕ�
(p−q)/q

L
p
ν

.

If (2.2) is satis�ed then there exists a positive function ϕ such that Sϕ = ϕ and

�T� = �ϕ�
(p−q)/q

L
p
ν

.

Combining the last statement of Theorem 2.5 with the last statement of
Theorem 2.3 gives the following interesting result.

Corollary 2.6. Suppose 1 < q < p < ∞ and (Y, ν) is σ -�nite. Every non-
negative integral operator satisfying (2.2) that is bounded from L

p
ν to L

q
µ has a

unique extremal function up to constant multiples. This function is never zero
nor does it change sign.

Example 2.7. Hardy�s inequality, [6], Theorem 327, is a strict inequality. If
p > 1 and f ≥ 0 then

�� ∞

0

� 1

x

� x

0

f (y) dy
�p

dx
�1/p

< p�
� � ∞

0

f (y)p dy
�1/p

unless f ≡ 0. The constant is best possible.
This inequality has no positive extremal function so Theorem 2.5 and

Corollary 2.6 do not extend to the case q = p.
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Remark. The case q = p in Theorem 2.3 deserves further study. The
hypothesis that ϕ ∈ L

p
ν is too restrictive. It is not required to get an upper bound

on the norm of the operator as we saw in Theorem 2.2. If this assumption can be
weakened (at least �niteness ν-almost everywhere is required) then there may
be a converse of a sort. The results of [2], [9] show that for matrix operators
there is always a positive extremal sequence but that equality in Sϕ ≤ Aϕ is not
necessarily achieved.

The dif�culty arises with operators having a direct sum decomposition.
Perron showed that a (�nite) matrix with positive entries has a unique posi-
tive eigenvalue but to extend the result to matrices with non-negative entries
Frobenius had to impose the condition that the matrix be indecomposable. This
observation is at the root of the dif�culty with the case q = p.

We seem to be faced with two choices. Either restrict our attention to
operators with no direct sum decomposition, or give up the uniqueness of the
extremal and the equality in Sϕ ≤ Aϕ . We hope to return to this dilemma in
future work.

3. Weighted Norm Inequalities.

A weighted norm inequality for the map K : L+
η → L+

ξ is an inequality of
the form

(3.1)
� �

(K F)qu dξ
�1/q

≤ C
� �

F pv dη
�1/p

.

Here (X, ξ ) and (Y, η) are measure spaces, F ∈ L+
η , and the weights u and

v are �xed functions in L+
ξ and L+

η repectively. The best constant in (3.1) is
the smallest constant C , �nite or in�nite, such that the inequality holds for all
F ∈ L+

η .
It may seem redundant to include the weight functions u and v as well as

the measures ξ and η in inequality (3.1). After all, multiplying a measure by
a weight function just gives another measure. However, the measures ξ and
η provide the inner products necessary for the de�nition of the formal adjoint
and the weights allow us to consider the action of the operator on Lebesgue
spaces with different measures than those used for the inner products. In order to
preserve the integrability of the functions in L+

ξ and L+
η with respect to different

measures we naturally expect the new measures to be absolutely continuous
with respect to the old ones. The Radon-Nikodym Theorem leads us to the
weighted measures uξ and vη.
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To avoid certain exceptional cases we assume throughout this section that
the weight v is positive. If this is not the case we simply replace the space Y
underlying η by the support of v.

Taken together, the �rst two theorems of this section give a formula for
the best constant in all weighted norm inequalities for non-degenerate maps
with formal adjoints in the case 1 < q < p < ∞. This includes weighted
norm inequalities for integral operators with non-negative kernels. In the case
q = p, best constants are given for a large class of weighted norm inequalities
but Example 2.7 has shown that not all weighted norm inequalities are included.

So that we may easily transfer the results of the previous section to the
investigation here, we make the following identi�cations: If u, v, ξ , η, K , and
F are as above and K ∗ is a formal adjoint of K then

(3.2) F= f v1−p�

, µ = uξ, ν = v1−p�

η, T f =K ( f v1−p�

), and T ∗g=K ∗(gu).

Note that T : L+
ν → L+

µ and T ∗ : L+
µ → L+

ν are formal adjoints because

�

(T f )g dµ =

�

K ( f v1−p�

)gu dξ =

�

f v1−p�

K ∗(gu) dη =

�

f T ∗(g) dν,

whenever f ∈ L+
ν and g ∈ L+

µ .

The assumption that v does not vanish enables us to show that for each
C > 0, (3.1) holds for all F ∈ L+

η if and only if

(3.3)
��

(T f )q dµ
�1/q

≤ C
� �

f p dν
�1/p

holds for all f ∈ L+
ν . We conclude that the best constant in (3.1) and the best

constant in (3.3) coincide.

Theorem 3.1. Suppose that 1 < q ≤ p < ∞, K : L+
η → L+

ξ has a formal

adjoint K ∗ : L+
ξ → L+

η , and 0 < v ∈ L+
η . Let h be in L+

ξ , set ϕ = [K ∗h]p
�−1

and u = [K (ϕv1−p�

)]1−qh. If 0 < ϕ ∈ L
p

(v1−p� )η
then the best constant in (3.1) is

C =

��

ϕ pv1−p�

dη
�(p−q)/(pq)

.
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Proof. The best constant in (3.1) is also the best constant in (3.3) which was
earlier denoted �T�. Therefore the desired result will follow from Theorem 2.3
once we show that Sϕ = ϕ :

Sϕ = [T ∗([Tϕ]q−1)]p
�−1 = [K ∗([K (ϕv1−p�

)]q−1u)]p
�−1 = [K ∗h]p

�−1 = ϕ.

For the converse, in the case q < p, we impose non-degeneracy conditions
similar to (2.2) on both K and K ∗:

(3.4)
K ( f v1−p�

) > 0 whenever f > 0, and
K ∗(gu) > 0 whenever g > 0.

Theorem 3.2. Suppose that 1 < q < p < ∞, (Y, η) is σ -�nite, K : L+
η → L+

ξ

has a formal adjoint K ∗ : L+
ξ → L+

η , u ∈ L+
ξ , 0 < v ∈ L+

η , and (3.4) holds. If

the best constant in (3.1) is �nite then there exists a function h ∈ L+
ξ such that

0 < ϕ = (K ∗h)p
�−1 ∈ L

p

(v1−p� )η
and u = [K (ϕv1−p�

)]1−qh.

Proof. The best constant in (3.1), and hence in (3.3), is �nite which means
that �T� < ∞. Note that since v > 0, the σ -�niteness of (Y, η) implies that
(Y, ν) is also σ -�nite. Also note that (3.4) implies (2.2). By Theorem 2.5 there
exists a positive ϕ ∈ L

p

(v1−p� )η
with Sϕ = ϕ . Set h = [K (ϕv1−p�

)]q−1u and we

immediately have

ϕ = Sϕ = [T ∗([T ϕ]q−1)]p
�−1 = [K ∗([K (ϕv1−p�

)]q−1u)]p
�−1 = (K ∗h)p

�−1.

If 0 < K (ϕv1−p�

) < ∞ then we may divide by it in the de�nition of h to see
that u = [K (ϕv1−p�

)]1−qh. Since ϕ > 0, (3.4) implies K (ϕv1−p�

) > 0 and
since ϕ ∈ L

p

(v1−p� )η
we have ϕv1−p�

∈ L
p
vη and the �niteness of the constant in

(3.1) shows that K (ϕv1−p�

) ∈ L
q
uξ . Thus, on the set where K (ϕv1−p) is in�nite

u vanishes ξ -almost everywhere and so in this case, too, u = (K (ϕv1−p�

))1−qh.

Theorem 3.1 gives a simple method of generating inequalities with best
constants. We give several examples to illustrate the ease and versatility of the
method. The details of calculating the weight u and the norm of ϕ have been
omitted.

We begin with a one parameter family of weighted Hardy inequalities.

Example 3.3. Suppose 1 < q ≤ p < ∞ and �x α > 0. The inequality
�� ∞

0

� � x

0

f (y) dy
�q

[log(1 + x )]α(1−q)(x + 1)−p dx
�1/q

≤ C
� � ∞

0

f (y)p[log(1 + y)](α−1)(1−p) dy
�1/p

holds with best constant

C = (p� − 1)1/q+α(1/q−1/p)α1/q−1�(α)1/q−1/p.
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Proof. Take both (X, ξ ) and (Y, η) to be the half line [0, ∞) with Lebesgue
measure, take v(y) = [log(1 + y)](α−1)(1−p), and let h(x ) = (x + 1)−p .

Sometimes simpler is better.

Example 3.4. Suppose 1 < p < ∞. For any non-negative f ,

∞�

0

� 1

(1 + x ) log(1 + x )

x�

0

f (y) dy
�p

log(1 + x ) dx ≤
1

p − 1

∞�

0

f (y)p dy.

The constant is best possible.

Proof. Take p = q and α = 1 in the previous example.
Here is an inequality for a Steklov operator.

Example 3.5. Suppose 1 < q ≤ p < ∞. The best constant in the inequality

�� 2

−2

�� x+1

x−1

f (y)χ[−1,1](y) dy
�q

(2− |x |)1−q dx

�1/q

≤ C
� � 1

−1

f (y)p dy
�1/p

is C = 41/q/21/p.

Proof. Take (X, ξ ) to be [−2, 2] with Lebesgue measure, take (Y, η) to be
[−1, 1] with Lebesgue measure, take v = 1 and h = 1.

By choosing the measures ξ and η appropriately it is simple to mix
integrals and sums. The best constant is expressed in terms of the Riemann
zeta function.

Example 3.6. Suppose 1 < q ≤ p. The best constant in the inequality

�
∞�

n=1

�
n

� ∞

0

e−ny f (y) dy
�q

�1/q

≤ C
� � ∞

0

f (y)p

y(q
�−1)(p−1)(ey − 1)

dy
�1/p

is
C = �(q �)1/p

�

ζ (q �)1/q−1/p.

Proof. Take (X, ξ ) to be {1, 2, . . .} with counting measure, take (Y, η) to be
[0, ∞) with Lebesgue measure, take, v(y) = (y(q

�−1)(p−1)(ey −1))−1 and h = 1.

Estimates for the norm of the Hardy operator on weighted spaces with
q < p have been available for some time. We can now compare them with best
constants. We use estimates from [12].
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Example 3.7. Suppose 1 < q ≤ p. The best constant in the inequality

�� 1

0

�1

x

� x

0

f (y) dy
�q

x dx
�1/q

≤ C
� � 1

0

f (y)p(1 − y) dy
�1/p

is C = 21/p−1/q .
With q = 2 and p = 3 the upper and lower estimates for C given in [12]

are not very close, giving approximately

0.3509 < 0.8909 < 1.4472.

Proof. Take (X, ξ ) to be the [0, 1] with Lebesgue measure, take (Y, η) to be
[0, 1] with Lebesgue measure, take v = 1− y and h = 1.

We end this section with two inequalities for operators with formal adjoints
that are not, strictly speaking, integral operators.

Example 3.8. Suppose 1 < q ≤ p. The inequality

�� 1

0

�
f (x )+

� 1

0

f (y) dy
�q

dx

�1/q

≤ 2
� � 1

0

f (y)p dy
�1/p

holds for all non-negative f . The constant is best possible.

Proof. Take (X, ξ ) and (Y, η) to be [0, 1] with Lebesgue measure, take v = 1
and h = 1.

Example 3.9. Suppose 1 < q ≤ p. If F is continuously differentiable and
F(0) = 0 then

�� 1

0

|F(x )+ F �(x )|q(1 + x )1−q dx
�1/q

≤ (3/2)1/q−1/p
� � 1

0

|F �(y)|p(2 − y) dy
�1/p

.

The constant is best possible.

Proof. Take (X, ξ ) and (Y, η) to be [0, 1] with Lebesgue measure, take v(x ) =

2−x and h = 1. The operator used here is K f (x ) = f (x )+
� x

0
f (y) dy applied

to F �.
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4. Two Iterations.

The proofs of a converse to Schur�s Lemma given in [5, 13] use a clever
iteration which is imitated here to prove Theorem 2.4. Although the same
iteration can be used to get the conclusion Sϕ ≤ ϕ in Theorem 2.5, we introduce
a variation of the argument in Lemma 4.2 which is only valid in the case q < p.
The main advantage of the modi�cation is that it permits us to exercise greater
control over the output of the process. This is important because an instance
of the �rst iteration is used as the recursion step in the second iteration, a more
delicate argument which yields a positive �xed point of the map S to complete
the proof of Theorem 2.5.

There is another advantage to the iteration given in Lemma 4.2. In order
to proceed, the �rst iteration requires that �T� be known or at least that an
upper bound for �T� be known. As we see in Corollary 4.4, it is possible to
carry out the modi�ed iteration when no upper bound for �T� is known, even
if �T� = ∞. This result is of independent interest and may be important in
computations.

Before presenting the proofs of Theorem 2.4 we need to understand the
action of the map S . For convenience, the non-negative functions in the closed
ball of radius σ in L

p
ν will be denoted by B+

σ (L
p
ν ).

Lemma 4.1. Suppose 1 < q ≤ p < ∞, T : L+
ν → L+

µ has a formal adjoint
T ∗ : L+

µ → L+
ν , and �T� is �nite and set α = (q − 1)/(p − 1). Then for any

λ > 0 the operator S given by Sϕ = (T ∗((Tϕ)q−1))p
�−1 is a continuous, order

preserving map from B+
λ (L

p
ν ) to B+

λα�T �αq� (L
p
ν ). Also, S(λϕ) = λαSϕ for every

ϕ ∈ L+
ν .

Proof. Let Es denote the (non-linear) operator on non-negative functions
de�ned by Es f (t) = f (t)s . It is straightforward to check that if s and σ are
positive then Es : B

+
σ (L

p
ν ) → B+

σ s (L
p/s
ν ) is continuous and order-preserving.

The de�nition of �T� shows that �T f �L
q
µ

≤ �T�� f �L
p
ν
for all f ∈ L+

ν

and a routine calculation shows that �T ∗g�
L

p�

ν
≤ �T��g�

L
q�

µ
for all g ∈ L+

µ . It

follows that

T : B+
σ (L

p
ν ) → B+

σ�T�(L
q
µ) and T ∗ : B+

σ (L
q �

µ ) → B+
σ�T�(L

p�

ν )

are continuous. (A minor modi�cation of the proof that bounded, linear
operators are continuous is needed here.) Lemma 2.2 shows that maps with
formal adjoints preserve order so both T and T ∗ are order preserving. The
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diagram,

B+
λ (L

p
ν )

T

��

B+
λ�T �(L

q
µ)

Eq−1
�� B+

λq−1�T�q−1(L
q �

µ )

T ∗

��

B+

λq−1�T�q
(L

p�

ν )
Ep�−1

�� B+

λα�T�αq� (L
p
ν )

shows that the map S = Ep�−1T
∗Eq−1T is a continuous, order preserving map

from B+
λ (L

p
ν ) to B+

λα�T�αq� (L
p
ν ). Since T and T ∗ are positive homogeneous by

Lemma 2.1 it is easy to see that S(λϕ) = λαSϕ .

Proof of Theorem 2.4. If �T� = 0 then T is the zero map so we may prove the
result by choosing A = ε p�

and taking any positive ϕ ∈ L
p
ν .

Suppose, then, that �T� > 0 and choose δ ∈ (0, 1) such that A =

(1 − δ)−1�T�p�

satis�es −ε + A(p−1)/p ≤ �T� ≤ A(p−1)/p . Note that A
is positive. Since (Y, ν) is assumed to be σ -�nite we may choose a positive
function ψ0 with �ψ0�L

p
ν

= δ . De�ne a sequence in L+
ν recursively by setting

ψn+1 = ψ0 + A−1Sψn .
Using induction we see that the sequence is non-decreasing since ψ1 −

ψ0 = A−1Sψ0 ≥ 0 and if ψn − ψn−1 ≥ 0 then ψn+1 − ψn = A−1(Sψn −

Sψn−1) ≥ 0.
Moreover, �ψ0�L

p
ν

= δ ≤ 1 and if �ψn�L
p
ν

≤ 1 then by Lemma 4.1 with
q = p and λ = 1,

�ψn+1�L
p
ν

≤ δ + A−1�Sψn�L
p
ν

≤ δ + A−1�T�p�

= 1.

By induction, �ψn�L
p
ν

≤ 1 for all n.
This is a non-decreasing sequence whose terms are bounded above in L

p
ν .

Therefore, it converges in L
p
ν to its pointwise limit ϕ and ϕ ∈ L

p
ν . The continuity

of S shows that ϕ = ψ0 + A−1Sϕ > A−1Sϕ ≥ 0 so we have ϕ > 0 and
Sϕ ≤ Aϕ .

The next lemma uses a variation of the iteration above to prepare for the
recursion step in the proof of Theorem 2.5.

Lemma 4.2. Suppose that 1 < q < p < ∞, T : L+
ν → L+

µ has a

formal adjoint T ∗ : L+
µ → L+

ν , and �T� < ∞. Let C = �T�q/(p−q) and
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α = (q−1)/(p−1). If ψ is a positive function in B+

λ2C
(L

p
ν ) for some λ > 1 then

there exists a positive function ϕ ∈ B+
λC(L

p
ν ) satisfying ϕ = ((λ−λα )/λ2)ψ+Sϕ .

If Sψ ≤ ψ then ϕ ≤ λψ .

Proof. Set ψ0 = ((λ − λα)/λ2)ψ . For n ≥ 0 de�ne ψn+1 = ψ0 + Sψn .
Since S is order preserving, ψ1 − ψ0 = Sψ0 ≥ 0 and if ψn − ψn−1 ≥ 0

then ψn+1−ψn = Sψn−Sψn−1 ≥ 0. Induction shows that ψ0, ψ1, . . . is a non-
decreasing sequence. We de�ne ϕ to be the pointwise limit of this sequence.

Now ψ ∈ B+

λ2C
(L

p
ν ) so �ψ0�L

p
ν

≤ (λ − λα)C ≤ λC . If �ψn�L
p
ν

≤ λC
then �Sψn�L

p
ν

≤ λαC by Lemma 4.1 so �ψn+1�L
p
ν

≤ �ψ0�L
p
ν

+ �Sψn�L
p
ν

≤

(λ − λα)C + λαC = λC . By induction �ψn�L
p
ν

≤ λC for all n and so the
sequence converges in L

p
ν and �ϕ�L

p
ν

≤ λC .
By the continuity of S and the hypothesis that ψ is positive we see that

ϕ = ψ0 + Sϕ > Sϕ and that ϕ is positive.
To prove the last statement of the lemma we suppose that Sψ ≤ ψ . Since

λ > 1, ψ0 = ((λ − λα)/λ2)ψ ≤ (λ − λα)ψ ≤ λψ . If ψn ≤ λψ for some n
then ψn+1 = ψ0 + Sψn ≤ (λ − λα)ψ + S(λψ) ≤ (λ − λα)ψ + λαψ = λψ . By
induction ψn ≤ λψ for all n and in the limit we have ϕ ≤ λψ . This completes
the proof.

Proof of Theorem 2.5. De�ne C and α as in Lemma 4.2 and note that
0 < α < 1. Let ϕ0 be a positive function with �ϕ0�L

p
ν

≤ 4C . Such a
function exists because (Y, ν) is σ -�nite. For n = 0, 1, . . . apply Lemma 4.2
with ψ = ϕn and λ = 22

−n
to recursively produce ϕn+1 satisfying

�ϕn+1�L
p
ν

≤ 22
−n

C and ϕn+1 = ((22
−n

− 2α2−n

)/22
1−n

)ϕn + Sϕn+1.

Since Sϕn+1 ≤ ϕn+1 , Theorem 2.2 yields C ≤ �ϕn+1�L
p
ν
so we have

�T� ≤ �ϕn+1�
(p−q)/q

L
p
ν

≤ (22
−n

)(p−q)/q�T�

and we see that �ϕn�
(p−q)/q

L
p
ν

is eventually less than �T� + ε for any ε > 0. This

proves the �rst part of the theorem.
Applying the last statement of Lemma 4.2, we see that for n ≥ 1, Sϕn ≤ ϕn

so ϕn+1 ≤ 22
−n

ϕn . Thus we have a decreasing sequence of positive L
p
ν functions

2ϕ1 ≥ . . . ≥ 22
1−n

ϕn ≥ 22
1−(n+1)

ϕn+1 · · · .

We denote the pointwise limit of this sequence by ϕ and apply the Dominated
Convergence Theorem and the above estimates of �ϕn+1�L

p
ν
to get

�ϕ�
(p−q)/q

L
p
ν

= lim
n→∞

�22
−n

ϕn+1�
(p−q)/q

L
p
ν

= �T�.



SCHUR�S LEMMA AND BEST CONSTANTS. . . 201

The continuity of S yields

ϕ = lim
n→∞

22
−n

ϕn+1 = lim
n→∞

2−2−n

(22
−n

− 2α2−n

)ϕn + 22
−n

Sϕn+1 = Sϕ

in L
p
ν because 22

−n
− 2α2−n

→ 0 as n → ∞ and the ϕn are uniformly bounded
in L

p
ν norm.
To complete the proof of the second part we have to show that ϕ is

positive ν-almost everywhere. Since ϕ is the pointwise limit of a sequence
of positive functions, it is clearly non-negative. Thus it is enough to show that
{y ∈ Y : ϕ(y) = 0} has ν measure zero. That is the object of the next lemma.

Lemma 4.3. Suppose 1 < q < p < ∞, Sϕ = ϕ , and �ϕ�L
p
ν

= �T�q/(p−q). If
(2.2) holds then ϕ is positive ν-almost everywhere.

Proof. Let Y0 be the set where ϕ is zero and Y1 be its complement in Y . Let X0

be the set where Tϕ is zero and X1 be its complement in X . If f is supported
on Y0 then

�

T f (T ϕ)q−1 dµ =

�

f T ∗((Tϕ)q−1) dν =

�

f (Sϕ)p−1 dν =

�

f ϕ p−1 dν

which is zero because f and ϕ have disjoint supports. Since (Tϕ)q−1 is positive
on X1 we see that T f is supported on X0.

Similarly, if g is supported on X0 then
�

ϕT ∗g dν =
�
Tϕg dµ = 0 and

since ϕ is positive on Y1 we see that T
∗g is supported on Y0. Thus, if f is

supported on Y1 then for all g ∈ L+
µ ,

�

T f χX0
g dµ =

�

f T ∗(χX0
g) dν = 0

which implies that

�

T f g dµ =

�

T f χX0
g dµ +

�

T f χX1
g dµ =

�

χX1
T f g dµ.

It follows that T f = χX1
T f so T f is supported on X1. These observations give

the decomposition

(4.1) T f = χX0
T ( f χY0 )+ χX1

T ( f χY1)

for all f ∈ L+
ν .



202 GORD SINNAMON

For i = 0, 1; let µi = χXi
µ, νi = χYiν , and de�ne Ti : L

+
νi

→ L+
µi
and

T ∗
i : L+

µi
→ L+

νi
by Ti f = T f and T ∗

i g = T ∗g. It is easy to check that Ti and
T ∗
i are formal adjoints. In view of (4.1) it is a routine calculation to show that

�T�pq/(p−q) = �T0�
pq/(p−q) + �T1�

pq/(p−q).

Now we apply Theorem 2.3 to the operator T1. Since ϕ is positive ν1-almost
everywhere and

ϕ = (T ∗((T ϕ)q−1))p
�−1 = (T ∗

1 ((T1ϕ)
q−1))p

�−1,

we conclude that

�T1� = �ϕ�
(p−q)/q

L
p
ν1

= �ϕ�
(p−q)/q

L
p
ν

= �T�.

It follows that �T0� = 0 and hence T f = 0 whenever f is supported on Y0.
The remark following (2.2) shows that Y0 has ν measure zero.

Our �nal result is a corollary of Lemma 4.2 and gives an iterative procedure
which converges to �T� to within any preset tolerance without an a priori bound
on �T�. It provides upper and lower bounds for the norm of T at each stage of
the iteration.

Corollary 4.4. Suppose 1 < q < p < ∞, T : L+
ν → L+

µ has a formal adjoint

T : L+
µ → L+

ν , Sϕ = (T ∗((Tϕ)q−1))p
�−1, and α = (q − 1)/(p − 1). Fix λ > 1

and a positive function ϕ0 ∈ L
p
ν . De�ne ψn recursively by

ψ0 = (λ − λα)�Tϕ0�
q/(p−q)

L
q
µ

�ϕ0�
p/(q−p)

L
p
ν

ϕ0 and ψn+1 = ψ0 + Sψn.

Then ψn is a non-decreasing sequence,

(4.2) [(1/λ)�ψn�L
p
ν
](p−q)/q ≤ �T� ≤ [sup

y∈Y

Sψn(y)/ψn(y)]
(p−1)/q�ψn�

(p−q)/q

L
p
ν

and

(4.3) [(1/λ) lim
n→∞

�ψn�L
p
ν
](p−q)/q ≤ �T� ≤ [ lim

n→∞
�ψn�L

p
ν
](p−q)/q

for each n.
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Proof. The right hand inequality in (4.2) follows from Theorem 2.2 with
A = supy∈Y Sψn(y)/ψn(y). To prove the other inequalities we �rst suppose

that �T� < ∞. Set ψ = (λ2/(λ − λα))ψ0 to get

�ψ�L
p
ν

= λ2�Tϕ0�
q/(p−q)

L
q
µ

�ϕ0�
q/(q−p)

L
p
ν

≤ λ2�T�q/(p−q).

Lemma 4.2 shows that ψn is a non-decreasing sequence whose pointwise limit
ϕ is positive and satis�es both Sϕ ≤ ϕ and �ϕ�L

p
ν

≤ λ�T�q/(p−q). The latter
gives the left hand inequality in (4.2) and the former, together with Theorem
2.2, provides the right hand inequality in (4.3).

If �T� = ∞ then it is enough to show that limn→∞ �ψn�L
p
ν
is in�nite.

The proof of Lemma 4.2 still shows that the sequence ψn is non-decreasing and
we again de�ne ϕ to be its pointwise limit. It is an exercise to show that Sψn

converges pointwise to Sϕ even without assuming continuity of S . We obtain
Sϕ ≤ ϕ and apply Theorem 2.2 again to see that �ϕ�L

p
ν

= ∞. The Monotone
Convergence Theorem shows that limn→∞ �ψn�L

p
ν

= ∞ as required.
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