COLOURINGS OF VOLOSHIN FOR ATS (v)

Abstract

ALBERTO AMATO

A mixed hypergraph is a triple $H=(\mathbf{S}, \mathrm{C}, \mathrm{D})$, where \mathbf{S} is the vertex set and each of C,D is a family of not-empty subsets of \mathbf{S}, the C-edges and D-edges respectively. A strict k-colouring of H is a surjection f from the vertex set into a set of colours $\{1,2, \ldots, k\}$ so that each C -edge contains at least two distinct vertices x, y such that $f(x)=f(y)$ and each D-edge contains at least two vertices x, y such that $f(x) \neq f(y)$. For each $k \in\{1,2, \ldots,|\mathbf{S}|\}$, let r_{k} be the number of partitions of the vertex set into k not-empty parts (the colour classes) such that the colouring constraint is satisfied on each Cedge and D-edge. The vector $\mathbf{R}(H)=\left(r_{1}, \ldots, r_{k}\right)$ is called the chromatic spectrum of H. These concepts were introduced by V. Voloshin in 1993 [6].

In this paper we examine colourings of mixed hypergraphs in the case that H is an $\operatorname{ATS}(v)$.

1. Introduction.

A mixed hypergraph is a triple $H=(\mathbf{S}, \mathrm{C}, \mathrm{D})$, where \mathbf{S} is the vertex set and each of C,D is a family of subsets of \mathbf{S}, the C-edges and D-edges respectively. A proper k-colouring of a mixed hypergraph is a mapping f from the vertex set into a set of colours $\{1,2, \ldots, k\}$ so that each C-edge contains at least two distinct vertices x, y such that $f(x)=f(y)$ and each D-edge contains at least two vertices x, y such that $f(x) \neq f(y)$. If $C=D$, then H is called a $b i$ hypergraph.

[^0]A mixed hypergraph is called k-colourable if it admits a proper colouring with at most k colours; it is called uncolourable if it admits no colouring. A strict k-colouring is a proper k-colouring using all k colours. The minimum number of colours in a colouring of H is called the lower chromatic number $\chi(H)$, the maximum number of colours in a strict colouring of H is called the upper chromatic number $\chi^{*}(H)$.

If $|\mathbf{S}|=n$, for each $k \in\{1,2, \ldots, n\}$, let r_{k} be the number of partitions of the vertex set into k not-empty parts (called colour classes) such that the colouring constraint is satisfied on each C-edge and D-edge. In fact, r_{k} is the number of different strict k-colourings if we ignore permutations of colours. The vector $\mathbf{R}(H)=\left(r_{1}, \ldots, r_{k}\right)$ is called the chromatic spectrum of H.

These concepts were introduced by V. Voloshin in 1993 [6].
A Steiner System $\mathbf{S}_{\lambda}(t, k, v)(t, k, v, \lambda \in \mathbf{N})$ is a pair (\mathbf{S}, B) where \mathbf{S} is a finite set of v vertices and B is a family of subsets of \mathbf{S} called blocks such that:

1) each block contains k vertices;
2) for each t-subset \mathbf{T} of \mathbf{S}, there exist exactly λ blocks containing \mathbf{T}.

If $\lambda=1$, a system $\mathbf{S}_{1}(t, k, v)$ is denoted by $\mathbf{S}(t, k, v)$. A system $\mathbf{S}(2,3, v)$ is called a Steiner Triple System and is denoted by STS (v). As it is well known, there exists an STS (v) if and only if $v \equiv 1(\bmod 6)$ or $v \equiv 3(\bmod 6)$.

An Almost Triple System of order v, briefly an $\operatorname{ATS}(v)$, is a pair (\mathbf{S}, B) where \mathbf{S} is a finite set of v vertices and B is a family of subsets of \mathbf{S}, called blocks, such that:

1) there exists exactly one block containing 5 vertices;
2) all the other blocks contain 3 vertices;
3) each pair of vertices of \mathbf{S} is contained in exactly one block of B.

It is possible to prove that an $\mathbf{A T S}(v)$ exists if and only if $v \equiv 5(\bmod 6)$.
In what follows, the block containing five vertices will be always denoted by b^{*}.

We illustrate now a technique for a recurrent construction of $\operatorname{ATS}(v)$. It is called $(v \rightarrow 2 v+1)$-construction and allows to obtain an $\mathbf{A T S}(2 v+1)$ from an ATS (v). We will refer to this construction as construction A.

Construction A

Let (\mathbf{S}, B) be an $\mathbf{A T S}(v)$, where $\mathbf{S}=\left\{x_{1}, \ldots, x_{v}\right\}$, and let $\mathbf{T}=$ $\left\{y_{1}, \ldots, y_{v+1}\right\}$ be a $(v+1)$-set of vertices disjoint from \mathbf{S}. As $v+1$ is an even number, it is possible to consider a 1-factorization $F=\left(F_{1}, F_{2}, \ldots, F_{v}\right)$ of the complete graph \mathbf{K}_{v+1} defined on \mathbf{T}. Let be $\mathbf{S}^{\prime}=\mathbf{S} \cup \mathbf{T}, B^{\prime}=B \cup C$, where the set C is defined as follows:

$$
\forall i \in\{1, \ldots, v\}\left\{x_{i}, y^{\prime}, y^{\prime \prime}\right\} \in C \leftrightarrow\left\{y^{\prime}, y^{\prime \prime}\right\} \in F_{i} .
$$

It is easy to prove that $H^{\prime}=\left(\mathbf{S}^{\prime}, B^{\prime}\right)$ is an $\operatorname{ATS}(2 v+1)$.
In what follows, we will consider $\operatorname{ATS}(v)$ as mixed hypergraphs in which $C=D$: we will call them $\operatorname{BATS}(v)$.

2. Preliminary results.

In this section we prove some general properties for BATS (v).
Theorem 2.1. Let H be a BATS(v) with $\chi^{*}(H)=k$ and let H^{\prime} be a BATS $(2 v+1)$ obtained from H by a construction A. Then
i) $\chi^{*}\left(H^{\prime}\right) \leq k+1$
ii) If H is h-colourable, then H^{\prime} is $(h+1)$ - colourable.

Proof. Following the symbolism of construction A, let be $H=(\mathbf{S}, B)$, $H^{\prime}=\left(\mathbf{S}^{\prime}, B^{\prime}\right)$ respectively an $\boldsymbol{\operatorname { A T S }}(v)$ and an $\mathbf{A T S}(2 v+1)$, where $|\mathbf{S}|=v$, $\left|\mathbf{S}^{\prime}\right|=2 v+1, \mathbf{T}=\mathbf{S}^{\prime}-\mathbf{S}=\left\{y_{1}, y_{2}, \ldots, y_{v+1}\right\}$. Since $\chi^{*}(H)=k$, let f be a k-colouring of H. Suppose that g is an h-colouring of H^{\prime}, for $h \geq k+2$. Since $\chi^{*}(H)=k$, then there exist at least two vertices $y^{\prime}, y^{\prime \prime} \in \mathbf{T}$ such that $g\left(y^{\prime}\right) \neq g\left(y^{\prime \prime}\right)$ and $\left\{g\left(y^{\prime}\right), g\left(y^{\prime \prime}\right)\right\} \cap g(\mathbf{S})=\emptyset$. If $\left\{y^{\prime}, y^{\prime \prime}\right\} \in F_{j}$, then $\left\{x_{j}, y^{\prime}, y^{\prime \prime}\right\} \in B^{\prime}$ and the triple $\left\{x_{j}, y^{\prime}, y^{\prime \prime}\right\}$ doesn't contain two vertices with a common colour. Therefore, for every h-colouring of $H^{\prime}, h \leq k+1$. Further, there exists a $(k+1)$-colouring of H^{\prime} : it sufficies to extend the k-colouring f of H to H^{\prime}, associating with all the vertices of \mathbf{T} a same colour, different from the k colours used for the vertices of H. It follows $\chi^{*}\left(H^{\prime}\right)=k+1$.

The second statement follows considering that it is always possible to give a same colour to the vertices of \mathbf{T}, distinct from all the colours used for the vertices of \mathbf{S}.

Theorem 2.2. Let $H=(\mathbf{S}, B)$ be a $\operatorname{BATS}(v)$ with $\chi^{*}(H)=k$ and let H^{\prime} be a $\mathbf{B A T S}(2 v+1)$ obtained from H by a construction \mathbf{A}. If there exists a k-colouring f of H^{\prime}, then

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k}\left(x_{i}^{2}+\left(2 a_{i}-1\right) x_{i}\right)=v(v+1) \\
\sum_{i=1}^{k} x_{i}=v+1
\end{array}\right.
$$

where, for each $i \in\{1,2, \ldots, k\}, a_{i}, x_{i}$ are respectively the number of vertices of \mathbf{S} and $\mathbf{S}^{\prime}-\mathbf{S}$ coloured by the colour in f.

Proof. Since $\chi^{*}(H)=k$, then, for every k-colouring f of $H^{\prime}, f / \mathbf{S}$ is a k colouring of \mathbf{S}. The second equality is immediate. Prove the first. Consider a colour $i, i \in\{1,2, \ldots, k\}$. If F is the 1-factorization of \mathbf{K}_{v+1} on $\mathbf{T}=\mathbf{S}^{\prime}-\mathbf{S}$ used to define H^{\prime}, then there are a_{i} factors of F associated with a_{i} vertices of \mathbf{S} coloured by i. So, in \mathbf{T} there are $a_{i} x_{i}$ pairs having exactly one vertex coloured by the colour i and

$$
\binom{x_{i}}{2}
$$

pairs having both vertices coloured by i.
Therefore, the number of monochromatic pairs of \mathbf{T} is:

$$
\sum_{i=1}^{k}\binom{x_{i}}{2}=\sum_{i=1}^{k} a_{i}\left(\frac{v+1}{2}-x_{i}\right)
$$

hence

$$
\sum_{i=1}^{k}\left(x_{i}^{2}-x_{i}\right)=\sum_{i=1}^{k}\left(a_{i}(v+1)-2 a_{i} x_{i}\right)
$$

from which, by a simple calculation, we obtain the first equality and the statement follows.

Theorem 2.3. Let H be a $\mathbf{B A T S}(v)$. If $v>5$, then H is not 2 -colourable.
Proof. Suppose $\chi(H)=2$ and let \mathbf{A}, \mathbf{B} the colour classes of a 2 -colouring of $H,|\mathbf{A}|=p,|\mathbf{B}|=v-p$. We say of type 1 the blocks b of H such that $|\mathbf{A} \cap b|=1,|\mathbf{B} \cap b|=2$ and of type 2 the blocks b of H such that $|\mathbf{A} \cap b|=2$, $|\mathbf{B} \cap b|=1$. Let \mathbf{b}^{*} be the block of size 5 .

Suppose $\left|\mathbf{A} \cap b^{*}\right|=2,\left|\mathbf{B} \cap b^{*}\right|=3$. The number of blocks of H is:

$$
\left[\binom{p}{2}-1\right]+\left[\binom{v-p}{2}-3\right]+1=\frac{v(v-1)-14}{6}
$$

hence

$$
3 p^{2}-3 p v+v^{2}-v-2=0
$$

and so $v=5, p=2,3$.
Suppose $\left|\mathbf{A} \cap b^{*}\right|=1,\left|\mathbf{B} \cap b^{*}\right|=4$. If we add the number of blocks of type 1 to the number of blocks of type 2, we obtain:

$$
\binom{p}{2}+\left[\binom{v-p}{2}-6\right]+1=\frac{v(v-1)-14}{6}
$$

hence

$$
3 p^{2}-3 p v+v^{2}-v-8=0
$$

and so $v=5, p=1,4$.
The statement is proved.

3. Colourings for BATS(11).

In what follows, we indicate by the sequence $\mathbf{A}^{n_{1}} \mathbf{B}^{n_{2}}, \ldots$ a colouring of a mixed hypergraph H which associates the colour \mathbf{A} with n_{1} vertices, the colour \mathbf{B} with n_{2} vertices, \ldots. If H is a $\operatorname{BATS}(5)$, then it admits only the 2 -colourings $\mathbf{A}^{4} \mathbf{B}, \mathbf{A}^{3} \mathbf{B}^{2}$, the 3-colourings $\mathbf{A}^{3} \mathbf{B C}, \mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C}$ and the 4 -colouring $\mathbf{A}^{2} \mathbf{B C D}$, so that $\chi(H)=2, \chi^{*}(H)=4$.

In what follows, H will be an $\mathbf{A T S}(11)$ defined on $\mathbf{S}^{\prime}=\{1,2, \ldots, 11\}$. Further: $\mathbf{S}=\{1,2,3,4,5\}, \mathbf{T}=\mathbf{S}^{\prime}-\mathbf{S}, f$ will be a colouring of H, $F=\left(F_{1}, F_{2}, \ldots, F_{5}\right)$ will be a 1 -factorization of \mathbf{K}_{6} defined on \mathbf{T}. The blocks of H which are not contained in \mathbf{S} are the triples $\{i, x, y\}$, for every $i \in\{1,2, \ldots, 5\}$ and $\{x, y\} \in F_{i}$. To within to isomorphisms the triples of an ATS (11) are obtained from a 1-factorization of the type:

F_{1}	F_{2}	F_{3}	F_{4}	F_{5}
$6-7$	$6-10$	$6-9$	$6-11$	$6-8$
$8-10$	$7-11$	$7-10$	$7-8$	$7-9$
$9-11$	$8-9$	$8-11$	$9-10$	$10-11$

Theorem 3.1. All possible 3-colourings for a BATS(11) are of type $\mathbf{A}^{6} \mathbf{B C}^{4}$, $\mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{6}, \mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2}$.
Proof. Let H be a BATS(11). From Theorem 2.1, ii), H is 3 -colourable. Let f be a 3-colouring of H. Observe that f / \mathbf{S} can be a 2 -colouring or a 3colouring on \mathbf{S}.

We denote by x_{A}, x_{B}, x_{C} the colour class cardinalities on \mathbf{T} and a, b, c the colour class cardinalities on \mathbf{S}. By Theorem 2.2, we have $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+$ $(2 a-1) x_{A}+(2 b-1) x_{B}+(2 c-1) x_{C}=30, x_{A}+x_{B}+x_{C}=6$.

If f / \mathbf{S} is a 2 -colouring $\mathbf{A}^{4} \mathbf{B}$ on \mathbf{S}, we have $a=4, b=1, c=0$, and $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+7 x_{A}+x_{B}-x_{C}=30, x_{A}+x_{B}+x_{C}=6, x_{C}>0$. The possible solutions are: $(0,5,1),(2,3,1),(2,0,4),(0,0,6)$. Since $x_{A} \leq 3, x_{B} \leq 3$, the first solution doesn't imply a colouring; further, in the second triple, $x_{C}=1$ implies $x_{A} \geq 4$ and this is not possible. The triple ($2,0,4$) implies a 3 -colouring $\mathbf{A}^{6} \mathbf{B C}^{4}$. The triple $(0,0,6)$ implies the 3 -colouring $\mathbf{A}^{4} \mathbf{B C}^{6}$.

If f / \mathbf{S} is a 2-colouring $\mathbf{A}^{3} \mathbf{B}^{2}$ on \mathbf{S}, we have $a=3, b=2, c=0$, and $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+5 x_{A}+3 x_{B}-x_{C}=30, x_{A}+x_{B}+x_{C}=6, x_{C}>0$. The
possible solutions are: $(0,4,2),(3,1,2),(3,0,3),(0,0,6)$. Since $x_{B} \leq 3$, the first solution is not acceptable. The second and the third solutions imply the existence of 3 -chromatic blocks. The solution $(0,0,6)$ implies a 3 -colouring $\mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{6}$.

If f / \mathbf{S} is a 3 -colouring $\mathbf{A}^{3} \mathbf{B C}$ on \mathbf{S}, we have $a=3, b=1, c=1$, and $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+5 x_{A}+x_{B}+x_{C}=30, x_{A}+x_{B}+x_{C}=6, x_{C}>0$. It is possible to prove that there are not natural solutions.

If f / \mathbf{S} is a 3 -colouring $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C}$ on \mathbf{S}, we have $a=2, b=2, c=1$, $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+3 x_{A}+3 x_{B}+x_{C}=30, x_{A}+x_{B}+x_{C}=6, x_{C}>0$. The possible solutions are: $(2,3,1),(3,2,1),(0,3,3),(3,0,3),(0,2,4),(2,0,4)$. Since $x_{C} \leq 3$, the last two solutions are not acceptable. The third and the fourth solutions imply the existence of 3 -chromatic blocks. The triple $(2,3,1)$ implies the 3-colouring $\mathbf{A}^{4} \mathbf{B}^{5} \mathbf{C}^{2}$. The solution (3, 2, 1) implies a 3-colouring $\mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2}$.

The statement is proved.
Theorem 3.2. All possible 4-colourings for a BATS(11) are of type $\mathbf{A}^{3} \mathbf{B C D}^{6}$, $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{6}$.

Proof. Let H be a BATS(11) and let f be a 4-colouring of H. Observe that f / \mathbf{S} can be a 3 - or a 4 -colouring on \mathbf{S}. Denote by $x_{A}, x_{B}, x_{C}, x_{D}$ the colour class cardinalities on \mathbf{T} and a, b, c, d the colour class cardinalities on \mathbf{S}.
By Theorem 2.2, $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+(2 a-1) x_{A}+(2 b-1) x_{B}+(2 c-1) x_{C}+$ $(2 d-1) x_{D}=30, x_{A}+x_{B}+x_{C}+x_{D}=6$.

If f / \mathbf{S} is a 3-colouring $\mathbf{A}^{3} \mathbf{B C}$ on \mathbf{S}, then $a=3, b=1, c=1, d=0$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+5 x_{A}+x_{B}+x_{C}-x_{D}=30, x_{A}+x_{B}+x_{C}+x_{D}=6$, $x_{D}>0$. Further: i) $x_{A} \leq 3, x_{B} \leq 3, x_{C} \leq 3$; and ii) if one among x_{A}, x_{B}, x_{C} is odd, then the other two must be positive. The only possible solution is $(0,0,0,6)$, that implies the 4 -colouring $\mathbf{A}^{3} \mathbf{B C D}{ }^{6}$.

If f / \mathbf{S} is a 3-colouring $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C}$ on \mathbf{S}, then $a=2, b=2, c=1, d=0$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+3 x_{A}+3 x_{B}+x_{C}-x_{D}=30, x_{A}+x_{B}+x_{C}+x_{D}=6$, $x_{D}>0$, with the condition i) and $i i$) shown above. Also in this case, the only possible solution is $(0,0,0,6)$, that implies a 4-colouring of type $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{6}$.

Finally, if f / \mathbf{S} is a 4-colouring on \mathbf{S}, it is necessarily of type $\mathbf{A}^{2} \mathbf{B C D}$, so that we have $a=2, b=1, c=1, d=1, x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+3 x_{A}+x_{B}+$ $x_{C}+x_{D}=30, x_{A}+x_{B}+x_{C}+x_{D}=6$, with the condition i) and ii) shown above. There is no solution and then the assertion of theorem follows.

Theorem 3.3. All possible 5-colourings for a BATS(11) are of type $\mathbf{A}^{2} \mathbf{B C D E}^{6}$.

Proof. Let H be a BATS(11) and let f be a 5-colouring of H. Necessarily, f / \mathbf{S} is 4 -colouring on \mathbf{S} and it can be only of type $\mathbf{A}^{2} \mathbf{B C D}$. From Theorem 3.2,
the only possible colouring for H is a 5-colouring, which can be only of type $\mathbf{A}^{2} \mathbf{B C D E}^{6}$.

A consequence:
Corollary. For each ATS(11), there exist only 3-colourings, 4-colourings, 5colourings.

4. Colourings for BATS(23).

The terminology is the same of Section 3. In what follows, every BATS(23) is obtained from a BATS(11) by construction \mathbf{A}; it will be $\mathbf{S}=$ $\{1,2, \ldots, 11\}, \mathbf{T}=\mathbf{S}^{\prime}-\mathbf{S}=\{12,13, \ldots, 23\}$.

By Theorem 2.3, $\chi(H) \geq 3$ for all colourable BATS(23). Further, if we denote by x_{i} the i-colour class cardinality on \mathbf{T} and a_{j} the j-colour class cardinality on \mathbf{S}, we can prove the following Lemma:

Lemma 4.1. Let H be a 3-colourable BATS(23) obtained from a BATS(11) by construction A. Then
i) $x_{A} \leq 6, x_{B} \leq 6, x_{C} \leq 6$
ii) if $x_{i}, x_{j} \in\left\{x_{A}, x_{B}, x_{C}\right\}$ for $i \neq j$, then $x_{i} \leq a_{i}+a_{j}, x_{j} \leq a_{i}+a_{j}$.

Proof. Observe that i) is immediate, otherwise there exist a monochromatic triple. For $i i$) consider that if $x_{i}>a_{i}+a_{j}$ for some pair i, j, then an item x of \mathbf{T} coloured by j forms x_{i} pairs with items of \mathbf{T} coloured by i. These pairs should form triples with an element of \mathbf{S} coloured necessarily by i or j; it follows that $a_{i}+a_{j}>x_{i}$, and it is not possible.

Theorem 4.2. All possible 3-colourings for a BATS(23) are of type $\mathbf{A}^{10} \mathbf{B}^{4} \mathbf{C}^{9}$, $\mathbf{A}^{6} \mathbf{B}^{6} \mathbf{C}^{11}, \mathbf{A}^{10} \mathbf{B}^{8} \mathbf{C}^{5}$.

Proof. Let H be a BATS(23) and let f be a 3-colouring of H. Observe that f / \mathbf{S} must be a 3 -colouring on \mathbf{S}. We denote by x_{A}, x_{B}, x_{C} the colour class cardinalities on \mathbf{T} and a, b, c the colour class cardinalities on \mathbf{S}. By Theorem 2.2, we have $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+(2 a-1) x_{A}+(2 b-1) x_{B}+(2 c-1) x_{C}=132$, $x_{A}+x_{B}+x_{C}=12$.

If f / \mathbf{S} is a 3-colouring $\mathbf{A}^{6} \mathbf{B C} \mathbf{C}^{4}$ on \mathbf{S}, then we have $a=6, b=1, c=4$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+11 x_{A}+x_{B}+7 x_{C}=132, x_{A}+x_{B}+x_{C}=$ 12 , with the conditions i) and $i i$) of Lemma 4.1. There is only one possible solution: $(4,3,5)$. It gives a colouring $\mathbf{A}^{10} \mathbf{B}^{4} \mathbf{C}^{9}$. A possible colouring is: $\mathbf{A}=\{1,2,3,4,5,6,12,13,14,15\}, \mathbf{B}=\{7,16,17,18\}, \mathbf{C}=$
$\{8,9,10,11,19,20,21,22,23\}$, with the 1-factorization shown in Table 1 [see Appendix].

If f / \mathbf{S} is a 3 -colouring $\mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{6}$ on \mathbf{S}, then we have $a=3, b=2$, $c=6$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+5 x_{A}+3 x_{B}+11 x_{C}=132, x_{A}+x_{B}+$ $x_{C}=12$, with the conditions i) and $i i$) of Lemma 4.1. There is only one possible solution: $(3,4,5)$. It gives a 3 -colouring $\mathbf{A}^{6} \mathbf{B}^{6} \mathbf{C}^{11}$. A possible colouring is: $\mathbf{A}=\{1,2,3,12,13,14\}, \mathbf{B}=\{4,5,15,16,17,18\}, \mathbf{C}=$ $\{6,7,8,9,10,11,19,20,21,22,23\}$, with the 1 -factorization shown in Table 2 [see Appendix].

If f / \mathbf{S} is a 3-colouring $\mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2}$ on \mathbf{S}, then we have $a=5, b=4$, $c=2$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+9 x_{A}+7 x_{B}+3 x_{C}=132, x_{A}+x_{B}+x_{C}=$ 12, with the conditions i) and $i i$) of Lemma 4.1. The possible solutions are: $(0,6,6),(3,6,3),(5,1,6),(5,4,3)$. The triple $(0,6,6)$ implies a 3 colouring $\mathbf{A}^{5} \mathbf{B}^{10} \mathbf{C}^{8}$. A possible colouring is: $\mathbf{A}=\{1,2,3,4,5\}, \mathbf{B}=$ $\{6,7,8,9,18,19,20,21,22,23\}, \mathbf{C}=\{10,11,12,13,14,15,16,17\}$, with the 1 -factorization shown in Table 3 [see Appendix].

The solution ($3,6,3$) implies that a point $x \in \mathbf{S}$ coloured by \mathbf{C} is associated with 3 pairs $\{y, z\} \subseteq \mathbf{T}$ coloured by $\mathbf{B C}$, one pair coloured by $\mathbf{A A}$, one pair coloured by $\mathbf{B B}$ and one pair coloured by $\mathbf{A B}$, and it is not acceptable. The solution $(5,1,6)$ implies that the pairs $\{y, z\} \subseteq \mathbf{T}$ coloured by $\mathbf{A A}$ cannot form a triple with a point $x \in \mathbf{S}$ coloured by \mathbf{C}; a point of \mathbf{S} associated with a pair AA and it is not possible because $x_{A}=5$ and \mathbf{B}^{4}. The only possible solution is the triple $(5,4,3)$ which gives a 3-colouring $\mathbf{A}^{10} \mathbf{B}^{8} \mathbf{C}^{5}$ similar to $\mathbf{A}^{5} \mathbf{B}^{10} \mathbf{C}^{8}$.

The assertion of theorem follows.
Theorem 4.3. All possible 4-colourings for a colourable BATS(23) are of type $\mathbf{A}^{6} \mathbf{B C} \mathbf{C}^{4} \mathbf{D}^{12}, \mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{12} \mathbf{D}^{6}, \mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2} \mathbf{D}^{12}$.

Proof. Let H be a colourable BATS(23) and let f be a 4-colouring of H. Observe that f / \mathbf{S} can be a 3-colouring on \mathbf{S} of type $\mathbf{A}^{6} \mathbf{B C} \mathbf{C}^{4}, \mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{6}, \mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2}$ or a 4-colouring on \mathbf{S} of type $\mathbf{A}^{3} \mathbf{B C D}{ }^{6}, \mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{6}$. If we denote by x_{A}, x_{B}, x_{C}, x_{D} the colour class cardinalities on \mathbf{T} and a, b, c, d the colour class cardinalities on \mathbf{S}, then, from Theorem 2.2, we have $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+(2 a-1) x_{A}+(2 b-$ 1) $x_{B}+(2 c-1) x_{C}+(2 d-1) x_{D}=132, x_{A}+x_{B}+x_{C}+x_{D}=12$. Further: i) $x_{A} \leq 6, x_{B} \leq 6, x_{C} \leq 6, x_{D}>0$; ii) if $x=0, x \in\left\{x_{A}, x_{B}, x_{C}\right\}$, then all the others are even.

If f / \mathbf{S} is a 3-colouring $\mathbf{A}^{6} \mathbf{B C} \mathbf{C}^{4}$ on \mathbf{S}, then $a=6, b=1, c=4, d=0$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+11 x_{A}+x_{B}+7 x_{C}-x_{D}=132, x_{A}+x_{B}+x_{C}+x_{D}=12$, $x_{D}>0$, with the conditions i) and $i i$) shown above. The possible solutions are: $(0,0,0,12),(6,0,0,6),(6,0,2,4),(6,3,2,1)$.

The first solution gives a 4-colouring $\mathbf{A}^{6} \mathbf{B C} \mathbf{C}^{4} \mathbf{D}^{12}$, for $\mathbf{A}=\{1,2,3,4,5,6\}$, $\mathbf{B}=\{7\}, \mathbf{C}=\{8,9,10,11\}, \mathbf{D}=\{12,13,14,15,16,17,18,19,20,21,22,23\}$.

The second and third solutions give 4-colourings of type $\mathbf{A}^{12} \mathbf{B C} \mathbf{D}^{4}$, $\mathbf{A}^{12} \mathbf{B C} \mathbf{C}^{6} \mathbf{D}^{4}$ respectively, which are similar to $\mathbf{A}^{6} \mathbf{B C}^{4} \mathbf{D}^{12}$. The solution $(6,3,2,1)$ is not acceptable because $x_{B}=3, x_{D}=1$ and only one 1 -factor admits the existence of pairs coloured by BD.

If f / \mathbf{S} is a 3-colouring of type $\mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{6}$ of \mathbf{S}, then $a=3, b=2, c=6$, $d=0$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+5 x_{A}+3 x_{B}+11 x_{C}-x_{D}=132$, $x_{A}+x_{B}+x_{C}+x_{D}=12, x_{D}>0$, with the conditions i) and ii) shown above. The possible solutions are: $(0,0,0,12),(0,0,6,6),(0,4,6,2),(3,1,6,2)$.

The first solution gives a 4-colouring $\mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{6} \mathbf{D}^{12}$, for $\mathbf{A}=\{1,2,3\}, \mathbf{B}=$ $\{4,5\}, \mathbf{C}=\{6,7,8,9,10,11\}, \mathbf{D}=\{12,13,14,15,16,17,18,19,20,21,22$, $23\}$. The second solution gives a 4 -colouring $\mathbf{A}^{3} \mathbf{B}^{2} \mathbf{C}^{12} \mathbf{D}^{6}$ similar to the previous one. The solution $(0,4,6,2)$ is not acceptable because $x_{D}>0$ and $x_{B}=4$ imply the existence of at least 4 points of \mathbf{S} coloured by \mathbf{B}, while it is \mathbf{B}^{2}. The solution $(3,1,6,2)$ is not acceptable because $x_{D}=2$ implies $x_{B} \geq 2$.

If f / \mathbf{S} is a 3 -colouring of type $\mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2}$ of \mathbf{S}, then $a=5, b=4$, $c=2, d=0$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+9 x_{A}+7 x_{B}+3 x_{C}-x_{D}=132$, $x_{A}+x_{B}+x_{C}+x_{D}=12, x_{D}>0$, with the conditions shown above. The possible solutions are: $(0,0,0,12),(4,6,0,2)$. The first solution gives a 4 colouring $\mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2} \mathbf{D}^{12}$, for $\mathbf{A}=\{1,2,3,4,5\}, \mathbf{B}=\{6,7,8,9\}, \mathbf{C}=\{10,11\}$, $\mathbf{D}=\{12,13,14,15,16,17,18,19,20,21,22,23\}$. The solution $(4,6,0,2)$ is not acceptable because $x_{D}=2$ implies $x_{C} \geq 2$.

Now we consider the cases in which f / \mathbf{S} is a 4 -colouring on \mathbf{S}. In these cases, i) $x_{A} \leq 6, x_{B} \leq 6, x_{C} \leq 6, x_{D} \leq 6$; ii) if $x=0, x \in\left\{x_{A}, x_{B}, x_{C}, x_{D}\right\}$, then all the others are even.

If f / \mathbf{S} is a 4-colouring of type $\mathbf{A}^{3} \mathbf{B C D}{ }^{6}$ on \mathbf{S}, then $a=3, b=1$, $c=1, d=6$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+5 x_{A}+x_{B}+x_{C}+11 x_{D}=132$, $x_{A}+x_{B}+x_{C}+x_{D}=12$, with the conditions shown above. The possible solutions are: $(6,0,2,4),(6,2,0,4)$. These solutions are not acceptable because $x_{B}=2$ or $x_{C}=2$ and $\mathbf{A}^{3} \mathbf{B}\left(\mathbf{A}^{3} \mathbf{C}\right)$ implies $x_{A}+x_{B} \leq 4\left(x_{A}+x_{C} \leq 4\right)$.

Finally, if f / \mathbf{S} is a 4-colouring of type $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{6}$ on \mathbf{S}, then $a=2, b=2$, $c=1, d=6$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+3 x_{A}+3 x_{B}+x_{C}+11 x_{D}=132$, $x_{A}+x_{B}+x_{C}+x_{D}=12$, with the conditions shown above. The possible solutions are: $(0,2,4,6),(2,0,4,6),(2,3,1,6),(3,2,1,6)$. The first two solutions are not acceptable because $x_{D}=6$ implies $x \leq 3$ for every $x \in\left\{x_{A}, x_{B}, x_{C}\right\}$. The solutions $(2,3,1,6),(3,2,1,6)$ imply 4 -colourings $\mathbf{A}^{4} \mathbf{B}^{5} \mathbf{C}^{2} \mathbf{D}^{12}$ (respectively $\mathbf{A}^{5} \mathbf{B}^{4} \mathbf{C}^{2} \mathbf{D}^{12}$).

The assertion of theorem follows.

Theorem 4.4. All possible 5-colourings for a BATS(23) are of type $\mathbf{A}^{3} \mathbf{B C D}{ }^{6} \mathbf{E}^{12}, \mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{6} \mathbf{E}^{12}$,

Proof. Let H be a colourable BATS(23) and let f be a 5-colouring of H. Observe that f / \mathbf{S} can be a 4 -colouring on \mathbf{S} of type $\mathbf{A}^{3} \mathbf{B C D}{ }^{6}, \mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{6}$. If we denote by $x_{A}, x_{B}, x_{C}, x_{D}, x_{E}$ the colour class cardinalities on \mathbf{T} and a, b, c, d, e the colour class cardinalities on \mathbf{S}, then, by Theorem 2.2, $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+$ $x_{D}^{2}+x_{E}^{2}+(2 a-1) x_{A}+(2 b-1) x_{B}+(2 c-1) x_{C}+(2 d-1) x_{D}+(2 e-1) x_{E}=132$, $x_{A}+x_{B}+x_{C}+x_{D}+x_{E}=12$. Further: $\left.i\right) x_{A} \leq 6, x_{B} \leq 6, x_{C} \leq 6, x_{D} \leq 6$; ii) if $x=0, x \in\left\{x_{A}, x_{B}, x_{C}, x_{D}\right\}$, then all the others are even.

If f / \mathbf{S} is a 4-colouring of type $\mathbf{A}^{3} \mathbf{B C D}{ }^{6}$ on \mathbf{S}, then $a=3, b=1, c=1$, $d=6$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+x_{E}^{2}+5 x_{A}+x_{B}+x_{C}+11 x_{D}-x_{E}=132$, $x_{A}+x_{B}+x_{C}+x_{D}+x_{E}=12$, with the conditions i) and ii) shown above. The possible solutions are: $(0,0,0,0,12),(0,0,0,6,6)$. The first solution implies a 5-colouring $\mathbf{A}^{3} \mathbf{B C D}{ }^{6} \mathbf{E}^{12}$, for $\mathbf{A}=\{1,2,3\}, \mathbf{B}=\{4\}, \mathbf{C}=\{5\}$, $\mathbf{D}=\{6,7,8,9,10,11\}, \mathbf{E}=\{12,13,14,15,16,17,18,19,20,21,22,23\}$. The second solution implies another 5-colouring of type $\mathbf{A}^{3} \mathbf{B C D}{ }^{12} \mathbf{E}^{6}$, that is similar to the previous one.

If f / \mathbf{S} is a 4-colouring of type $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}{ }^{6}$ on \mathbf{S}, then $a=2, b=2, c=1$, $d=6$, so that $x_{A}^{2}+x_{B}^{2}+x_{C}^{2}+x_{D}^{2}+x_{E}^{2}+3 x_{A}+3 x_{B}+x_{C}+11 x_{D}-x_{E}=$ 132, $x_{A}+x_{B}+x_{C}+x_{D}+x_{E}=12$, with the conditions i) and ii) shown above. The possible solutions are: $(0,0,0,0,12),(0,0,0,6,6),(0,4,0,6,2)$, $(4,0,0,6,2)$.

The first solution implies a 5-colouring $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{6} \mathbf{E}^{12}$, for $\mathbf{A}=\{1,2\}$, $\mathbf{B}=\{3,4\}, \mathbf{C}=\{5\}, \mathbf{D}=\{6,7,8,9,10,11\}, \mathbf{E}=\{12,13,14,15,16,17,18$, $19,20,21,22,23\}$. The second solution implies a 5 -colouring $\mathbf{A}^{2} \mathbf{B}^{2} \mathbf{C D}^{12} \mathbf{E}^{6}$. The solution ($0,4,0,6,2$) (respectively $(4,0,0,6,2)$) implies that a point $x \in \mathbf{S}$ coloured by $B(A)$ is associated with 8 pairs of \mathbf{T} coloured by $\mathbf{B E}(\mathbf{A E})$, that is not possible.

The statement is proved.

Theorem 4.5. All possible 6-colourings for a BATS(23) are of type $\mathbf{A}^{2} \mathbf{B C D E}{ }^{6} \mathbf{F}^{12}$. There are not 7 or more colourings.

Proof. The statement is a consequence of the previous results and of Theorem 3.3.

5. Appendix.

$$
\begin{aligned}
& \mathbf{A}=\{1,2,3,4,5,6\} \cup\{12,13,14,15\} \\
& \mathbf{B}=\{7\} \cup\{16,17,18\} \\
& \mathbf{C}=\{8,9,10,11\} \cup\{19,20,21,22,23\}
\end{aligned}
$$

```
1
12-21 12-20 12-23 15-19 15-21 14-19 16-19 16-23 16-22 16-21 16-20
13-22 13-23 13-21 12-18 12-17 12-16 17-20 17-22 17-19 17-23 17-21
15-23 14-22 14-20 13-16 13-18 13-17 18-22 18-21 18-23 18-20 18-19
14-18 15-17 15-16 14-17 14-16 15-18 12-13 13-19 13-20 12-19 12-22
16-17 16-18 17-18 20-21 19-23 20-23 14-15 15-20 14-21 15-22 14-23
19-20 19-21 19-22 22-23 20-22 21-22 21-23 12-14 12-15 13-14 13-15
```

Table 1

$$
\begin{aligned}
& \mathbf{A}=\{1,2,3\} \cup\{12,13,14\} \\
& \mathbf{B}=\{4,5\} \cup\{15,16,17,18\} \\
& \mathbf{C}=\{6,7,8,9,10,11\} \cap\{19,20,21,22,23\}
\end{aligned}
$$

```
1
12-17 12-15 13-16 12-16 12-18 12-13 12-14 13-14 15-17 16-18 17-18
13-18 14-18 14-17 13-17 13-15 14-19 13-19 12-23 12-21 12-19 12-22
15-16 16-17 15-18 14-15 14-16 15-20 16-20 17-20 14-22 13-20
14-23 13-22 12-20 18-21 17-19 16-21 17-21 15-21 13-23 14-21 13-21
19-20 19-21 19-22 19-23 20-21 17-22 18-22 16-22 16-19 15-22 15-19
21-22 20-23 21-23 20-22 22-23 18-23 15-23 18-19 18-20 17-23 16-23
```

Table 2

$$
\begin{aligned}
& \mathbf{A}=\{1,2,3,4,5\}, \\
& \mathbf{B}=\{6,7,8,9\} \cup\{18,19,20,21,22,23\}, \\
& \mathbf{C}=\{10,11\} \cup\{12,13,14,15,16,17\}
\end{aligned}
$$

1	2	3	4	5	6	7	8	9	10	11
$12-13$	$12-14$	$12-15$	$12-16$	$12-17$	$12-18$	$12-19$	$12-20$	$12-21$	$12-22$	$12-23$
$14-15$	$13-16$	$13-17$	$13-15$	$13-14$	$13-19$	$13-20$	$13-21$	$13-22$	$13-23$	$13-18$
$16-17$	$15-17$	$14-16$	$14-17$	$15-16$	$14-20$	$14-21$	$14-22$	$14-23$	$14-18$	$14-19$
$18-19$	$18-20$	$18-21$	$18-22$	$18-23$	$15-21$	$15-22$	$15-23$	$15-18$	$15-19$	$15-20$
$20-21$	$19-22$	$19-23$	$19-21$	$19-20$	$16-22$	$16-23$	$16-18$	$16-19$	$16-20$	$16-21$
$22-23$	$21-23$	$20-22$	$20-23$	$21-22$	$17-23$	$17-18$	$17-19$	$17-20$	$17-21$	$17-22$

Table 3

REFERENCES

[1] C. Berge, Hypergraphs: combinatorics of finite sets, North Holland, 1989.
[2] C. Colbourn - A. Rosa, Triple Systems, Oxford Science Publications, 1999, sect. 18.6: Strict colorings and the upper chromatic number, pp. 340-341.
[3] P. Erdös - A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hung., 17 (1996), pp. 61-99.
[4] M. Gionfriddo - G. Lo Faro, 2-colorings in $S(t, t+1, v)$, Discrete Math., 111 (1993), pp. 263-268.
[5] L. Milazzo - Zs. Tuza, Upper chromatic number of Steiner triple and quadruple systems, Discrete Math., 174 (1997), p. 247-259.
[6] V.I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova, 1 (1993), pp. 45-52.
[7] V.I. Voloshin, On the upper chromatic number of a hypergraph, Australas J. Combin., 11 (1995), pp. 25-45.

[^0]: Entrato in redazione il 30 Luglio 2003.

