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COLOURINGS OF VOLOSHIN FOR ATS (v)

ALBERTO AMATO

A mixed hypergraph is a triple H=(S,C,D), where S is the vertex set and
each of C,D is a family of not-empty subsets of S, the C-edges and D-edges
respectively. A strict k-colouring of H is a surjection f from the vertex set
into a set of colours {1, 2, . . . , k} so that each C-edge contains at least two
distinct vertices x, y such that f (x) = f (y) and each D-edge contains at
least two vertices x, y such that f (x) �= f (y). For each k ∈ {1, 2, . . . , |S|},
let rk be the number of partitions of the vertex set into k not-empty parts
(the colour classes) such that the colouring constraint is satis�ed on each C-
edge and D-edge. The vector R(H ) = (r1, . . . , rk ) is called the chromatic
spectrum of H. These concepts were introduced by V. Voloshin in 1993 [6].

In this paper we examine colourings of mixed hypergraphs in the case
that H is an ATS(v).

1. Introduction.

A mixed hypergraph is a triple H=(S,C,D), where S is the vertex set and
each of C,D is a family of subsets of S, the C-edges and D-edges respectively.
A proper k-colouring of a mixed hypergraph is a mapping f from the vertex
set into a set of colours {1, 2, . . ., k} so that each C-edge contains at least two
distinct vertices x , y such that f (x ) = f (y) and each D-edge contains at least
two vertices x , y such that f (x ) �= f (y). If C = D, then H is called a bi-
hypergraph.

Entrato in redazione il 30 Luglio 2003.
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A mixed hypergraph is called k-colourable if it admits a proper colouring
with at most k colours; it is called uncolourable if it admits no colouring. A
strict k-colouring is a proper k-colouring using all k colours. The minimum
number of colours in a colouring of H is called the lower chromatic number
χ (H ), the maximum number of colours in a strict colouring of H is called the
upper chromatic number χ ∗(H ).

If |S| = n, for each k ∈ {1, 2, . . ., n}, let rk be the number of partitions
of the vertex set into k not-empty parts (called colour classes) such that the
colouring constraint is satis�ed on each C-edge and D-edge. In fact, rk is the
number of different strict k-colourings if we ignore permutations of colours.
The vector R(H ) = (r1, . . ., rk) is called the chromatic spectrum of H .

These concepts were introduced by V. Voloshin in 1993 [6].
A Steiner System Sλ(t, k, v) (t, k, v, λ ∈ N) is a pair (S, B) where S is a

�nite set of v vertices and B is a family of subsets of S called blocks such that:
1) each block contains k vertices;
2) for each t -subset T of S, there exist exactly λ blocks containing T.

If λ = 1, a system S1(t, k, v) is denoted by S(t, k, v). A system S(2, 3, v) is
called a Steiner Triple System and is denoted by STS(v). As it is well known,
there exists an STS(v) if and only if v ≡ 1 (mod 6) or v ≡ 3 (mod 6).

An Almost Triple System of order v, brie�y an ATS(v), is a pair (S, B)
where S is a �nite set of v vertices and B is a family of subsets of S, called
blocks, such that:

1) there exists exactly one block containing 5 vertices;
2) all the other blocks contain 3 vertices;
3) each pair of vertices of S is contained in exactly one block of B.

It is possible to prove that an ATS(v) exists if and only if v ≡ 5 (mod 6).
In what follows, the block containing �ve vertices will be always denoted

by b∗ .

We illustrate now a technique for a recurrent construction of ATS(v). It is
called (v → 2v +1)-construction and allows to obtain an ATS(2v +1) from an
ATS(v). We will refer to this construction as construction A.

Construction A
Let (S, B) be an ATS(v), where S = {x1, . . ., xv}, and let T =

{y1, . . ., yv+1} be a (v + 1)-set of vertices disjoint from S. As v + 1 is an
even number, it is possible to consider a 1-factorization F = (F1, F2, . . ., Fv)
of the complete graph Kv+1 de�ned on T. Let be S� = S ∪ T, B � = B ∪ C ,
where the set C is de�ned as follows:

∀ i ∈ {1, . . ., v} {xi , y �, y ��} ∈ C ↔ {y �, y ��} ∈ Fi .
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It is easy to prove that H � = (S�, B �) is an ATS(2v + 1).
In what follows, we will consider ATS(v) as mixed hypergraphs in which

C = D: we will call them BATS(v).

2. Preliminary results.

In this section we prove some general properties for BATS(v).

Theorem 2.1. Let H be a BATS(v) with χ ∗(H ) = k and let H � be a
BATS(2v + 1) obtained from H by a construction A. Then

i) χ ∗(H �) ≤ k + 1
ii) If H is h-colourable, then H � is (h + 1)- colourable.

Proof. Following the symbolism of construction A, let be H = (S, B),
H � = (S�, B �) respectively an ATS(v) and an ATS(2v + 1), where |S| = v,
|S�| = 2v + 1, T = S� − S = {y1, y2, . . ., yv+1}. Since χ ∗(H ) = k,
let f be a k-colouring of H . Suppose that g is an h-colouring of H �, for
h ≥ k + 2. Since χ ∗(H ) = k, then there exist at least two vertices y �, y �� ∈ T
such that g(y �) �= g(y ��) and {g(y �), g(y ��)} ∩ g(S) = ∅. If {y �, y ��} ∈ Fj , then
{xj , y �, y ��} ∈ B � and the triple {xj , y �, y ��} doesn�t contain two vertices with a
common colour. Therefore, for every h-colouring of H �, h ≤ k + 1. Further,
there exists a (k + 1)-colouring of H �: it suf�cies to extend the k-colouring f
of H to H �, associating with all the vertices of T a same colour, different from
the k colours used for the vertices of H . It follows χ ∗(H �) = k + 1.

The second statement follows considering that it is always possible to give
a same colour to the vertices of T, distinct from all the colours used for the
vertices of S. �

Theorem 2.2. Let H = (S, B) be a BATS(v) with χ ∗(H ) = k and let H �

be a BATS(2v + 1) obtained from H by a construction A. If there exists a
k-colouring f of H �, then
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where, for each i ∈ {1, 2, . . . , k}, ai , xi are respectively the number of vertices
of S and S� − S coloured by the colour i in f .
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Proof. Since χ ∗(H ) = k, then, for every k-colouring f of H �, f/S is a k-
colouring of S. The second equality is immediate. Prove the �rst. Consider a
colour i , i ∈ {1, 2, . . ., k}. If F is the 1-factorization of Kv+1 on T = S� − S
used to de�ne H �, then there are ai factors of F associated with ai vertices of S
coloured by i . So, in T there are ai xi pairs having exactly one vertex coloured
by the colour i and �

xi

2

�

pairs having both vertices coloured by i .
Therefore, the number of monochromatic pairs of T is:
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from which, by a simple calculation, we obtain the �rst equality and the
statement follows. �

Theorem 2.3. Let H be a BATS(v). If v > 5, then H is not 2-colourable.

Proof. Suppose χ (H ) = 2 and let A,B the colour classes of a 2-colouring
of H , |A| = p, |B| = v − p. We say of type 1 the blocks b of H such that
|A∩ b| = 1, |B∩ b| = 2 and of type 2 the blocks b of H such that |A ∩ b| = 2,
|B ∩ b| = 1. Let b∗ be the block of size 5.

Suppose |A ∩ b∗| = 2, |B ∩ b∗| = 3. The number of blocks of H is:
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hence
3p2 − 3pv + v2 − v − 2 = 0

and so v = 5, p = 2, 3.
Suppose |A ∩ b∗| = 1, |B ∩ b∗| = 4. If we add the number of blocks of

type 1 to the number of blocks of type 2, we obtain:
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hence
3p2 − 3pv + v2 − v − 8 = 0

and so v = 5, p = 1, 4.
The statement is proved. �

3. Colourings for BATS(11).

In what follows, we indicate by the sequence An1Bn2 , . . . a colouring of a
mixed hypergraph H which associates the colour A with n1 vertices, the colour
B with n2 vertices,. . .. If H is a BATS(5), then it admits only the 2-colourings
A4B, A3B2, the 3-colourings A3BC, A2B2C and the 4-colouring A2BCD, so
that χ (H ) = 2, χ ∗(H ) = 4.

In what follows, H will be an ATS(11) de�ned on S� = {1, 2, . . ., 11}.
Further: S = {1, 2, 3, 4, 5}, T = S� − S, f will be a colouring of H ,
F = (F1, F2, . . ., F5) will be a 1-factorization of K6 de�ned on T. The
blocks of H which are not contained in S are the triples {i, x , y}, for every
i ∈ {1, 2, .., 5} and {x , y} ∈ Fi . To within to isomorphisms the triples of an
ATS(11) are obtained from a 1-factorization of the type :

F1 F2 F3 F4 F5

6 − 7 6 − 10 6 − 9 6 − 11 6 − 8
8 − 10 7 − 11 7 − 10 7 − 8 7 − 9
9 − 11 8 − 9 8 − 11 9 − 10 10 − 11

Theorem 3.1. All possible 3-colourings for a BATS(11) are of type A6BC4 ,
A3B2C6 , A5B4C2.

Proof. Let H be a BATS(11). From Theorem 2.1, ii), H is 3-colourable.
Let f be a 3-colouring of H . Observe that f/S can be a 2-colouring or a 3-
colouring on S.

We denote by x A , xB , xC the colour class cardinalities on T and a, b, c
the colour class cardinalities on S. By Theorem 2.2, we have x 2

A + x 2
B + x 2

C +
(2a − 1)x A+(2b − 1)xB +(2c − 1)xC = 30, x A + xB + xC = 6.

If f/S is a 2-colouring A4B on S, we have a = 4, b = 1, c = 0, and
x 2

A + x 2
B + x 2

C +7x A + xB − xC = 30, x A + xB + xC = 6, xC > 0. The possible
solutions are: (0, 5, 1), (2, 3, 1), (2, 0, 4), (0, 0, 6). Since x A ≤ 3, xB ≤ 3,
the �rst solution doesn�t imply a colouring; further, in the second triple, xC = 1
implies x A ≥ 4 and this is not possible. The triple (2, 0, 4) implies a 3-colouring
A6BC4. The triple (0, 0, 6) implies the 3-colouring A4BC6.

If f/S is a 2-colouring A3B2 on S, we have a = 3, b = 2, c = 0, and
x 2

A + x 2
B + x 2

C +5x A + 3xB − xC = 30, x A + xB + xC = 6, xC > 0. The
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possible solutions are: (0, 4, 2), (3, 1, 2), (3, 0, 3), (0, 0, 6). Since xB ≤ 3, the
�rst solution is not acceptable. The second and the third solutions imply the
existence of 3-chromatic blocks. The solution (0, 0, 6) implies a 3-colouring
A3B2C6.

If f/S is a 3-colouring A3BC on S, we have a = 3, b = 1, c = 1, and
x 2

A + x 2
B + x 2

C +5x A + xB + xC = 30, x A + xB + xC = 6, xC > 0. It is possible
to prove that there are not natural solutions.

If f/S is a 3-colouring A2B2C on S, we have a = 2, b = 2, c = 1,
x 2

A + x 2
B + x 2

C + 3x A + 3xB + xC = 30, x A + xB + xC = 6, xC > 0. The
possible solutions are: (2, 3, 1), (3, 2, 1), (0, 3, 3), (3, 0, 3), (0, 2, 4), (2, 0, 4).
Since xC ≤ 3, the last two solutions are not acceptable. The third and the fourth
solutions imply the existence of 3-chromatic blocks. The triple (2, 3, 1) implies
the 3-colouring A4B5C2. The solution (3, 2, 1) implies a 3-colouring A5B4C2.

The statement is proved. �

Theorem 3.2. All possible 4-colourings for a BATS(11) are of type A3BCD6 ,
A2B2CD6 .

Proof. Let H be a BATS(11) and let f be a 4-colouring of H . Observe that
f/S can be a 3- or a 4-colouring on S. Denote by x A , xB , xC , xD the colour
class cardinalities on T and a, b, c, d the colour class cardinalities on S.
By Theorem 2.2, x 2

A + x 2
B + x 2

C + x 2
D + (2a −1)x A + (2b −1)xB + (2c −1)xC+

(2d − 1)xD = 30, x A + xB + xC + xD = 6.
If f/S is a 3-colouring A3BC on S, then a = 3, b = 1, c = 1, d = 0, so

that x 2
A + x 2

B + x 2
C + x 2

D +5x A + xB + xC − xD = 30, x A + xB + xC + xD = 6,
xD > 0. Further: i) x A ≤ 3, xB ≤ 3, xC ≤ 3; and ii) if one among x A , xB ,
xC is odd, then the other two must be positive. The only possible solution is
(0, 0, 0, 6), that implies the 4-colouring A3BCD6.

If f/S is a 3-colouring A2B2C on S, then a = 2, b = 2, c = 1, d = 0, so
that x 2

A + x 2
B + x 2

C + x 2
D+3x A+3xB + xC − xD=30, x A + xB + xC + xD = 6,

xD > 0, with the condition i) and ii) shown above. Also in this case, the only
possible solution is (0, 0, 0, 6), that implies a 4-colouring of type A2B2CD6.

Finally, if f/S is a 4-colouring on S, it is necessarily of type A2BCD, so
that we have a = 2, b = 1, c = 1, d = 1, x 2

A + x 2
B + x 2

C + x 2
D + 3x A + xB +

xC + xD = 30, x A + xB + xC + xD = 6, with the condition i) and ii) shown
above. There is no solution and then the assertion of theorem follows. �

Theorem 3.3. All possible 5-colourings for a BATS(11) are of type
A2BCDE6.

Proof. Let H be a BATS(11) and let f be a 5-colouring of H . Necessarily,
f/S is 4-colouring on S and it can be only of type A2BCD. From Theorem 3.2,
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the only possible colouring for H is a 5-colouring, which can be only of type
A2BCDE6. �

A consequence:

Corollary. For each ATS(11), there exist only 3-colourings, 4-colourings, 5-
colourings.

4. Colourings for BATS(23).

The terminology is the same of Section 3. In what follows, every
BATS(23) is obtained from a BATS(11) by construction A; it will be S =

{1, 2, . . ., 11}, T = S� − S = {12, 13, . . ., 23}.
By Theorem 2.3, χ (H ) ≥ 3 for all colourable BATS(23). Further, if

we denote by xi the i-colour class cardinality on T and aj the j -colour class
cardinality on S, we can prove the following Lemma:

Lemma 4.1. Let H be a 3-colourable BATS(23) obtained from a BATS(11)
by construction A. Then

i) x A ≤ 6, xB ≤ 6, xC ≤ 6

ii) if xi , xj ∈ {x A, xB, xC} for i �= j , then xi ≤ ai + aj , xj ≤ ai + aj .

Proof. Observe that i) is immediate, otherwise there exist a monochromatic
triple. For ii) consider that if xi > ai + aj for some pair i, j , then an item
x of T coloured by j forms xi pairs with items of T coloured by i . These
pairs should form triples with an element of S coloured necessarily by i or j ; it
follows that ai + aj > xi , and it is not possible. �

Theorem 4.2. All possible 3-colourings for a BATS(23) are of type A10B4C9 ,
A6B6C11 , A10B8C5 .

Proof. Let H be a BATS(23) and let f be a 3-colouring of H . Observe
that f/S must be a 3-colouring on S. We denote by x A , xB , xC the colour
class cardinalities on T and a, b, c the colour class cardinalities on S. By
Theorem 2.2, we have x 2

A+x 2
B+x 2

C +(2a−1)x A+(2b−1)xB +(2c−1)xC = 132,
x A + xB + xC = 12.

If f/S is a 3-colouring A6BC4 on S, then we have a = 6, b = 1, c = 4,
so that x 2

A + x 2
B + x 2

C + 11x A + xB + 7xC = 132, x A + xB + xC =

12, with the conditions i) and ii) of Lemma 4.1. There is only one possi-
ble solution: (4, 3, 5). It gives a colouring A10B4C9. A possible colour-
ing is: A = {1, 2, 3, 4, 5, 6, 12, 13, 14, 15}, B = {7, 16, 17, 18}, C =
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{8, 9, 10, 11, 19, 20, 21, 22, 23}, with the 1-factorization shown in Table 1 [see
Appendix].

If f/S is a 3-colouring A3B2C6 on S, then we have a = 3, b = 2,
c = 6, so that x 2

A + x 2
B + x 2

C + 5x A + 3xB + 11xC = 132, x A + xB +

xC = 12, with the conditions i) and ii) of Lemma 4.1. There is only one
possible solution: (3, 4, 5). It gives a 3-colouring A6B6C11. A possible
colouring is: A = {1, 2, 3, 12, 13, 14}, B = {4, 5, 15, 16, 17, 18}, C =

{6, 7, 8, 9, 10, 11, 19, 20, 21, 22, 23}, with the 1-factorization shown in Table
2 [see Appendix].

If f/S is a 3-colouring A5B4C2 on S, then we have a = 5, b = 4,
c = 2, so that x 2

A + x 2
B + x 2

C + 9x A + 7xB + 3xC = 132, x A + xB + xC =

12, with the conditions i) and ii) of Lemma 4.1. The possible solutions
are: (0, 6, 6), (3, 6, 3), (5, 1, 6), (5, 4, 3). The triple (0, 6, 6) implies a 3-
colouring A5B10C8. A possible colouring is: A = {1, 2, 3, 4, 5}, B =

{6, 7, 8, 9, 18, 19, 20, 21, 22, 23}, C = {10, 11, 12, 13, 14, 15, 16, 17}, with
the 1-factorization shown in Table 3 [see Appendix].

The solution (3, 6, 3) implies that a point x ∈ S coloured by C is associated
with 3 pairs {y, z} ⊆ T coloured by BC, one pair coloured by AA, one pair
coloured by BB and one pair coloured by AB, and it is not acceptable. The
solution (5, 1, 6) implies that the pairs {y, z} ⊆ T coloured by AA cannot form
a triple with a point x ∈ S coloured by C; a point of S associated with a pair
AA and it is not possible because x A = 5 and B4. The only possible solution is
the triple (5, 4, 3) which gives a 3-colouring A10B8C5 similar to A5B10C8.

The assertion of theorem follows. �

Theorem 4.3. All possible 4-colourings for a colourable BATS(23) are of type
A6BC4D12 , A3B2C12D6 , A5B4C2D12.

Proof. Let H be a colourable BATS(23) and let f be a 4-colouring of H .
Observe that f/S can be a 3-colouring on S of type A6BC4, A3B2C6, A5B4C2

or a 4-colouring on S of type A3BCD6, A2B2CD6. If we denote by x A , xB , xC ,
xD the colour class cardinalities on T and a, b, c, d the colour class cardinalities
on S, then, from Theorem 2.2, we have x 2

A +x 2
B +x 2

C +x 2
D + (2a −1)x A + (2b−

1)xB + (2c − 1)xC + (2d − 1)xD = 132, x A + xB + xC + xD = 12. Further:
i) x A ≤ 6, xB ≤ 6, xC ≤ 6, xD > 0; ii) if x = 0, x ∈ {x A, xB, xC}, then all the
others are even.

If f/S is a 3-colouring A6BC4 on S, then a = 6, b = 1, c = 4, d = 0, so
that x 2

A +x 2
B +x 2

C +x 2
D +11x A +xB +7xC −xD = 132, x A +xB +xC +xD = 12,

xD > 0, with the conditions i) and ii) shown above. The possible solutions are:
(0, 0, 0, 12), (6, 0, 0, 6), (6, 0, 2, 4), (6, 3, 2, 1).
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The �rst solution gives a 4-colouring A6BC4D12, for A = {1, 2, 3, 4, 5,6},
B={7}, C={8, 9, 10, 11}, D={12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}.

The second and third solutions give 4-colourings of type A12BC4D6,
A12BC6D4 respectively, which are similar to A6BC4D12. The solution
(6, 3, 2, 1) is not acceptable because xB = 3, xD = 1 and only one 1-factor
admits the existence of pairs coloured by BD.

If f/S is a 3-colouring of type A3B2C6 of S, then a = 3, b = 2, c = 6,
d = 0, so that x 2

A + x 2
B + x 2

C + x 2
D + 5x A + 3xB + 11xC − xD = 132,

x A + xB + xC + xD = 12, xD > 0, with the conditions i) and ii) shown above.
The possible solutions are: (0, 0, 0, 12), (0, 0, 6, 6), (0, 4, 6, 2), (3, 1, 6, 2).

The �rst solution gives a 4-colouring A3B2C6D12, for A = {1, 2, 3}, B =

{4, 5}, C = {6, 7, 8, 9, 10, 11}, D = {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23}. The second solution gives a 4-colouring A3B2C12D6 similar to the
previous one. The solution (0, 4, 6, 2) is not acceptable because xD > 0 and
xB = 4 imply the existence of at least 4 points of S coloured by B, while it is
B2. The solution (3, 1, 6, 2) is not acceptable because xD = 2 implies xB ≥ 2.

If f/S is a 3-colouring of type A5B4C2 of S, then a = 5, b = 4,
c = 2, d = 0, so that x 2

A + x 2
B + x 2

C + x 2
D + 9x A + 7xB + 3xC − xD = 132,

x A + xB + xC + xD = 12, xD > 0, with the conditions shown above. The
possible solutions are: (0, 0, 0, 12), (4, 6, 0, 2). The �rst solution gives a 4-
colouring A5B4C2D12, for A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9}, C = {10, 11},
D = {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}. The solution (4, 6, 0, 2) is
not acceptable because xD=2 implies xC ≥2.

Now we consider the cases in which f/S is a 4-colouring on S. In these
cases, i) x A ≤ 6, xB ≤ 6, xC ≤ 6, xD ≤ 6; ii) if x = 0, x ∈ {x A, xB , xC, xD},
then all the others are even.

If f/S is a 4-colouring of type A3BCD6 on S, then a = 3, b = 1,
c = 1, d = 6, so that x 2

A + x 2
B + x 2

C + x 2
D + 5x A + xB + xC + 11xD = 132,

x A + xB + xC + xD = 12, with the conditions shown above. The possible
solutions are: (6,0,2,4), (6,2,0,4). These solutions are not acceptable because
xB = 2 or xC = 2 and A3B (A3C) implies x A + xB ≤ 4 (x A + xC ≤ 4).

Finally, if f/S is a 4-colouring of type A2B2CD6 on S, then a = 2, b = 2,
c = 1, d = 6, so that x 2

A + x 2
B + x 2

C + x 2
D + 3x A + 3xB + xC + 11xD = 132,

x A + xB + xC + xD = 12, with the conditions shown above. The possible
solutions are: (0, 2, 4, 6), (2, 0, 4, 6), (2, 3, 1, 6), (3, 2, 1, 6). The �rst two
solutions are not acceptable because xD = 6 implies x ≤ 3 for every
x ∈ {x A, xB, xC}. The solutions (2, 3, 1, 6), (3, 2, 1, 6) imply 4-colourings
A4B5C2D12 (respectively A5B4C2D12).

The assertion of theorem follows. �
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Theorem 4.4. All possible 5-colourings for a BATS(23) are of type
A3BCD6E12, A2B2CD6E12,

Proof. Let H be a colourable BATS(23) and let f be a 5-colouring of H .
Observe that f/S can be a 4-colouring on S of type A3BCD6, A2B2CD6. If
we denote by x A , xB , xC , xD , xE the colour class cardinalities on T and a, b, c,
d , e the colour class cardinalities on S, then, by Theorem 2.2, x 2

A + x 2
B + x 2

C +

x 2
D +x 2

E +(2a−1)x A+(2b−1)xB +(2c−1)xC +(2d−1)xD +(2e−1)xE = 132,
x A + xB + xC + xD + xE = 12. Further: i) x A ≤ 6, xB ≤ 6, xC ≤ 6, xD ≤ 6;
ii) if x = 0, x ∈ {x A, xB, xC , xD}, then all the others are even.

If f/S is a 4-colouring of type A3BCD6 on S, then a = 3, b = 1, c = 1,
d = 6, so that x 2

A + x 2
B + x 2

C + x 2
D + x 2

E + 5x A + xB + xC + 11xD − xE = 132,
x A + xB + xC + xD + xE = 12, with the conditions i) and ii) shown above.
The possible solutions are: (0, 0, 0, 0, 12), (0, 0, 0, 6, 6). The �rst solution
implies a 5-colouring A3BCD6E12, for A = {1, 2, 3}, B = {4}, C = {5},
D = {6, 7, 8, 9, 10, 11}, E = {12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}.
The second solution implies another 5-colouring of type A3BCD12E6, that is
similar to the previous one.

If f/S is a 4-colouring of type A2B2CD6 on S, then a = 2, b = 2, c = 1,
d = 6, so that x 2

A + x 2
B + x 2

C + x 2
D + x 2

E + 3x A + 3xB + xC + 11xD − xE =

132, x A + xB + xC + xD + xE = 12, with the conditions i) and ii) shown
above. The possible solutions are: (0, 0, 0, 0, 12), (0, 0, 0, 6, 6), (0, 4, 0, 6, 2),
(4, 0, 0, 6, 2).

The �rst solution implies a 5-colouring A2B2CD6E12, for A = {1, 2},
B = {3, 4}, C = {5}, D = {6, 7, 8, 9, 10, 11}, E = {12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23}. The second solution implies a 5-colouring A2B2CD12E6.
The solution (0, 4, 0, 6, 2) (respectively (4, 0, 0, 6, 2)) implies that a point x ∈ S
coloured by B (A) is associated with 8 pairs of T coloured by BE (AE), that is
not possible.

The statement is proved. �

Theorem 4.5. All possible 6-colourings for a BATS(23) are of type
A2BCDE6F12 . There are not 7 or more colourings.

Proof. The statement is a consequence of the previous results and of Theo-
rem 3.3. �
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5. Appendix.

A = {1, 2, 3, 4, 5, 6} ∪ {12, 13, 14, 15},

B = {7} ∪ {16, 17, 18},

C = {8, 9, 10, 11} ∪ {19, 20, 21, 22, 23}

1 2 3 4 5 6 7 8 9 10 11
12-21 12-20 12-23 15-19 15-21 14-19 16-19 16-23 16-22 16-21 16-20
13-22 13-23 13-21 12-18 12-17 12-16 17-20 17-22 17-19 17-23 17-21
15-23 14-22 14-20 13-16 13-18 13-17 18-22 18-21 18-23 18-20 18-19
14-18 15-17 15-16 14-17 14-16 15-18 12-13 13-19 13-20 12-19 12-22
16-17 16-18 17-18 20-21 19-23 20-23 14-15 15-20 14-21 15-22 14-23
19-20 19-21 19-22 22-23 20-22 21-22 21-23 12-14 12-15 13-14 13-15

Table 1

A = {1, 2, 3} ∪ {12, 13, 14},

B = {4, 5} ∪ {15, 16, 17, 18},

C = {6, 7, 8, 9, 10, 11} ∩ {19, 20, 21, 22, 23}

1 2 3 4 5 6 7 8 9 10 11
12-17 12-15 13-16 12-16 12-18 12-13 12-14 13-14 15-17 16-18 17-18
13-18 14-18 14-17 13-17 13-15 14-19 13-19 12-23 12-21 12-19 12-22
15-16 16-17 15-18 14-15 14-16 15-20 16-20 17-20 14-22 13-20 14-20
14-23 13-22 12-20 18-21 17-19 16-21 17-21 15-21 13-23 14-21 13-21
19-20 19-21 19-22 19-23 20-21 17-22 18-22 16-22 16-19 15-22 15-19
21-22 20-23 21-23 20-22 22-23 18-23 15-23 18-19 18-20 17-23 16-23

Table 2
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A = {1, 2, 3, 4, 5},

B = {6, 7, 8, 9} ∪ {18, 19, 20, 21, 22, 23},

C = {10, 11} ∪ {12, 13, 14, 15, 16, 17}

1 2 3 4 5 6 7 8 9 10 11
12-13 12-14 12-15 12-16 12-17 12-18 12-19 12-20 12-21 12-22 12-23
14-15 13-16 13-17 13-15 13-14 13-19 13-20 13-21 13-22 13-23 13-18
16-17 15-17 14-16 14-17 15-16 14-20 14-21 14-22 14-23 14-18 14-19
18-19 18-20 18-21 18-22 18-23 15-21 15-22 15-23 15-18 15-19 15-20
20-21 19-22 19-23 19-21 19-20 16-22 16-23 16-18 16-19 16-20 16-21
22-23 21-23 20-22 20-23 21-22 17-23 17-18 17-19 17-20 17-21 17-22

Table 3
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