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THE FOUCAULT�S CURRENTS PROBLEM

WITH TEMPERATURE DEPENDENT RESISTIVITY

GIOVANNI CIMATTI

A result of existence and uniqueness of solutions is presented for the
system of P.D.E. modelling the eddy currents and the heating in a cylindrical
conductor.

An external varying magnetic �eld induces electric currents, known as
Foucault�s currents, in massive conductors which in turn heat the body by Joule
effects. We consider the special situation of an inde�nite cylindrical conductor
of cross section �, an open and bounded domain of R

2 with a regular boundary
� immersed in an insulating medium where a magnetic �eld H, parallel to the
axis of the cylinder, acts. The geometrical situation justi�es the hypothesis

(1.1) H = w(x , y, t)k

where k is the unit vector of the axis of the cylinder. In the medium surrounding
the cylinder the current density J is zero. From (1.1) it follows∇×H = ∇w×k.
Assuming to be in a quasi-stationary situation, we have ∇ × H = J; thus the
magnetic �eld is constant in the medium surrounding the cylinder and we have

H = h̃(t)k,
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where we assume h̃(t) to be a given function such that h̃(0) = 0. Inside the
cylinder we have, by Ohm�s law,

E = ρ̃(u)J,

where ρ̃(u), a given function of the temperature u, is the electrical resistivity
and E the electric �eld. Hence

E = ρ̃(u)∇w × k.

Recalling (1.1) and using the Maxwell equation ∇ × E = − ∂B
∂ t

and the
constitutive relation B = µH, where µ is the constant permeability, we obtain
∇ · (ρ̃(u)∇w) = µwt or, setting ρ(u) =

ρ̃(u)
µ

,

(1.2) wt = ∇ · (ρ(u)∇w).

The tangential component of H is continuous across boundaries, thus

(1.3) w = h̃(t) on � × (0, T ).

Inside the cylinder the temperature obeys the energy equation cut − k� =

ρ(u)|∇w|2 or, after a rescaling,

(1.4) ut − �u = ρ(u)|∇w|2.

We assume for the temperature a boundary condition of the form

(1.5) u = 0 on � × (0, T ).

The set of equations (1.2)-(1.5) is completed with the initial conditions

(1.6) w(x , 0) = 0, u(x , 0) = u0, x = (x1, x2)∈ �.

This system, closely related to the thermistor problem, was proposed in [3]. In
this note we present a proof of existence of solutions assuming

(1.7) u0(x )∈ L2(�).

De�ning h(x , t) = w(x , t) − h̃(t) we can rewrite the problem (1.2)-(1.6) as
follows

(1.8) ht = ∇ · (ρ(u)∇h) + f (t) in Q
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(1.9) ut − �u = ρ(u)|∇h|2 in Q

(1.10) h = 0, u = 0 on � × (0, T )

(1.11) h(x , 0) = 0, u(x , 0) = u0(x ) in �,

where Q = � × (0, T ) and f (t) = h̃�(t). We suppose

(1.12) ρ(u)∈ C(R1), 0 < ρ0 ≤ ρ(u) ≤ ρ1 , |ρ(u1) − ρ(u2)| ≤ L|u1 − u2|

for all u1, u2 ∈ R. Moreover, for greater generality (although purely mathemat-
ical), we assume, in the right hand side of (1.8), f to depend on x and t and to
satisfy

(1.13) f (x , t)∈ L4(0, T ; L2(�)).

We denote ( , ) the scalar product in both L2(�) and L2(�) = (L2(�))2 and
write � � for the corresponding norms. Subscripts are used for other norms.

An Integral Inequality 2. The proof of existence and uniqueness for problem
(1.8)-(1.11) relies crucially on an �a priori� L p estimate for the gradient of
solutions of parabolic equations obtained by G. Pulvirenti in [7] and [8], which
we quote below for the case at hand.

Theorem 2.1. Let a(x , t)∈ L∞(Q) satisfy

(2.1) 0 < a0 ≤ a(x , t) ≤ a1

and f = ( f1, f2, f3) ∈ (L p(Q))3, p ≥ 2. Then there exists a constant r > 2
such that if p ∈ [2, r), the weak solution of the initial-boundary value problem

(2.2) ut − ∇ · (a(x , t)∇u) = −∇ · f in Q

(2.3) u(x , 0) = 0, x ∈ �,

(2.4) u = 0 on � × (0, T )

belongs to L p(0, T ; H 1,p(�)) and the estimate

(2.5) �∇u�L p(Q) ≤ C�f�L p(Q)

holds.
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We present here a way to estimate the constant r in terms of a0 and a1. In
the following lemma we quote a property, crucial in the sequel, of the solution
of the problem

(2.6) vt − �v = −∇ · f

(2.7) v(x , 0) = 0 in � v = 0 on � × (0, T ).

We refer to [1] (page 275) for the proof which is based on the Riesz-Thorin
theorem.

Lemma 2.1. Let p ∈ [2, ∞) and f(x , t) ∈ Lp(Q). Then there exists a unique
weak solution to problem (2.6), (2.7) and this solution satis�es the �a priori�
estimate

(2.8) �∇v�L p
(Q)

≤ ϕ(p)�∇ f�L p
(Q)

,

where ϕ(p) is a continuous function for ∞ > p ≥ 2, depending only on �,
such that ϕ(2) = 1.

Theorem 2.2. Let ϕ(p) be the function entering in Lemma 2.1 and u the
solution of (2.2)-(2.4). If

(2.9) 1 −
a0

a1

<
1

ϕ(p)
,

then we have

(2.10) �∇u�L p
(Q)

≤ C�∇ f�L p
(Q)

.

Proof. We may assume a0 < a1, otherwise we are in the case of the laplacian
and the result follows from Lemma 2.1. We make a time-rescaling of equation
(2.2) de�ning

v(x , t) = u
�

x ,
t

a1

�
, m(x , t) = a

�
x ,

t

a1

� 1

a1
, g(x , t) = f

�
x ,

t

a1

� 1

a1
.

In this way (2.2)-(2.4) become

(2.11) vt − ∇ · (m∇v) = −∇ · g,
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(2.12) v(x , 0) = 0 in �, v = 0 on � × (0, T )

and m(x , t)∈ L∞(Q) satis�es

(2.13) 0 < µ0 ≤ m(x , t) ≤ 1

with µ0 = a0
a1

< 1. The hypothesis (2.9) becomes

(2.14) 1 − µ0 <
1

ϕ(p)
.

Let λ ∈ [0, 1] and consider the following family of problems depending on the
parameter λ

(2.15) vt − ∇ · {[1− λ(1 − m)]∇v} = −∇ · g

(2.16) v(x , 0) = 0, v = 0 on � × (0, T ).

Let A be the set of the values (λ, p)∈ [0, 1] × [2, ∞) for which (2.15), (2.16)
has a solution in L p(0, T ; H

1,p
0 (�)) and the estimate

(2.17) �∇v�L p
(Q) ≤ C�∇g�L p

(Q).

holds. A is not empty since (0, p) ∈ A for all p ≥ 2 by Lemma 2.1 and it is
easy to verify that (λ, 2)∈ A if λ ∈ [0, 1]. When (λ, p)∈ A we de�ne the best
constant for which (2.17) holds, i.e.

C(λ, p) = sup

�
�∇v�L p

(Q)

�g�L p
(Q)

, �g�L p
(Q) �= 0

�

.

For all p ≥ 2 we have C(0, p) < ∞ and

(2.18) C(0, 2) = 1.

Moreover, if λ ∈ [0, 1] and p = 2 again we have

(2.19) C(λ, 2) < ∞.

De�ne k = 1− µ0 < 1. We claim that

(2.20) C(λ, p) ≤
C(0, p)

1 − kλC(0, p)
.
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Let (λ, p)∈ A. The corresponding solution v of (2.15), (2.16) is differentiable
with respect to the parameter λ and vλ = ∂v

∂λ
satis�es the problem

∂vλ

∂ t
− ∇ · {[1 − λ(1 − m)]∇vλ} = −∇ · [(1 − m)∇v]

(2.21)

vλ(x , 0) = 0, x ∈ �, vλ = 0 on � × (0, T ).

Therefore we have the estimate

(2.22) �∇vλ�L p
(Q) ≤ C(λ, p)�(1 − m)∇v�L p

(Q) ≤ C(λ, p)k�∇v�L p
(Q).

Using the Hoelder inequality we obtain, with elementary calculations,

(2.23)
d

dλ
�∇v�

p

L p
(Q)

≤ p�∇v�
p−1

L p
(Q)

�∇vλ�L p
(Q).

Hence, by (2.22), we have

(2.24)
d

dλ
�∇v�

p

L p
(Q)

≤ pkC(λ, p)�∇v�
p

L p
(Q)

.

Integrating (2.24) between 0 and λ we obtain, recalling the de�nition of
C(λ, p),

�∇v(λ)�
p

L p
(Q)

≤ �∇v(0)�
p

L p
(Q)

+ pk

� λ

0

C(ξ, p)�∇v(ξ )�
p

L p
(Q)

dξ ≤

C p(0, p)�g�
p

L p
(Q)

+ pk�g�
p

L p
(Q)

� λ

0

C p+1(ξ, p)dξ.

Dividing the above inequality by �g�
p

L p
(Q)

and using again the de�nition of

C(λ, p) we have

(2.25) C p(λ, p) ≤ C p(0, p) + pk

� λ

0

C p+1(ξ, p)dξ.

Let y(λ) = C p(λ, p), we obtain, by (2.25),

(2.26) y(λ) ≤ y(0) + pk

� λ

0

y1+1/p(ξ )dξ.
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The solution of this integral inequality can easily be computed (see [5], page
38) and it is given by

y(λ) ≤
y(0)

�
1− kλy1/p(0)

�p .

This implies (2.20). Setting λ = 1 in (2.20) we have

(2.27) C(1, p) ≤
C(0, p)

1 − kC(0, p)
.

Since C(0, p) ≤ ϕ(p), we have also

(2.28) C(1, p) ≤
ϕ(p)

1 − kϕ(p)
.

By assumption 1 − kϕ(p) > 0, thus the right hand side of (2.28) remains
bounded and (2.10) follows. �

Remark 2.1. From (2.9) we obtain, in particular, that a1 → a0 if p → ∞ and
a0 → 0 when p → 2.

We return now to the nonlinear problem (1.8)-(1.11). For the proof of existence
presented in the next section an estimate of the form

(2.29) �∇u�L4
(Q)

≤ C�f�L4
(Q)

is needed. Therefore we assume, in addition to (2.12)

(2.30)
ρ1 − ρ0

ρ1
<

1

ϕ(4)
.

Existence and Uniqueness for the Non-linear Problem 3.

We rewrite (1.8) in the form

(3.1) ht − ∇ · (ρ(u)∇h) = ∇ · f

which is more convenient for the application of Theorem 2.2. To this end let
φ(x , t) be weak solution of the Dirichlet problem

φ ∈ H 1
0 (�), �φ = f (x , t)

a.e. for t ∈ [0, T ] where f (x , t) satis�es (1.13) and de�ne f = ∇φ . By standard
results of regularity we have f ∈ L4(0, T ; H 1

2 (�)) and the estimate

(3.2) �f(t)�L4
(�)

≤ C1�f(t)�H1
(�)

≤ C2�φ(t)�H 2(�) ≤ C3� f (t)�L2(�).
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We say that (h, u) is a weak solution of problem (3.1), (1.8)-(1.11) if

(3.3) h ∈ L2(0, T ; H 1
2 (�)), ht ∈ L2(0, T ; H 1(�))

(3.4) u ∈ L2(0, T ; H 1
0 (�))ut ∈ L2(0, T ; H 1(�))

(3.5) ρ(u)|∇h|2 ∈ L2(0, T ; L2(�))

(3.6) < h�, v > +

�

�

ρ(u)∇h · ∇vdx = −(f, ∇v)

for all v ∈ H 1
0 (�) and for a.e. t ∈ [0, T ]

(3.7) h(0) = 0

(3.8) < u�, η > +(∇u, ∇η) =

�

�

ρ(u)|∇h|2ηdx

for all η ∈ H 1
0 (�) and for a.e. t ∈ [0, T ]

(3.9) u(0) = u0.

Since h and u ∈ C([0, T ]; L2(�)), the conditions (3.7) and (3.9) make sense. To
prove existence we apply the Galerkin method. Let wk (x ), k = 1, ... be smooth
functions such that {wk}

∞
k=1 is an orthogonal basis of H 1

0 (�) and an orthonormal
basis of L2(�). We �x m ∈N and consider the function

um =

m�

k=1

dk(t)wk (x )

where dk(t)∈ C1([0, T ]). We solve the problem

(3.10) h�
m = ∇ · (ρ(um)∇hm ) + ∇ · f

(3.11) hm = 0 on � × (0, T ), hm (x , 0) = 0
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and then we compute the functions dk(t) solving the following system of
nonlinear O.D.E.

(3.12) (u�
m, wk) + (∇um , ∇wk) =

�

�

ρ(um)|∇hm |2wk dx

with the initial conditions

dk(0) = (u0, wk ), k = 1, .., m.

By Theorem 2.1 and recalling (2.30) and (3.2), we have

(3.13) ∇hm is bounded in L4(Q).

Multiplying (3.10) by hm we obtain, by (1.12),

1

2

d

dt
�hm(t)�

2 + ρ0�∇hm(t)�
2 ≤ � f(t)��∇hm� ≤

1

2ρ0

�f(t)�2 +
ρ0

2
�∇hm�2.

Therefore we have

d

dt
�hm�2 + ρ0�∇hm�2 ≤

1

2ρ0
�f�2.

Thus

(3.14) {hm} is bounded in L2(0, T ; H 1
0 (�)) and in L∞(0, T ; L2(�)).

Multiplying (3.12) by dk(t) and summing over k we obtain, recalling (3.13) and
denoting C4 the constant entering in the Poincaré inequality,

1

2

d

dt
�um�2 + �∇um�2 =

�

�

ρ(u)|∇hm |2um dx

≤ ρ1

�

�

|∇hm |2|um |dx ≤
ρ1

2ε
�∇hm�4 +

ρ1ε

2
C4�∇um�2.

Choosing ε = 1
C4ρ1

we conclude that

(3.15) {um} is bounded in L2(0, T ; H 1
0 (�)) and in L∞(0, T ; L2(�)).
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It remains to �nd an a priori estimate for u� . Let v be any function of H 1
0 (�)

such that �v�H 1
0
(�) ≤ 1 and write v1 + v2 with v1 ∈ span{wk; k = 1, .., m}.

Since �v1�H 1
0
(�) ≤ 1, we have

| < u�
m, v > | = |(u�

m , v1)| = |(∇um , ∇v1)| +

�

�

ρ(um)|∇hm |2v1dx

≤ �∇um� + ρ1C�∇hm�2L4(�).

By (3.13) and (3.15)

(3.16) {u�
m} is bounded in L2(0, T ; H −1(�)).

In as similar way we obtain:

(3.17) {h�
m} is bounded in L2(0, T ; H −1(�)).

Recalling (see [6]) that the space

�
u ∈ L2(0, T ; H 1

0 (�)), u� ∈ L2(0, T ; H −1(�))
�

is compactly imbedded in L2(Q), we can extract from {um} and {hm} two
sequences, not relabelled, such that

(3.18) lim
m→∞

um = u, lim
m→∞

hm = h in L2(Q) and a.e. in Q

(3.19) lim
m→∞

um = u, lim
m→∞

hm = h weakly in L2(0, T ; H 1
0 (�))

(3.20) lim
m→∞

um = u, lim
m→∞

hm = h in L2(0, T ; H −1(�)).

From (3.18) we have

�hm (t)� → �h(t)� in L2(0, T ).

Hence we can extract from hm a subsequence, still denoted hm , such that

(3.21) �hm(t)� → �h(t)� f or a.e. t ∈ [0, T ].
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Let v ∈ L2(0, T ; H 1
0 (�)). From (3.10) we have

(3.22)

� T

0

< h�
m, v > dt +

� T

0

�

�

ρ(um)∇hm · ∇vdxdt = −

� T

0

(f, ∇v)dt .

To pass to the limit for m → ∞ in (3.22) we add and subtract ρ(u)∇hm · ∇v in
the second integral. In this way we need to estimate

(3.23)
�
�
�

� T

0

�

�

[ρ(um) − ρ(u)]∇hm · vdxdt
�
�
�

since the limits of all other terms for m → ∞ are easily found. We can majorize
(3.23) using (3.13) with

�ρ(um) − ρ(u)�L4(Q)�∇hm�L4
(Q)

�∇v�L2
(Q)

≤ C�ρ(um) − ρ(u)�L4(Q) ≤ 4ρ2
1 L2�um − u�L2(Q) → 0,

the last inequality follows from (1.12) and the limit is zero in view of (3.18).
Hence, letting m → ∞ in (3.22), we have

� T

0

< h�, v > dt +

� T

0

�

�

ρ(u)∇h · ∇vdxdt = −

� T

0

(f, ∇v)dt

for all functions v ∈ L2(0, T ; H 1
0 (�)) and, in particular,

(3.6) < h�, v > +

�

�

ρ(u)∇h · ∇vdx = −(f, ∇v)

for all v ∈ H 1
0 (�) and for a.e. t ∈ [0, T ].

It remains to obtain (3.8). To this end we use the following

Lemma 3.1. We have

(3.24) lim
m→∞

�ρ(um)|∇hm |2 − ρ(u)|∇h|2�L1(Q) = 0.
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Proof. Let us multiply (3.10) by hm and integrate by parts recalling (3.11). By
(3.21) we have, for almost every T > 0,

lim
m→∞

� T

0

�

�

ρ(um)|∇hm |2dxdt = lim
m→∞

�
−

1

2

�

�

h2
m (T )dx +

� T

0

(f, ∇hm)dt
�

(3.25)

= −
1

2

�

�

h2(T )dx +

� T

0

(f, ∇h)dt =

� T

0

�

�

ρ(u)|∇h|2dxdt .

Let ξ = (ξ1, ξ2) ∈ (L2(0, T ; H 1
0 (�)))2 . Proceeding as for estimating (3.22) we

have, in view of (3.18) and (3.19),

lim
m→∞

�

Q

�
ρ(um)∇hm · ξ dxdt = lim

m→∞

� �

Q

�
ρ(u)∇hm · ξdxdt

(3.26)

+

�

Q

��
ρ(um) −

�
ρ(u)

�
∇hm · ξ dxdt

�
=

�

Q

�
ρ(u)∇h · ξdxdt .

On the other hand

�

Q

�
�
�ρ(um)|∇hm |2 − ρ(u)|∇h|2

�
�
�dxdt

=

�

Q

�
�
�
��

ρ(um)∇hm −
�

ρ(u)∇h
�

·
��

ρ(um)∇hm +
�

ρ(u)∇h
��
�
�dxdt

≤ C�
�

ρ(um)∇hm −
�

ρ(u)∇h�L2(Q).

Hence (3.24) follows from (3.25) and (3.26). �

We are now in a position to obtain (3.8). To this goal we �x an integer N
and choose a function η(x , t) having the form

(3.27) η =

N�

k=1

dk(t)wk (x ),
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where {dk(t)}
N
k=1 are given smooth functions. We choose m ≥ N , multiply

(3.12) by dk(t), sum for k = 1, .., N and then integrate with respect to t to �nd

� T

0

(u�
m, η)dt +

� T

0

(∇um, ∇η)dt =

� T

0

�

�

ρ(um)|∇hm |2ηdxdt .

Letting m → ∞ we have, recalling (3.19), (3.20) and (3.24),

(3.28)

� T

0

< u�, η > dt +

� T

0

(∇u, ∇η)dt =

� T

0

�

�

ρ(u)|∇h|2ηdxdt .

Since functions of the form (3.27) are dense in L2(0, T ; H 1
0 (�)), the identity

(3.28) holds for all η ∈ L2(0, T ; H 1
0 (�)) and thus, in particular, we have (3.8).

This proves the existence of a weak solution to problem (3.3)-(3.9).

Final Remark. Since ut − �u = ρ(u)|∇h|2 ∈ L2(Q), we have

u ∈ H 1(0, T ; H 1
0 (�) ∩ H 2(�)), and h ∈ H 1(0, T ; H 1

0 ∩ H 2(�)).

Taking into account this result of regularity, we can prove that the solution is
unique proceeding, with minor changes, as in [2].

Acknowledgment. The referee of this paper has made several helpful and
pertinent remarks. His contribution is gratefully acknowledged. The calculation
leading to inequality C(λ, p) ≤ C(0,p)

1−kλC(0,p)
has been suggested, in the elliptic

case, by Professor G. Prodi.

REFERENCES

[1] A. Bensoussan - J. Lions - L. Papanicolaou, Asymptotic Analysis for Periodic
Structure, North-Holland, 1978.

[2] M. Chipot - G. Cimatti, A uniqueness for the thermistor problem, Euro Jnl Appl.
Math., 2 (1991), pp. 97�103.

[3] G. Cimatti, On two problems of electrical heating of conductors, Quart. Appl.
Math., 99 (1991), pp. 729�740.

[4] O. A. Ladyzhenskaya - V.A. Solonnikov - N.N. Uraltseva, Linear and Quasi-
linear Equations of Parabolic Type, American Math. Society, 1968.

[5] V. Lakshmikantham - S. Leela, Differential and integral inequalities, Academic
Press, 1969.



316 GIOVANNI CIMATTI

[6] J.L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non
Lineaires, Dunod and Gauthier-Villars, 1969.
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