EXISTENCE OF THREE PERIODIC SOLUTIONS FOR A NON-AUTONOMOUS SECOND ORDER SYSTEM

GIUSEPPINA BARLETTA - ROBERTO LIVREA

1. Introduction.

The purpose of the present paper is to establish a multiplicity result for the following problem

$$
\left(P_{\lambda}\right) \quad\left\{\begin{array}{l}
\ddot{u}=A(t) u-\lambda b(t) \nabla G(u) \quad \text { a. e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 .
\end{array}\right.
$$

where T and λ are positive numbers, k is a positive integer, $A(t)$ is a $k \times k$ matrix valued function defined in $[0, T], b$ is an a. e. nonnegative function belonging to $L^{1}([0, T]) \backslash\{0\}$ and G is a real continuously differentiable function in \mathbb{R}^{k}.

As far as we know, many multiplicity results concerning the existence of at least three periodic solutions for a non-autonomous system of the form

$$
(P) \quad\left\{\begin{array}{l}
\ddot{u}=\nabla_{u} F(t, u) \quad \text { a. e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 .
\end{array}\right.
$$

are available in [4], [5], [9], [10] and the solutions are obtained as critical points of a suitable functional.

[^0]In particular, in order to guarantee the existence of solutions to (P), in [4], [9], [10], in addition to a coercivity condition, a suitable behaviour of $F(t, \cdot)$ near to 0 is required: there exists $\delta>0$ and an integer $p \geq 0$ such that

$$
\begin{equation*}
-\frac{1}{2}(p+1)^{2} \omega^{2}|x|^{2} \leq F(t, x)-F(t, 0) \leq-\frac{1}{2} p^{2} \omega^{2}|x|^{2} \tag{1}
\end{equation*}
$$

for all $|x| \leq \delta$ and a. e. $t \in[0, T]$, where $\omega=\frac{2 \pi}{T}$.
Problem (P_{1}) is treated in [5] under assumptions which are different from ours.
Our main result is Theorem 1, given in Section 3. In particular, still using a variational technique, without assuming assumption (1) (see Remark 1), but requiring novel assumptions on G (see (ii)), we are able to state that there exists a computable real number λ^{*} such that, for every $b \in L^{1}([0, T]) \backslash\{0\}$ that is a. e. nonnegative, there exist an open interval $\Lambda \subseteq\left[0, \frac{\lambda^{*}}{\|b\|_{1}}\right]$ and a positive real number ρ such that for every $\lambda \in \Lambda$ problem $\left(P_{\lambda}\right)$ admits at least three solutions in \mathbb{H}_{T}^{1} whose norms are less than ρ.

Finally, we want to stress that our main tool is a result, recently obtained by G. Bonanno ([3], Theorem 2.1), whose proof is based on a three critical points theorem due to B. Ricceri ([8], Theorem 3).

2. Preliminaries.

Let $T>0$ and $k \in \mathbf{N}$. Let $A:[0, T] \rightarrow \mathbb{R}^{k \times k}$ a matrix valued function, $A=\left[a_{i j}\right]_{i, j=1,2, \ldots, k}$, such that $a_{i j} \in L^{\infty}([0, T]), a_{i j}=a_{j i}$ for each $i, j=1,2, \ldots, k$; suppose, moreover, that there exists $\mu>0$ such that

$$
\begin{equation*}
A(t) \xi \cdot \xi \geq \mu|\xi|^{2} \quad \text { for each } \xi \in \mathbb{R}^{k}, \text { a. e. in }[0, T] \tag{2}
\end{equation*}
$$

It is easy to check that

$$
\begin{equation*}
A(t) \xi \cdot \xi \leq \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}|\xi|^{2} \quad \text { for each } \xi \in \mathbb{R}^{k} \tag{3}
\end{equation*}
$$

In according to the notations of [7], denote by \mathbb{H}_{T}^{1} the space of functions $u \in L^{2}\left([0, T], \mathbb{R}^{k}\right)$ having a weak derivative $\dot{u} \in L^{2}\left([0, T], \mathbb{R}^{k}\right)$. We want explicitly recall that, for this kind of derivative, the test functions belong to the space C_{T}^{∞} of infinitely differentiable T-periodic functions from \mathbb{R} into \mathbb{R}^{k}. Moreover, if $u \in \mathbb{H}_{T}^{1}$ then $\int_{0}^{T} \dot{u}(t) d t=0$ and u is absolutely continuous (see [7], pp. 6-7). On \mathbb{H}_{T}^{1} we consider the norm

$$
\|u\|=\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t+\int_{0}^{T} A(t) u(t) \cdot u(t) d t\right)^{\frac{1}{2}}
$$

which, owing to (2) and (3), is equivalent to the usual one, given by

$$
\|u\|_{*}=\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t+\int_{0}^{T}|u(t)|^{2} d t\right)^{\frac{1}{2}}
$$

It is well known that \mathbb{H}_{T}^{1}, equipped with the norm $\|\cdot\|_{*}$, or an equivalent one, is a Banach space, while the Rellich-Kondrachov theorem (see [1], p. 144) guarantees that it is compactly embedded in $C^{0}\left([0, T], \mathbb{R}^{k}\right)$. Write c for the smallest constant such that

$$
\begin{equation*}
\|u\|_{C^{0}}=\max _{t \in[0, T]}|u(t)| \leq c\|u\| \quad \text { for every } u \in \mathbb{H}_{T}^{1} \tag{4}
\end{equation*}
$$

A simple computation (see [6]) shows that

$$
\begin{equation*}
c \leq \sqrt{\frac{2}{\min \{1, \mu\}}} \cdot \max \left\{\sqrt{T}, \frac{1}{\sqrt{T}}\right\} \tag{5}
\end{equation*}
$$

We now introduce the functionals that will be used in the sequel. For the sake of completeness, we recall their basic properties too.

Let $\Phi, \Psi: \mathbb{H}_{T}^{1} \rightarrow \mathbb{R}$ be defined by

$$
\Phi(u)=\frac{1}{2}\|u\|^{2}, \quad \Psi(u)=-\int_{0}^{T} b(t) G(u(t)) d t
$$

for every $u \in \mathbb{H}_{T}^{1}$, where $b \in L^{1}\left([0, T], \mathbb{R}^{k}\right) \backslash\{0\}$ is such that $b(t) \geq 0$ a. e. in $[0, T]$ and $G: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a continuously differentiable function.

It is clear that Φ is a continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous inverse. Moreover, since it is continuous and convex, it is also a sequentially weakly lower semicontinuous functional. Thanks to the Rellich-Kondrachov theorem, Ψ is a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. In particular, one has

$$
\Phi^{\prime}(u)(v)=\int_{0}^{T} \dot{u}(t) \cdot \dot{v}(t) d t+\int_{0}^{T} A(t) u(t) \cdot v(t) d t
$$

and

$$
\Psi^{\prime}(u)(v)=-\int_{0}^{T} b(t) \nabla G(u(t)) \cdot v(t) d t
$$

for every $u, v \in \mathbb{H}_{T}^{1}$.

We recall that $u \in \mathbb{H}_{T}^{1}$ is a critical point for the functional $\Phi+\lambda \Psi$ if $\Phi^{\prime}(u)+\lambda \Psi^{\prime}(u)=0$, while a solution to $\left(P_{\lambda}\right)$ is a function $u \in C^{1}\left([0, T], \mathbb{R}^{k}\right)$ with \dot{u} absolutely continuous, such that

$$
\left\{\begin{array}{l}
\ddot{u}=A(t) u-\lambda b(t) \nabla G(u) \quad \text { a. e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 .
\end{array}\right.
$$

Finally, for the reader convenience, let us recall the theorem that play a basic role in the proof of our main result. It is due to G. Bonanno ([3], Theorem 2.1), and its proof is based on a three critical points theorem established by B. Ricceri ([8], Theorem 3).

Theorem A. Let X be a separable and reflexive real Banach space, and let $\Phi, J: X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_{0} \in X$ such that $\Phi\left(x_{0}\right)=J\left(x_{0}\right)=0$ and $\Phi(x) \geq 0$ for every $x \in X$ and that there exist $x_{1} \in X, r>0$ such that
(j) $r<\Phi\left(x_{1}\right)$.
(jj) $\sup _{\Phi(x)<r} J(x)<r \frac{J\left(x_{1}\right)}{\Phi\left(x_{1}\right)}$.
Further, put $\bar{a}=\frac{h r}{r \frac{J(x) 1}{(x(x)}-\sup _{\phi(x)<r} J(x)}$ with $h>1$, assume that the functional $\Phi-\lambda J$ is sequentially weakly lower semicontinuous, satisfies the PalaisSmale condition and
(jjj) $\lim _{\|x\| \rightarrow+\infty}(\Phi(x)-\lambda J(x))=+\infty$
for every $\lambda \in[0, \bar{a}]$.
Then, there exist an open interval $\Lambda \subseteq[0, \bar{a}]$ and a positive real number ρ such that, for each $\lambda \in \Lambda$, the equation

$$
\Phi^{\prime}(x)-\lambda J^{\prime}(x)=0
$$

admits at least three solutions in X whose norms are less than ρ.

3. Main results.

In this section we will prove our main theorem that can be stated as follows
Theorem 1. Assume that $G(0) \geq 0$ and that there exist a positive constant d and $\hat{\xi} \in \mathbb{R}^{k}$ such that
(i) $|\hat{\xi}|>\frac{d}{c \sqrt{\mu T}}$.
(ii) $\frac{\max _{|\xi| \leq d} G(\xi)}{d^{2}}<\frac{1}{c^{2} T \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \cdot \frac{G(\hat{\xi})}{|\hat{\xi}|^{2}}$,
where c is the constant given in (4).
Put

$$
\lambda^{*}=\frac{p d^{2}}{\frac{d^{2}}{T \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \cdot \frac{G(\hat{\xi})}{|\hat{\xi}|^{2}}-c^{2} \max _{|\xi| \leq d} G(\xi)}
$$

with $p>\frac{1}{2}$ and suppose that
(iii) $\limsup _{|\xi| \rightarrow+\infty} \frac{G(\xi)}{|\xi|^{2}}<\frac{1}{2 c^{2} \lambda^{*}}$.

Then, for every function $b \in L^{1}([0, T]) \backslash\{0\}$ that is a. e. nonnegative, there exist an open interval $\Lambda \subseteq\left[0, \frac{\lambda^{*}}{\|b\|_{L^{1}}}\right]$ and a positive real number ρ such that for every $\lambda \in \Lambda$ problem $\left(P_{\lambda}\right)$ admits at least three solutions in \mathbb{H}_{T}^{1} whose norms are less than ρ.
Proof. We want to apply Theorem A, where X is $\mathbb{H}_{T}^{1}, J=-\Psi-\|b\|_{L^{1}} G(0)$, being Φ and Ψ the functionals introduced in Section 2.

Put $r=\frac{d^{2}}{2 c^{2}}, u_{0}=0, u_{1}(t)=\hat{\xi}$ for every $t \in[0, T]$. Clearly $\Phi\left(u_{0}\right)=$ $J\left(u_{0}\right)=0$ and $\Phi(u) \geq 0$ for every $u \in X$. Moreover

$$
\begin{align*}
\Phi\left(u_{1}\right) & =\frac{1}{2} \int_{0}^{T} A(t) \hat{\xi} \cdot \hat{\xi} d t \geq \frac{1}{2} \mu|\hat{\xi}|^{2} \int_{0}^{T} d t \tag{6}\\
& =\frac{1}{2} \mu T|\hat{\xi}|^{2}>\frac{1}{2} \mu T \frac{d^{2}}{c^{2} \mu T}=r
\end{align*}
$$

By the fact that

$$
\left.\left.\Phi^{-1}(]-\infty, r\right]\right) \subseteq\left\{u \in X:\|u\|_{C^{0}} \leq c \sqrt{2 r}\right\}
$$

one has

$$
\begin{align*}
\sup _{\frac{1}{2}\|u\|^{2} \leq r} \int_{0}^{T} b(t) G(u(t)) d t & \leq \sup _{\|u\|_{C^{0}} \leq c \sqrt{2 r}} \int_{0}^{T} b(t) G(u(t)) d t \tag{7}\\
& =\sup _{\|u\|_{C^{0}} \leq d} \int_{0}^{T} b(t) G(u(t)) d t \\
& \leq \sup _{|\xi| \leq d} \int_{0}^{T} b(t) G(\xi) d t \\
& =\|b\|_{1} \cdot \sup _{|\xi| \leq d} G(\xi)
\end{align*}
$$

Moreover, taking in mind condition (3) and observing that from assumption (ii) and $G(0) \geq 0$ follows that $G(\hat{\xi})>0$, we can write
(8) $\|b\|_{1} \frac{d^{2}}{c^{2}} \frac{1}{T \cdot \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \frac{G(\hat{\xi})}{|\hat{\xi}|^{2}}=\|b\|_{1} \frac{2 r}{T \cdot \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \frac{G(\hat{\xi})}{|\hat{\xi}|^{2}}$

$$
\begin{aligned}
& =2 r \frac{\left[-\Psi\left(u_{1}\right)\right]}{T \cdot \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty} \cdot|\hat{\xi}|^{2}} \\
& \leq r \frac{\left[-\Psi\left(u_{1}\right)\right]}{\frac{1}{2} \int_{0}^{T} A(t) \hat{\xi} \cdot \hat{\xi} d t}=r \frac{\left[-\Psi\left(u_{1}\right)\right]}{\Phi\left(u_{1}\right)} .
\end{aligned}
$$

At this point, thanks to (7), (ii), (8) and (6), one has that

$$
\begin{align*}
\sup _{\Phi(u)<r} J(u) & \leq\|b\|_{1} \sup _{|\xi| \leq d} G(\xi)-\|b\|_{1} G(0) \tag{9}\\
& <\|b\|_{1} \frac{d^{2}}{c^{2}} \cdot \frac{1}{T \cdot \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \cdot \frac{G(\hat{\xi})}{|\hat{\xi}|^{2}}-\|b\|_{1} G(0) \\
& \leq r \frac{\left[-\Psi\left(u_{1}\right)\right]}{\Phi\left(u_{1}\right)}-\|b\|_{1} G(0) \\
& \leq r \frac{\left[J\left(u_{1}\right)\right]}{\Phi\left(u_{1}\right)}
\end{align*}
$$

Put

$$
\begin{gathered}
\delta_{1}=\sup _{\Phi(u)<r} J(u), \\
\delta_{2}=r \frac{J\left(u_{1}\right)}{\Phi\left(u_{1}\right)}, \\
\alpha=\|b\|_{1} \cdot \sup _{|\xi| \leq d} G(\xi)-\|b\|_{1} G(0), \\
\beta=\|b\|_{1} \frac{d^{2}}{c^{2}} \cdot \frac{1}{T \cdot \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \cdot \frac{G(\hat{\xi})}{|\hat{\xi}|^{2}}-\|b\|_{1} G(0)
\end{gathered}
$$

We have proved that

$$
\delta_{1} \leq \alpha<\beta \leq \delta_{2}
$$

Hence, if we put $h=2 p$, one has

$$
0<\bar{a}=\frac{h r}{\delta_{2}-\delta_{1}} \leq \frac{\lambda^{*}}{\|b\|_{1}}
$$

Let us now prove that for each $\lambda \in\left[0, \frac{\lambda^{*}}{\|b\|_{1}}\right]$ one has

$$
\lim _{\|u\| \rightarrow+\infty}(\Phi(u)-\lambda J(u))=+\infty
$$

If $\lambda=0$ the conclusion if obvious. Fix $\left.\lambda \in] 0, \frac{\lambda^{*}}{\|b\|_{1}}\right]$. Thanks to assumption (iii) we can consider a real positive number γ such that

$$
\limsup _{|\xi| \rightarrow+\infty} \frac{G(\xi)}{|\xi|^{2}}<\gamma<\frac{1}{2 c^{2} \lambda^{*}}
$$

Hence, there exists a positive real number γ^{\prime} such that

$$
\begin{equation*}
G(\xi)<\gamma|\xi|^{2}+\gamma^{\prime} \tag{10}
\end{equation*}
$$

for every $\xi \in \mathbb{R}^{k}$. Hence, by (4) one has that

$$
\Phi(u)-\lambda J(u)>\left(\frac{1}{2}-\lambda \gamma c^{2}\|b\|_{1}\right)\|u\|^{2}-\lambda \gamma^{\prime}\|b\|_{1}+\lambda\|b\|_{1} G(0)
$$

for every $u \in X$. At this point the coercivity of $\Phi-\lambda J$ follows observing that, from condition (10) one has

$$
\frac{1}{2}-\lambda \gamma c^{2}\|b\|_{1} \geq \frac{1}{2}-\lambda^{*} \gamma c^{2}>0
$$

Finally, taking in mind that Φ^{\prime} is a continuous operator that admits a continuous inverse and that J^{\prime} is a continuous and compact operator, from the coercivity of the functional $\Phi-\lambda J$, for every $\lambda \in\left[0, \frac{\lambda^{*}}{\|b\|_{1}}\right]$ follows that the Palais-Smale condition is verified. All the assumptions of Theorem A are satisfied, so there exists an open interval $\Lambda \subseteq[0, \bar{a}] \subseteq\left[0, \frac{\lambda^{*}}{\|b\|_{1}}\right]$ and a positive real number ρ such that, for each $\lambda \in \Lambda$, the equation

$$
\begin{equation*}
\Phi^{\prime}(u)-\lambda J^{\prime}(u)=0 \tag{11}
\end{equation*}
$$

admits at least three solutions in X whose norms are less than ρ. At this point, we can observe that, since $C_{T}^{\infty} \subset X$, if u is a solution of (11), then $\dot{u} \in X$ and, in particular, $\ddot{u}=A(t) u-\lambda b(t) \nabla G(u)$ a. e. in $[0, T], \dot{u}$ is absolutely continuous and $\int_{0}^{T} \ddot{u}(t) d t=0$ hence u is a solution of problem $\left(P_{\lambda}\right)$ and the proof is complete.

4. Examples.

This section is devoted to stress some examples of applications of Theorem 1.

Example 1. Let k be a positive integer, let $A:[0,1] \rightarrow \mathbb{R}^{k \times k}$ be a matrix valued function satisfying the assumptions made in Section 2. Moreover, suppose that $\left\|a_{i i}\right\|_{1}<9 \mu$ for some $i=1,2, \ldots, k$ and

$$
\begin{equation*}
\sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}<\frac{10^{5}}{9} \min \{1, \mu\} . \tag{12}
\end{equation*}
$$

Put

$$
G(\xi)=\frac{|\xi|^{20}}{e^{|\xi|^{2}}}
$$

for every $\xi \in \mathbb{R}^{k}$. Then, for every a. e. nonnegative function $b \in L^{1}([0,1]) \backslash\{0\}$ there exist an open interval $\Lambda \subseteq\left[0, \frac{\lambda^{*}}{\| \|_{1}}\right]$, where λ^{*} is given by

$$
\frac{p}{\frac{3^{18}}{e^{9} \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}}-c^{2} \max _{|\xi| \leq 1} G(\xi)}
$$

with $p>\frac{1}{2}$ and a positive real number ρ such that, for every $\lambda \in \Lambda$ problem $\left(P_{\lambda}\right)$ admits at least three solutions in \mathbb{H}_{T}^{1} whose norms are less than ρ.

First of all, we observe that, obviously, G is a continuously differentiable function and $G(0)=0$. Fix $T=1, d=1$ and any $\hat{\xi} \in \mathbb{R}^{k}$ such that $|\hat{\xi}|=3$. From condition (4), if we consider the functions $u_{i}(t)=e_{i}$, with $i=1,2, \ldots, k$, one has

$$
\begin{equation*}
\frac{1}{c} \leq \sqrt{\left\|a_{i i}\right\|_{1}} \tag{13}
\end{equation*}
$$

for every $i=1,2, \ldots, k$. So, since $\left\|a_{i i}\right\|_{1}<9 \mu$ for some $i=1,2, \ldots, k$, it is easy to check that assumption (i) holds. After that, taking in mind conditions (5) and (12), one has that

$$
\frac{1}{c^{2} \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \frac{4 \cdot 10^{5}}{9} \geq \frac{2 \cdot 10^{5}}{9} \frac{\min \{1, \mu\}}{\sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}}>2 .
$$

A simple computation shows that if $\tilde{\xi} \in \mathbb{R}^{k}$ is such that $|\tilde{\xi}|=1$ then

$$
\max _{|\xi| \leq 1} G(\xi)=G(\tilde{\xi})
$$

and

$$
G(\tilde{\xi})<2<\frac{2 \cdot 10^{5}}{9} \frac{\min \{1, \mu\}}{\sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}}<\frac{1}{c^{2} \sum_{i, j=1}^{k}\left\|a_{i j}\right\|_{\infty}} \frac{G(\hat{\xi})}{9}
$$

Hence assumption (ii) holds. Finally, since $\lim _{|\xi| \rightarrow+\infty} \frac{G(\xi)}{|\xi|^{2}}=0$, also assumption (iii) is verified and the conclusion follows.

Remark 1. Let A and G be as in Example 1. Fix $b \in C^{0}\left([0,1], \mathbb{R}^{+}\right)$and $\lambda>0$. Clearly, if we put

$$
F(t, \xi)=\frac{1}{2} A(t) \xi \cdot \xi-\lambda b(t) G(\xi)
$$

for every $(t, \xi) \in[0,1] \times \mathbb{R}^{k}$ one has that problem (P) becomes problem $\left(P_{\lambda}\right)$. At this point, it is easy to check that $\lim \inf _{|\xi| \rightarrow 0} \frac{F(t, \xi)}{|\xi|^{2}} \geq \frac{\mu}{2}$ uniformly respect to t. Hence, since $F(t, 0)=0$, condition (1) is not verified and no one of the results in $[4,8,9]$ can be applied to problem $\left(P_{\lambda}\right)$.

Example 2. Let k be a positive integer such that $k \leq 4$ and $\left.p \in] \frac{1}{2}, 1\right]$. Put

$$
G(\xi)=e^{\frac{10|\xi|^{2}}{1+|\xi|^{4}}} \cdot|\xi|^{2}+\arctan \left(1+|\xi|^{2}\right)
$$

for every $\xi \in \mathbb{R}^{k}$. Then, for every function $b \in L^{1}([0,1]) \backslash\{0\}$ that is a. e. nonnegative, there exist an open interval $\Lambda \subseteq\left[0, \frac{p}{\|b\|_{1}}\right]$ and a positive real number ρ such that for every $\lambda \in \Lambda$ the problem

$$
\left\{\begin{array}{l}
\ddot{u}=u-\lambda b(t) \nabla G(u) \quad \text { a. e. in }[0,1] \\
u(0)-u(1)=\dot{u}(0)-\dot{u}(1)=0 .
\end{array}\right.
$$

admits at least three solutions in H_{T}^{1} whose norms are less than ρ.
First of all, we observe that, obviously, G is a continuously differentiable function and $G(0)=\frac{\pi}{4}$. Consider $A \equiv I_{k \times k}$ and fix $T=1, d=\frac{1}{2}$ and $\hat{\xi} \in \mathbb{R}^{k}$ such that $|\hat{\xi}|=1$. In this situation it is simple to see that $\mu=1$, hence, by (13) and (5), one has $1 \leq c \leq \sqrt{2}$. So $\frac{1}{2 c} \leq \frac{1}{2}<|\hat{\xi}|$ and assumption (i) holds. Fix now $\tilde{\xi} \in \mathbb{R}^{k}$ such that $|\tilde{\xi}|=\frac{1}{2}$. It is easy to verify that $\max _{|\xi| \leq d} G(\xi)=G(\tilde{\xi})$ and that

$$
4 \cdot G(\tilde{\xi})<\frac{1}{2 k} G(\hat{\xi}) \leq \frac{1}{c^{2} k} G(\hat{\xi})
$$

so that also assumption (ii) is verified. Now, we can observe that

$$
\frac{G(\hat{\xi})}{4 k}-2 G(\tilde{\xi})>1,
$$

hence, if $\left.p \in] \frac{1}{2}, 1\right]$ one has

$$
\lambda^{*}=\frac{p}{4\left(\frac{G(\tilde{\xi})}{4 k}-c^{2} G(\tilde{\xi})\right)} \leq \frac{p}{\frac{G(\tilde{\xi})}{4 k}-2 G(\tilde{\xi})}<p
$$

and

$$
\frac{1}{2 c^{2} \lambda^{*}}=\frac{2}{p c^{2}}\left(\frac{G(\hat{\xi})}{4 k}-c^{2} G(\tilde{\xi})\right) \geq \frac{1}{p}\left(\frac{G(\hat{\xi})}{4 k}-2 G(\tilde{\xi})\right)>\frac{1}{p} \geq 1 .
$$

Moreover, it is easy to verify that

$$
\lim _{|\xi| \rightarrow+\infty} \frac{G(\xi)}{|\xi|^{2}}=1
$$

and all the assumptions of Theorem 1 are satisfied.

Remark 2. A classical growth condition on G to realize the coercivity of the energy functional related to problem $\left(P_{\lambda}\right)$ is

$$
\begin{equation*}
|G(\xi)| \leq a|\xi|^{s}+b \tag{14}
\end{equation*}
$$

for every $\xi \in \mathbb{R}^{k}$, where a, b and s are three real positive numbers with $s<2$. We want to emphasize that our assumption (iii) generalizes (14). In fact, when (14) holds one has that $\lim \sup _{|\xi| \rightarrow+\infty} \frac{G(\xi)}{|\xi|^{2}}=0$, so that (iii) is verified, but the converse is not, in general, true as examples 1 and 2 show.

REFERENCES

[1] R. A. Adams, Sobolev spaces, Academic Press, 1975.
[2] G. Bonanno, A minimax inequality and its application to ordinary differential equations, J. Math. Anal. Appl., 270 (2002), pp. 210-229.
[3] G. Bonanno, Some remarks on a Three Critical Points Thorem, Nonlinear Anal., 54 (2003), pp. 651-665.
[4] H. Brezis - L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), pp. 939-963.
[5] F. Faraci, Three periodic solutions for a second order nonautonomous system, J. Nonlinear Convex Anal., 3 (2002), pp. 393-399.
[6] F. Faraci - R. Livrea, Infinitely many periodic solutions for a second order nonautonomous system, Nonlinear Anal., 54 (2003), pp. 417-429.
[7] J. Mawhin - M. Willem, Critical Point Theory and Hamiltonian Systems, Sprin-ger-Verlag, New York, 1989.
[8] B. Ricceri, On a three critical points theorem, Arch. Math., 75 (2000), pp. 220226.
[9] C.L. Tang, Existence and multiplicity of periodic solutions for nonautonomous second order system, Nonlinear Anal., 3 (1998), pp. 299-304.
[10] C.L. Tang, Periodic solutions for nonautonomous second order system with sublinear nonlinearity, Proc. Amer. Math. Soc., 126 - 11 (1998), pp. 3263-3270.

Giuseppina Barletta, Dipartimento di Informatica, Matematica, Elettronica e Trasporti, Università degli Studi Mediterranea,

Reggio Calabria, Feo di Vito,
89100 Reggio Calabria (ITALY)
e-mail: barletta@ing.unirc.it
Roberto Livrea,
Dipartimento di Matematica,
Università di Messina,
Salita Sperone 31,
98166 Sant' Agata, Messina (ITALY)

[^0]: Entrato in redazione il 10 Ottobre 2002.
 2000 Methematics Subject Classification: 34C25, 35A15.
 Key words: Second order non-autonomous systems, Multiple solutions, Critical points.

