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SOLVABILITY OF THE DIRICHLET PROBLEM IN W 2, p

FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS

COEFFICIENTS IN UNBOUNDED DOMAINS

LOREDANA CASO - PAOLA CAVALIERE - MARIA TRANSIRICO

In this paper some W 2,p-estimates for the solutions of the Dirichlet
problem for a class of elliptic equations with discontinuous coef�cients in
unbounded domains are obtained. As a consequence, an existence and
uniqueness theorem for such a problem is proved.

1. Introduction.

The aim of this paper is to study the Dirichlet problem

(1.1)

�

u ∈W 2,p(�)∩
◦

W 1,p(�),
Lu = f, f ∈ L p(�),

where � is an unbounded open subset of R
n , p ∈ ]1, +∞[, L is the uniformly

elliptic differential operator de�ned by the position

(1.2) L = −

n�

i, j=1

ai j (x )
∂2

∂xi∂xj
+

n�

i=1

ai (x )
∂

∂xi
+ a(x ) a.e. in �

and the coef�cients ai j , ai , a are discontinuous functions. If � is bounded, the
above problem has been widely investigated by several authors under various

Entrato in redazione il 30 Luglio 2003.



288 LOREDANA CASO - PAOLA CAVALIERE - MARIA TRANSIRICO

hypotheses on the leading coef�cients. In particular, if the coef�cients ai j
belong to the space C◦(�̄) and the ai �s and a satisfy some suitable assumptions,
then W 2,p-bounds for the solutions of the problem (1.1) and related existence
and uniqueness results have been obtained (see [16], [17], [12], [15]). On the
other hand, when the coef�cients ai j are required to be discontinuous, it must
be mentioned the classical contribution by C. Miranda [19], where the author
assumed that the ai j �s belong to W 1,n(�) (and considered the case p = 2);
among the other results on this subject, we quote here those proved in [20],
[11] (where the Cordes hypothesis is assumed to be true for the ai j �s, and again
p = 2), and in [13], [2], [14] (where the coef�cients lie in certain classes wider
than W 1,n(�)). More recently, a relevant contribution has been given in [9],
[10], [25], [26] where the coef�cients ai j are assumed to be in the class V MO
and p ∈ ]1, +∞[; observe here that V MO contains both classes C◦(�̄) and
W 1,n(�).

If the open set � is unbounded, the problem (1.1) has for instance been
studied in [21], [22], [4], [5], [6] under assumptions similar to those required
in [19] with p = 2. In this paper we extend this investigation to the case
p ∈ ]1, +∞[. More precisely, under suitable hypotheses on the coef�cients ai j
(see condition (h2) in Section 4), we obtain the following a priori bound:

(1.3) ||u||W 2, p(�) ≤ c
�
||Lu||L p(�) + ||u||L p(�◦)

�
,

∀ u ∈W 2,p(�)∩
◦

W 1,p(�),

where c ∈ R+ is independent of u, and �◦ is a bounded open subset of �.
The existence and uniqueness of the solution of (1.1) can be deduced from this
result.

In order to prove the estimate (1.3), some preliminaries are needed (see
Section 3); in fact, using these lemmas, we will previously obtain a bound
similar to (1.3) for more regular functions u (see Lemma 4.2). Then a suitable
density result will allow to complete the proof.

2. Some notation.

In this paper we will use the following notation: E , a generic Lebesgue
measurable subset of R

n ; �(E), the Lebesgue σ -algebra on E ; |A|, the
Lebesgue measure of A ∈ �(E); χA , the characteristic function of A; D(A)
(respectively, D

0(A)), the class of restrictions to A of functions ζ ∈ C∞
◦ (Rn)

(respectively ζ ∈C0
◦ (Rn)) with Ā∩ suppζ ⊆ A; L

p
loc(A), the class of functions

g, de�ned on A, such that ζg ∈ L p(A) for all ζ ∈ D(A); B(x , r), the open ball
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of radius r centered at x and Br = B(0, r); �, an unbounded open subset of R
n

and D(x , r) = D ∩ B(x , r) for every D ∈ �(�).
We now recall the de�nitions of the function spaces in which the coef�-

cients of the operator will be chosen. For p ∈ [1, +∞[, λ ∈ [0, n[ and t ∈ R+ ,
we denote by M p,λ(�, t) the set of all functions g in L

p
loc(�̄) such that

(2.1) ||g||M p,λ(�,t ) = sup
r∈]0,t]
x∈�

r−λ/p ||g||L p(�(x,r)) < +∞,

endowed with the norm de�ned by (2.1). It is easy to show that for any
t1, t2 ∈ R+ a function g belongs to M p,λ(�, t1) if and only if it is in M p,λ(�, t2),
and the norms of g in the two spaces are equivalent. This allows to restrict the
attention to the space M p,λ(�) = M p,λ(�, 1). Then we de�ne M p,λ

◦ (�) as
the closure of C∞

◦ (�) in M p,λ(�). In particular, we put M p(�) = M p,0(�),
and M p

◦ (�) = M p,0
◦ (�). In order to de�ne the modulus of continuity of a

function g in M p,λ
◦ (�), recall �rst that for a function g ∈ M p,λ(�) the following

characterization holds:

(2.2) g ∈ M p,λ
◦ (�) ⇐⇒ lim

t→0+

�
pg(t) + ||(1 − ζ1/t)g||M p,λ(�)

�
= 0,

where
pg(t) = sup

E∈�(�)
supx∈� |E(x,1)|≤t

||χEg||M p,λ(�), t ∈ R+ ,

and ζr , r ∈ R+, is a function in C∞
◦ (Rn) such that

0 ≤ ζr ≤ 1, ζr |Br = 1, supp ζr ⊂ B2r .

Thus the modulus of continuity of g ∈ M p,λ
◦ (�) is a function

σ◦ : ]0, 1] −→ R+

such that

pg(t) + ||(1 − ζ1/t)g||M p,λ(�) ≤ σ◦(t) ∀ t ∈ ]0, 1], lim
t→0+

σ◦(t) = 0.

A more detailed account of properties of the above de�ned function spaces can
be found in [23].
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3. Some preliminaries.

In our results certain regularity properties of open subsets of R
n will often

occur; for the corresponding de�nitions we will refer to [1].

Lemma 3.1. Let � be an unbounded open subset of R
n with the uniform C1 -

regularity property. Then for every v ∈
◦

W 1,2(�) ∩ L∞(�) there exists a
sequence (�h )h∈N of functions such that

(3.1) �h ∈C∞
◦ (�), �h → v in W 1,2(�), sup

h∈N

||�h ||L∞(�) ≤ ||v||L∞(�).

Proof. Given g ∈C∞([0, +∞[) such that g(t) = 1 if t ≤ 1, g(t) = 0 if t ≥ 2,
0 ≤ g ≤ 1, we put

δh : x ∈ R
n −→ g(|x |/h), h ∈ N.

Clearly δh belongs to C∞
◦ (Rn) and

0 ≤ δh ≤ 1, sup
Rn

sup
h∈N

(δh)x < +∞ ,

lim
h→+∞

(1 − δh(x )) = lim
h→+∞

(δh)x (x ) = 0, x ∈ R
n.

Moreover, it is easy to show that

(3.2) δh v −→ v in W 1,2(�)

for all v ∈W 1,2(�).
Denote by (ζi)i∈N a sequence of functions in C∞

◦ (Rn) such that

supp ζi ⊂ �, 0 ≤ ζi ≤ 1, d◦ = sup
�

sup
i∈N

d (ζi )x < +∞,

lim
i→+∞

(1 − ζi(x )) = lim
i→+∞

(ζi )x (x ) = 0, x ∈ �,

where
d : x ∈ � −→ dist(x , ∂�)

(see [24], Corollary 4.1).
We prove now that

(3.3) ζiδhv −→ δhv in W 1,2(�)
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for all h ∈ N and v ∈
◦

W 1,2(�).
In fact, we have

(3.4) ζi δh v −→ δh v in L2(�),

(3.5)
�
(ζi − 1)δh v

�
xj

−→ 0 a.e. in �, j = 1, . . . , n,

(3.6)
�
�
�
(ζi − 1) δh v

�
xj

�
� =

�
�(ζi − 1) (δh v)xj + (ζi)xj δh v

�
�

≤ (δh v)x + d◦ |(δh v)/d|,

so that, in order to deduce (3.3) from (3.4) - (3.6), it is enough to show that

(3.7) (δh v)/d ∈ L2(�).

To this end, denote by �h a bounded open subset of � with C1 -boundary such
that

�̄h ⊂ �̄ , supp δh ∩ �̄ ⊂ �h ∪ ∂� ,

and observe that δh v belongs to
◦

W 1,2(�h). An application of the Hardy
inequality (see for instance [3]) then yields that (3.7) holds.

For any v ∈
◦

W 1,2(�) ∩ L∞(�), denote by v◦ the extension of v to R
n

with zero values out of � and put

vhik =
�
Jk ∗ (ζi δh v◦)

�
|�

,

where (Jk)k∈N is a given sequence of molli�ers. It is well known that

(3.8) vhik ∈ C∞
◦ (�) , ||vhik ||L∞(�) ≤ ||v||L∞(�) , k ∈ N ,

(3.9) vhik −→ ζi δh v in W 1,2(�)

for all h, i ∈ N. On the other hand, we obtain from (3.3) and (3.9) that for every
h ∈ N there exist ih , kh ∈ N such that

(3.10) ||ζih δh v − δh v||W 1,2(�) ≤ 1/h , ||vhihkh − ζih δh v||W 1,2(�) ≤ 1/h.

Therefore it follows from (3.2), (3.8) and (3.10) that the functions �h = vhih kh
(h ∈ N) satisfy the statement of the lemma. �

The above lemma can be used to prove the following result, which will be
essential in the proof of Lemma 4.2.
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Lemma 3.2. Let � be an unbounded open subset of R
n with the uniform C1 -

regularity property. If v ∈
◦

W 1,2(�)∩ L∞(�), then |v|q−2v belongs to
◦

W 1,2(�)
for every q ∈ [2, +∞[.

Proof. It is easy to show that |v|q−2v ∈W 1,2(�) for each q ∈ [2, +∞[. In order

to prove that |v|q−2v even belongs to
◦

W 1,2(�), we need different arguments
corresponding to the cases q < 3 and q ≥ 3. Suppose �rst q < 3 and denote
by (ψh)h∈N a sequence of functions of class C∞

◦ (�) which converges to v in
W 1,2(�). Let ϕ ∈C∞

◦ (Rn) and i ∈ {1, . . . , n}. Then

(3.11)
�
�
�

�

�

|v|q−2v ϕxi dx −

�

�

|ψh |
q−2ψh ϕxi dx

�
�
�

≤

�

�

|v|q−2|v − ψh | ϕxdx +

�

�

�
�
�|v|q−2 − |ψh |

q−2
�
�
� |ψh | ϕxdx

≤ ||v||
q−2
L∞(�) ||v −ψh ||L2(�) ||ϕx ||L2(�) +||v −ψh ||

q−2
L2(�)

||ψh ||L2(�) ||ϕx ||L2/(3−q)(�)

≤ c1
�
||v − ψh ||L2(�) + ||v − ψh ||

q−2

L2(�)

�
,

where c1 ∈ R+ depends on q, v and ϕx . From (3.11) it follows that

(3.12)

�

�

|v|q−2v ϕxi dx = lim
h→+∞

�

�

|ψh |
q−2ψh ϕxi dx .

The same argument also shows that

(3.13)

�

�

|v|q−2vxi ϕ dx = lim
h→+∞

�

�

|ψh |
q−2(ψh)xi ϕdx .

Using (3.12) and (3.13) we obtain that

�
�
�

�

�

|v|q−2v ϕxi dx
�
�
� = (q − 1)

�
�
�

�

�

|v|q−2vxi ϕ dx
�
�
�

≤ (q − 1)||v||
q−2
L∞(�)||vx ||L2(�)||ϕ||L2(�),

and hence |v|q−2v belongs to
◦

W 1,2(�) by a characterization of the elements of

the space
◦

W 1,2(�) (see for instance [3]).
Suppose now q ≥ 3, and consider a sequence (�h)h∈N of functions

satisfying (3.1). If we put

vh = |v|q−2(�h − v), h ∈ N,
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an easy computation yields that

(3.14) ||vh ||
2
W 1,2(�) ≤ c2

�
||v||

2(q−2)
L∞(�) ||�h − v||2W 1,2(�)+

+||v||
2(q−3)
L∞(�)

�

�

(�h − v)2v2
xdx

�
,

where c2 ∈ R+ depends only on q . On the other hand, it follows from the last
condition of (3.1) that

(3.15) (�h − v)2v2
x ≤ 4||v||2L∞(�)v

2
x , h ∈ N.

Applying now (3.14) and (3.15), the sequence (vh)h∈N can be replaced by a
suitable subsequence which goes to 0 in W 1,2(�), i.e. we may assume that

(3.16) |v|q−2�h −→ |v|q−2v in W 1,2(�) .

Since |v|q−2�h ∈
◦

W 1,2(�) for every h ∈ N, there exists a sequence (ψhm)m∈N

of functions of class C∞
◦ (�) such that

ψhm −→ |v|q−2�h in W 1,2(�) ,

and hence we can �nd mh ∈ N with

(3.17) ||ψhmh
− |v|q−2�h ||W 1,2(�) ≤ 1/h .

It follows from (3.16) and (3.17) that

ψhmh
−→ |v|q−2v in W 1,2(�) ,

and so |v|q−2v belongs to
◦

W 1,2(�). The lemma is proved. �

4. Key lemmas.

In the following we will suppose that n ≥ 3. Consider the conditions:

(h1)

�
ai j = aji ∈ L

∞(�) , i, j = 1, . . . , n ,

∃ ν > 0 :
�n

i, j=1 ai j ξi ξj ≥ ν|ξ |2 a.e. in � , ∀ ξ ∈ R
n ,

b∈ L∞(�) , ess inf�b = b◦ > 0,
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(h2) ∃ s ∈ ]2, n] : (ai j )xh ∈ Ms,n−s
◦ (�) , i, j, h = 1, . . . , n.

Remark 4.1. If (h1) holds, for the bilinear form

(4.1) a(v, w) =

�

�

� n�

i, j=1

ai jvxi wxj + bvw
�
dx , v, w ∈W 1,2(�) ,

we have

(4.2) a(v, |v|q−2v) ≥ (q − 1)ν

�

�

|v|q−2v2
xdx + b◦

�

�

|v|qdx ,

∀ v ∈W 1,2(�) ∩ L∞(�) , ∀ q ∈ [2, +∞[ .

We can now prove the main result of this section; in its statement we will
consider the operator

L◦ = −

n�

i, j=1

ai j (x )
∂2

∂xi∂xj
a.e. in �.

Lemma 4.2. If � has the uniform C1,1-regularity property and conditions (h1)
and (h2) hold, then for any p ∈ ]1, +∞[ there exist a constant c ∈ R+ and a
bounded open subset �◦ ⊂⊂ �, with the cone property, such that

(4.3) ||u||W 2, p(�) ≤ c
�
||L◦u + bu||L p(�) + ||u||L p(�◦)

�
,

∀ u ∈W 2,p(�) ∩
◦

W 1,2(�) ∩ D
0(�̄) ,

where c and �◦ depend on n, p, ν, b◦, �, s, ||b||L∞(�), ||ai j ||L∞(�) and on the
continuity moduli of (ai j )xh in M

s,n−s
◦ (�) .

Proof. Consider a function u ∈ W 2,p(�) ∩
◦

W 1,2(�) ∩ D0(�̄). It follows from
Theorem 5.1 of [7] and from Lemmas 4.1 and 4.2 of [5] (see also Section 2 of
[9]) that

(4.4) ||u||W 2, p(�) ≤ c̃
�
||L◦u + bu||L p(�) + ||u||L p(�)

�
,

where c̃ ∈ R+ depends on n, p, ν, �, s, ||b||L∞(�), ||ai j ||L∞(�) and on the conti-
nuity moduli of (ai j )xh in Ms,n−s

◦ (�) .
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We will now provide a bound for ||u||L p(�), studying separately the cases
p ≥ 2 and p < 2. Suppose �rst p ≥ 2. Then by Remark 4.1 and Lemma 3.2
we obtain

(4.5) (p − 1)ν

�

�

|u|p−2u2
x dx + b◦

�

�

|u|pdx ≤ a(u, |u|p−2u)

=

�

�

(L◦u + bu)|u|p−2udx −

�

�

n�

i, j=1

(ai j )xj uxi |u|
p−2udx

≤ ||L◦u + bu||L p(�)||u||
p−1
L p (�) +

n�

i, j=1

�

�

|(ai j )xj | |uxi | |u|
p−1dx .

On the other hand,

(4.6)

�

�

|(ai j )xj | |uxi | |u|
p−1dx

≤ ε1/2

�

�

|u|p−2u2
xdx + 1/(2ε1)

�

�

(ai j )
2
xj
|u|pdx

for each ε1 ∈ R+; moreover, for every ε2 ∈ R+ there exist a constant c(ε2) ∈ R+

and a bounded open subset �ε2
⊂⊂ �, with the cone property, such that

(4.7)

�

�

(ai j )
2
xj
|u|pdx ≤ ε2|| |u|

p/2||2W 1,2(�) + c(ε2)

�

�ε2

|u|pdx

≤ ε2

�

�

|u|pdx + ε2p
2/4

�

�

|u|p−2u2
xdx + c(ε2)

�

�ε2

|u|pdx ,

where c(ε2) and �ε2
depend on n, �, s and on the continuity moduli of (ai j )xj

in Ms,n−s
◦ (�) (see [23], Corollary 3.5). Therefore it follows from (4.5), (4.6)

and (4.7) that

(4.8)
�
(p − 1)ν − n2(ε1/2 + ε2 p

2/(8ε1))
�
�

�

|u|p−2u2
xdx+

+(b◦ − n2ε2/(2ε1))

�

�

|u|pdx

≤ ||L◦u + bu||L p(�)||u||
p−1
L p(�) + n2c(ε2)/(2ε1)

�

�ε2

|u|pdx .
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For a suitable choice of ε1 and ε2, the relation (4.8) gives

(4.9) b◦/2

�

�

|u|pdx ≤ ||L◦u + bu||L p(�)||u||
p−1
L p(�) + c1

�

�1

|u|pdx ,

where c1 and �1 depend on n, p, ν, b◦, �, s and on the continuity moduli of
(ai j )xh in Ms,n−s

◦ (�). From (4.9) we obtain

(4.10) ||u||L p(�) ≤ 2/b◦

�
||L◦u + bu||L p(�) + c1||u||L p(�1)

�
.

Applying now (4.4) and (4.10) we complete the proof in the �rst case.
Suppose now that p < 2. In this case our argument is suggested by a

trick already used in the proof of Lemma 1 in [12]. If f = |u|p−1sign u ,

it follows from the Theorem in [18] that there exists a unique function w ∈
◦

W 1,2(�) ∩ L∞(�) such that

(4.11) a(w, v) =

�

�

f vdx ∀v ∈
◦

W 1,2(�).

Then by Remark 4.1 and Lemma 3.2 we have that

(4.12)

�

�

|w|p
�

dx ≤ 1/b◦ a(w, |w|p
�−2w) = 1/b◦

�

�

f |w|p
�−2wdx

≤ 1/b◦

�

�

|u|p−1|w|p
�−1dx ≤ 1/b◦ ||u||

p−1
L p(�)||w||

p�−1

L p
�
(�)

,

where 1/p + 1/p� = 1, and hence

(4.13) ||w||L p� (�) ≤ 1/b◦ ||u||
p−1
L p(�).

An application of (4.13) yields that

(4.14)

�

�

|u|pdx =

�

�

f udx

=

�

�

(L◦u + bu)wdx −

�

�

n�

i, j=1

(ai j )xj uxi wdx

≤

�
||L◦u + bu||L p(�) +

n�

i, j=1

||(ai j )xj uxi ||L p(�)

�
||w||L p� (�)
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≤ 1/b◦

�
||L◦u + bu||L p(�) +

n�

i, j=1

||(ai j )xj uxi ||L p(�)

�
||u||

p−1
L p(�),

so that by (4.14)

(4.15) ||u||L p(�) ≤ 1/b◦

�
||L◦u + bu||L p(�) +

n�

i, j=1

||(ai j )xj uxi ||L p(�)

�
.

On the other hand, it follows from Corollary 3.5 of [23] that for every ε ∈ R+

there exist a constant c(ε) ∈ R+ and a bounded open subset �ε ⊂⊂ �, with the
cone property, such that

(4.16) ||(ai j )xj uxi ||L p(�) ≤ ε||u||W 2, p(�) + c(ε)||ux ||L p(�ε),

where c(ε) and �ε depend on n, p, �, s and on the continuity moduli of (ai j )xj
in Ms,n−s

◦ (�). A �nal application of (4.4), (4.15) and (4.16) completes the proof
of the lemma. �

Lemma 4.3. If� has the uniform C1,1-regularity property and if p ∈ ]1, +∞[,
then the problem

(4.17) u ∈W 2,p(�)∩
◦

W 1,p(�), −�u + u = f, f ∈ L p(�) ,

is uniquely solvable and the solution u satis�es the bound

(4.18) ||u||W 2, p(�) ≤ c || f ||L p(�) ,

where the constant c ∈ R+ depends only on n, p and �.

Proof. It has already been proved that the problem (4.17) is uniquely solvable
if p = 2 (see, e.g., [6], Lemma 4.4); in this case we will denote by A f the
solution. Let now f be a function in C∞

◦ (�). Then for every q ∈ [1, +∞], A f
belongs to Lq (�) and

(4.19) ||A f ||Lq (�) ≤ c1|| f ||Lq (�) ,

where c1 ∈ R+ depends only on n (see Theorem in [18]).
On the other hand, a suitable application of Theorem 5.1 in [7] yields that

A f ∈ W 2,p(�) and there exists a constant c2 = c2(n, p, �) ∈ R+ such that

(4.20) ||A f ||W 2, p(�) ≤ c2
�
|| f ||L p(�) + ||A f ||L p(�)

�
.

Since W 2,p(�) ∩
◦

W 1,2(�) ⊆
◦

W 1,p(�), A f is a solution of problem (4.17) and,
by (4.19) and (4.20), it satis�es the estimate (4.18). The result follows now in
the general case from the density of C∞

◦ (�) in L p(�). �

Using the above lemma, the following density result can be proved.
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Lemma 4.4. If� has the uniform C1,1-regularity property and if p ∈ ]1, +∞[,

then for every u ∈ W 2,p(�) ∩
◦

W 1,p(�) there exists a sequence of functions
(uh)h∈N such that

(4.21) uh ∈W 2,p(�)∩
◦

W 1,2(�) ∩ D
0(�̄), h ∈ N , uh → u in W 2,p(�) .

Proof. Let p ∈ ]1, +∞[, u ∈ W 2,p(�) ∩
◦

W 1,p(�) and consider a sequence
(vh)h∈N of functions such that

(4.22) vh ∈ D(�̄), h ∈ N , vh → u in W 2,p(�) .

It follows from Lemma 4.3 that the problem

(4.23) wh ∈W 2,p(�)∩
◦

W 1,p(�), −�wh + wh = −�vh + vh

is uniquely solvable for all h ∈ N and the solution wh satis�es the bound

(4.24) ||wh ||W 2, p(�) ≤ c || − �vh + vh ||L p(�),

with c ∈ R+ dependent on n, p and �. Observe that wh ∈
◦

W 1,2(�) (see
the proof of Lemma 4.3). Clearly wh belongs to C0(�̄) when p > n/2; if
p ≤ n/2, we have that wh ∈ W 2,n/2+ε(�) for ε > 0, (see [7], Theorem 5.1)
and so wh ∈ C0(�̄) also in this case. Moreover, we deduce from (4.22), (4.23)
and (4.24) that

wh → u in W 2,p(�) .

Denote now by (δh)h∈N the sequence of functions de�ned in the proof of Lemma
3.1, and note that

sup
Rn

sup
h∈N

(δh)xx < +∞ , lim
h→+∞

(δh)xx (x ) = 0, x ∈ R
n ,

δhu → u in W 2,p(�) .

Thus it follows from the properties of δh and wh that the functions uh = δhwh ,
h ∈ N, satisfy the conditions of the statement. �
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5. Main results.

In this section we will suppose that the coef�cient a of the operator L has
the form a = a� + b, where the function b satis�es the condition (h1), and we
will consider the following additional condition:

(h3) ai ∈ M
r
◦ (�), i = 1, . . . , n , a� ∈ Mt

◦(�) ,

where
r > n if p ≤ n , r = p if p > n ,

t > n/2 if p ≤ n/2 , t = p if p > n/2 .

We can now prove the main result of the paper.

Theorem 5.1. If � has the uniform C1,1 -regularity property and conditions
(h1), (h2) and (h3) hold, then for any p∈ ]1, +∞[ there exist a constant c ∈ R+

and a bounded open subset �◦ ⊂⊂ �, with the cone property, such that

(5.1) ||u||W 2, p(�) ≤ c
�
||Lu||L p(�) + ||u||L p(�◦)

�
,

∀ u ∈W 2,p(�) ∩
◦

W 1,p(�),

where c and �◦ depend on n, p, ν, b◦, �, s, r, t, ||b||L∞(�), ||ai j ||L∞(�) and on
the continuity moduli of (ai j )xh , ai and a

� in Ms,n−s
◦ (�),Mr

◦ (�) and Mt
◦(�) ,

respectively.

Proof. Let u ∈ W 2,p(�) ∩
◦

W 1,p(�). By Lemma 4.4 there exists a sequence
(uh)h∈N of functions satisfying (4.21), and hence it follows from Lemma 4.2
that

(5.2) ||uh ||W 2, p(�) ≤ c
�
||L◦uh + buh ||L p(�) + ||uh ||L p(�◦)

�
, h ∈ N ,

where c and �◦ are those in (4.3). Moreover,

(5.3) ||L◦uh + buh||L p(�) ≤ c1||uh − u||W 2, p(�) + ||L◦u + bu||L p(�), h ∈ N,

where c1 ∈ R+ depends on n, ||b||L∞(�) and ||ai j ||L∞(�). An application of (5.2),
(5.3) and (4.21) yields now that

(5.4) ||u||W 2, p(�) ≤ c
�
||L◦u + bu||L p(�) + ||u||L p(�◦)

�
.

On the other hand, using the argument of the proof of Corollary 3.5 of [23],
it follows from Theorem 3.2 of [7] that for any ε ∈ R+ there exist a constant
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c(ε) ∈ R+ and a bounded open subset �ε ⊂⊂ �, with the cone property, such
that

(5.5) ||

n�

i=1

aiuxi + a�u||L p(�)

≤ ε ||u||W 2, p(�) + c(ε)
�
||ux ||L p(�ε) + ||u||L p(�ε)

�
,

where c(ε) and �ε depend on n, p, �, r, t and on the continuity moduli of ai
and a� in Mr

◦ (�) and Mt
◦(�), respectively. Relations (5.4) and (5.5) complete

the proof of the theorem. �

Theorem 5.2. If � has the uniform C1,1-regularity property, conditions (h1),
(h2) and (h3) hold, and a ≥ 0 a.e. in �, then the problem

(5.6) u ∈W 2,p(�) ∩
◦

W 1,p(�) , Lu = f , f ∈ L p(�) ,

is uniquely solvable for every p ∈ ]1, +∞[.

Proof. Let f be a function in C∞
◦ (�). Then there exists a unique u ∈

W 2,2(�) ∩
◦

W 1,2(�) such that L◦u + bu = f (see for instance [6], Lemma
4.4). On the other hand, it follows from Theorem 5.1 of [7] and Lemmas 4.1

and 4.2 of [5] that u belongs to W 2,p(�). Therefore u ∈W 2,p(�) ∩
◦

W 1,p(�),
and it is a solution of the equation L◦u+bu = f , so that C∞

◦ (�) ⊆ R(L◦ +b).
Since, by Theorem 5.1, R(L◦+b) is a closed subspace of L p(�), we obtain that
R(L◦ + b) = L p(�). Thus Corollary in [8] gives that the problem

(5.7) u ∈W 2,p(�) ∩
◦

W 1,p(�), L◦u + bu = f , f ∈ L p(�) ,

is uniquely solvable. Moreover, the operator

u ∈W 2,p(�) −→

n�

i=1

aiuxi + a�u ∈ L p(�)

is compact by (5.5), and hence (5.6) is a zero index problem. Since for such
problem a uniqueness result holds (see Corollary of [8]), the statement follows
from well known results. �
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forme divergence dans les domaines non bornés, Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur., 78 (1985), pp. 205�212.

[19] C. Miranda, Sulle equazioni ellittiche del secondo ordine a coef�cienti discon-
tinui, Ann. Mat. Pura Appl., (4) 63 (1963), pp. 353-386.

[20] G. Talenti, Sopra una classe di equazioni ellittiche a coef�cienti misurabili, Ann.
Mat. Pura Appl., (4) 69 (1965), pp. 285-304.

[21] M. Transirico - M. Troisi, Equazioni ellittiche del secondo ordine di tipo non
variazionale in aperti non limitati, Ann. Mat. Pura Appl., (4) 152 (1988), pp. 209�
226.

[22] M. Transirico - M. Troisi, Ulteriori contributi allo studio delle equazioni ellittiche
del secondo ordine in aperti non limitati, Boll. Un. Mat. Ital., (7) 4-B (1990),
pp. 679�691.

[23] M. Transirico - M. Troisi - A. Vitolo, Spaces of Morrey type and elliptic equations
in divergence form on unbounded domains, Boll. Un. Mat. Ital., (7) 9-B (1995),
pp. 153�174.

[24] M. Troisi, Su una classe di funzioni peso, Rend. Accad. Naz. Sci. XL Mem. Mat.,
10 (1986), pp. 141�152.

[25] C. Vitanza, W 2,p-regularity for a class of elliptic second order equations with
discontinuous coef�cients, Le Matematiche, 47 (1992), pp. 177�186.

[26] C. Vitanza, A new contribution to the W 2,p-regularity for a class of elliptic sec-
ond order equations with discontinuous coef�cients, Le Matematiche, 48 (1993),
pp. 287�296.

L. Caso - M. Transirico
Dipartimento di Matematica e Informatica
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