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THE FOUCAULT’S CURRENTS PROBLEM
WITH TEMPERATURE DEPENDENT RESISTIVITY

GIOVANNI CIMATTI

A result of existence and uniqueness of solutions is presented for the
system of P.D.E. modelling the eddy currents and the heating in a cylindrical
conductor.

An external varying magnetic field induces electric currents, known as
Foucault’s currents, in massive conductors which in turn heat the body by Joule
effects. We consider the special situation of an indefinite cylindrical conductor
of cross section €2, an open and bounded domain of R? with a regular boundary
I immersed in an insulating medium where a magnetic field H, parallel to the
axis of the cylinder, acts. The geometrical situation justifies the hypothesis

(1.1 H=w(, y, )k
where K is the unit vector of the axis of the cylinder. In the medium surrounding
the cylinder the current density J is zero. From (1.1) it follows VxH = Vw x k.

Assuming to be in a quasi-stationary situation, we have V x H = J; thus the
magnetic field is constant in the medium surrounding the cylinder and we have

H = i1k,
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where we assume /(7) to be a given function such that h(0) = 0. Inside the
cylinder we have, by Ohm’s law,

E = pu)J,

where p(u), a given function of the temperature u, is the electrical resistivity
and E the electric field. Hence

E =p0u)Vw x k.

Recalling (1.1) and using the Maxwell equation V x E = —% and the

constitutive relation B = wH, where p is the constant permeability, we obtain

V - (p(u)Vw) = pw, or, setting p(u) = %,
(1.2) w, =V - (pu)Vw).

The tangential component of H is continuous across boundaries, thus
(1.3) w=h(t)on T x (0, T).

Inside the cylinder the temperature obeys the energy equation cu, — kA =
()| Vw|? or, after a rescaling,

(1.4) U, — Au = p(u)|Vwl|*.

We assume for the temperature a boundary condition of the form

(1.5) u=0onT x(0,T).

The set of equations (1.2)-(1.5) is completed with the initial conditions
(1.6) w(x,0) =0, u(x,0)=uy, x = (x1, x) € Q.

This system, closely related to the thermistor problem, was proposed in [3]. In
this note we present a proof of existence of solutions assuming

(1.7) uo(x) € L*().

Defining h(x,t) = w(x,t) — h(t) we can rewrite the problem (1.2)-(1.6) as
follows

(1.8) hy =V - (pw)Vh) + f(t) in Q
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(1.9) u, — Au= pw)|Vh|* in Q
(1.10) h=0,u=00nT x(0,T)
(1.11) h(x,0) =0, u(x,0)=up(x)in 2,

where Q = Q x (0, T) and f(¢) = h'(t). We suppose
(1.12) pw)e C(R"), 0 < pg < p(u) < p1 , |p(u1) — p(ua)l < Lluy — us]|

for all uy, u, € R. Moreover, for greater generality (although purely mathemat-
ical), we assume, in the right hand side of (1.8), f to depend on x and ¢ and to
satisfy

(1.13) f(x, 1) e LY0, T; LX()).

We denote ( , ) the scalar product in both L*(2) and L*(Q) = (L*(2))* and
write || || for the corresponding norms. Subscripts are used for other norms.

An Integral Inequality 2. The proof of existence and uniqueness for problem
(1.8)-(1.11) relies crucially on an “a priori” L? estimate for the gradient of
solutions of parabolic equations obtained by G. Pulvirenti in [7] and [8], which
we quote below for the case at hand.

Theorem 2.1. Let a(x, t) € L*(Q) satisfy
2.1 O<ay<alx,t)<a

and f = (fi, f», f3) € (LP(Q))®, p > 2. Then there exists a constant r > 2
such that if p € [2, r), the weak solution of the initial-boundary value problem

(2.2) u; —V-(alx,t)Vu) = -V -fin Q
2.3) u(x,0)=0, x e Q,
2.4) u=0onl x(0,T)

belongs to LP(0, T; H'?(Q)) and the estimate
(2.5) IVullLrg) < CllfllLro)
holds.
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We present here a way to estimate the constant r in terms of gy and a;. In
the following lemma we quote a property, crucial in the sequel, of the solution
of the problem

(2.6) v, —Av=-V.f

2.7 v(x,0)=0inQ v=00nT x(0,T).
We refer to [1] (page 275) for the proof which is based on the Riesz-Thorin
theorem.

Lemma 2.1. Let p € [2, 00) and f(x, ) € L”(Q). Then there exists a unique
weak solution to problem (2.6), (2.7) and this solution satisfies the “a priori”
estimate

2.8) IVl < @PIVEIL )

where ¢(p) is a continuous function for co > p > 2, depending only on €2,
such that ¢(2) = 1.

Theorem 2.2. Let ¢(p) be the function entering in Lemma 2.1 and u the
solution of (2.2)-(2.4). If

1
(2.9) -
ai @(p)
then we have
(2.10) ||Vu||Lp(Q) < C||Vf||Lp(Q).

Proof. We may assume ay < a;, otherwise we are in the case of the laplacian
and the result follows from Lemma 2.1. We make a time-rescaling of equation
(2.2) defining

v(x, 1) = u(x, aLl) m(x, ) = a(x, a%)i g(x, 1) = f(x, L)i

Cll’ aq Cll.

In this way (2.2)-(2.4) become

(2.11) v, —V.-mVv)=-V.g,
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(2.12) v(x,0)=0inQ2, v=00nT x (0,T)
and m(x, t) € L*°(Q) satisfies
(2.13) 0<pug<mx,t)<1

a0

with oy = o < 1. The hypothesis (2.9) becomes

1
2.14 1 1
(2.14) Mo < o7

Let A € [0, 1] and consider the following family of problems depending on the
parameter A

(2.15) v, —V-{[l=-x(1—-m)]Vv}=-V.g

(2.16) v(x,0)=0, v=00nT x(0,7T).

Let A be the set of the values (A, p) € [0, 1] x [2, co) for which (2.15), (2.16)
has a solution in L?(0, T'; HO1 "P()) and the estimate

(2.17) ”VU”L”(Q) =< CHVg”L”(Q)

holds. « is not empty since (0, p) € A for all p > 2 by Lemma 2.1 and it is
easy to verify that (A, 2) € A if A € [0, 1]. When (X, p) € A we define the best
constant for which (2.17) holds, i.e.

l VU”L”(Q)

€O P =supy Ty
gL )

, ”g”L”(Q)?éO .

For all p > 2 we have C(0, p) < oo and

(2.18) Cc@0,2)=1.
Moreover, if A € [0, 1] and p = 2 again we have
(2.19) C(A,2) < oo.
Define k = 1 — ug < 1. We claim that

CQ, p)
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Let (A, p) € A. The corresponding solution v of (2.15), (2.16) is differentiable
with respect to the parameter A and vy = g—; satisfies the problem

a% — VAl =x(1 = m)]Vv,} = =V - [(1 — m)Vv]

(2.21)

V(x,00=0, xeQ, vy, =00nT x(0,7).

Therefore we have the estimate

(2.22)  IVuillLr g < COu P — VUl o) < CO- pRIVYIILr ).

Using the Hoelder inequality we obtain, with elementary calculations,

d p p—1
(223) IV, = PIVVIL i IVl o
Hence, by (2.22), we have
(2.24) iIIVvllp < pkC(x, p)|IVully
' d\ L") = ’ L’y

Integrating (2.24) between 0 and A we obtain, recalling the definition of
C, p),

d§ <

A
p p p
IVVOII] 1 o) = IVOOI s )+ P /0 CE DIV 1,

A
p p p p+1
CP 0. Plg] 1+ PRI ) [ €776

Dividing the above inequality by ||g||pL,,(Q) and using again the definition of
C(A, p) we have

A
(2.25) CPO., p) < CP0, p) + pk / CPH (&, p)de.
0

Let y(A) = C?(A, p), we obtain, by (2.25),

A
(2.26) Y0 < ¥(0) + pk / YHP(E ).
0
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The solution of this integral inequality can easily be computed (see [5], page
38) and it is given by

y(0)
[1—kay/P ()]

This implies (2.20). Setting A = 1 in (2.20) we have

y(A) <

C(, p)
(2.27) Cd, p) < T(O,p)
Since C(0, p) < ¢(p), we have also
@(p)
2.28 cCl,p) < —————.
(2.28) ( p)<1_k(p(p)

By assumption 1 — kg(p) > 0, thus the right hand side of (2.28) remains
bounded and (2.10) follows. O

Remark 2.1. From (2.9) we obtain, in particular, that a; — ay if p — oo and
ap — 0 when p — 2.

We return now to the nonlinear problem (1.8)-(1.11). For the proof of existence
presented in the next section an estimate of the form

(2.29) IVullp s, < Clfllys

(9 — (Q)

is needed. Therefore we assume, in addition to (2.12)

P1 = Po 1
< —.
P1 p4)

Existence and Uniqueness for the Non-linear Problem 3.

(2.30)

We rewrite (1.8) in the form
3.1 hy — V- -(p(u)Vh) =V - £

which is more convenient for the application of Theorem 2.2. To this end let
¢(x, t) be weak solution of the Dirichlet problem

¢ HJ(Q), Ap = f(x,1)

a.e. fort € [0, T] where f(x, t) satisfies (1.13) and define f = V¢. By standard
results of regularity we have f e L*(0, T’ Hzl(Q)) and the estimate

(32 Ol = OOl g < GO0l < ClIFOl 2.
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We say that (h, u) is a weak solution of problem (3.1), (1.8)-(1.11) if

(3.3) he L*0,T; Hy(Q)), h, € L*0, T; H(RQ))
(3.4) ue L*0, T; Hy(Q)u, € L*0, T; H'(Q))

(3.5) p)|Vh|* € L*(0, T; LX)

(3.6) <h,v> —|—/Q,O(L£)Vh - Vudx = —(f, Vv)

for all v € H, () and for a.e. t € [0, T]

3.7 h(©0)=0

(3.8) <u',n>+Nu,Vn) = f o(w)|Vh|*ndx
Q

for all n € H)(R) and for a.e. 1 €[0, T]

3.9 u(0) = ug.

Since h and u € C([0, T]; L*(R2)), the conditions (3.7) and (3.9) make sense. To
prove existence we apply the Galerkin method. Let wy(x), kK = 1, ... be smooth

functions such that {wy }72, is an orthogonal basis of HOl (£2) and an orthonormal
basis of L*(2). We fix m € N and consider the function

=Y di(wi(x)

k=1
where d;(t) € C'([0, T]). We solve the problem

(3.10) h, =V -(p(un)Vhy)+V-f

(3.11) By =00nT x (0, T), hy(x,0)=0
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and then we compute the functions dj(¢) solving the following system of
nonlinear O.D.E.

(3.12) (s wi) + Vi, V) = / PtV iy P widx
Q

with the initial conditions

di(0) = (ug, wy), k=1, ..,m.
By Theorem 2.1 and recalling (2.30) and (3.2), we have
(3.13) Vh,, is bounded in L*(Q).
Multiplying (3.10) by h,, we obtain, by (1.12),

1d

1 Po
hy (01 VhuOI? < | EOI VAl < — IEON> + = VA
2dt” O+ poll VRO < | £FOI ”_2/)0” @] 2|| I

Therefore we have
d 1
— 1w 1> + poll VAnlI? < —|If]1%.
T 1217 + poll I~ < 2poll l

Thus
(3.14)  {h,) is bounded in L*(0, T; Hy(Q)) and in L™(0, T; L*(Q)).

Multiplying (3.12) by di(¢) and summing over k we obtain, recalling (3.13) and
denoting C, the constant entering in the Poincaré inequality,

dl
dt

N =

|t |1? + | Vit |* = / P )| Vi, "ty dx
Q

£
< m/ Vi Plitmldx < 221V 1* + 25 4l Vit |12
Q 28 2

Choosing ¢ = %pl we conclude that

(3.15)  {un} is bounded in L*(0, T; Hy(Q)) and in L0, T; L*(Q)).
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It remains to find an a priori estimate for u’. Let v be any function of HOI(Q)

such that ||v||H01(Q) < 1 and write v; + v, with v; € span{wy; k =1, .., m}.
Since ||v; ||H01(Q) < 1, we have

< t0 > 1= 100 00 = Vi Vol 5 [ pln) IV P
< | Vimll + p1ClI Vi || 740y-
By (3.13) and (3.15)
(3.16) {u} is bounded in L*(0, T; H™'(Q)).
In as similar way we obtain:
(3.17) {(h.} is bounded in L*(0,T; H'(Q)).
Recalling (see [6]) that the space
{ue L*0, T; Hy(Q)), u' € L*(0, T; H'(Q))}

is compactly imbedded in L?(Q), we can extract from {u,} and {h,} two
sequences, not relabelled, such that

(3.18) lim u, =u, lim h, =h in L*(Q) and a.e. in Q
(3.19) lim u,, =u, lim h, =h weakly in L*0, T; H,(Q))
(3.20) lim u, =u, lim h, =h in L*0, T; H'(Q)).

From (3.18) we have
IlBm N = 1RO in L*(0, T).
Hence we can extract from 4,, a subsequence, still denoted #4,,, such that

(3.21) A — |h(@®)|| for a.e. t€[0,T].
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Let v e L*(0, T; Hj(2)). From (3.10) we have

T T T
(3.22) / <h),,v>dt —I—/ / o()Vh,, - Vudxdt = —f (f, Vv)dt.
0 o Ja 0

To pass to the limit for m — oo in (3.22) we add and subtract p(#)Vh,, - Vv in
the second integral. In this way we need to estimate

T
(3.23) ’ / / (o) — p(u)Vh,, - vdxdt
0 Q

since the limits of all other terms for m — oo are easily found. We can majorize
(3.23) using (3.13) with

lo@m) = POl L4 IVAmlIy 3 o IV 2

(@) (@)

< CllpGum) — p)ll gy < 4pP L2 |ty — ull 1200y — O,

the last inequality follows from (1.12) and the limit is zero in view of (3.18).
Hence, letting m — oo in (3.22), we have

T T T
/ < W, v>dt +/ f p(W)Vh - Vvdxdt = —/ (f, Vv)dt
0 0o Ja 0

for all functions v € L*(0, T’; HOI(Q)) and, in particular,
(3.6) <h',v> —I—f p(W)Vh - Vvdx = —(f, Vv)
Q

for all v € H, () and for a.e. t € [0, T].
It remains to obtain (3.8). To this end we use the following

Lemma 3.1. We have

(3.24) im || p(u)| Vi |* = p@)| VA [ 11g) = 0.
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Proof. Let us multiply (3.10) by &, and integrate by parts recalling (3.11). By
(3.21) we have, for almost every T > 0,

T
Tim_ / / Pl Vi Pdxds = Tim [ / K2 (T)dx + f (t, th)dt]

(3.25)

T T
__! / BA(Tdx + / (F, Viydi = f f p)|Vh Pdxdr.
2 Ja 0 0o Jo

Let § = (&, &) € (L*(0, T; Hy()))*. Proceeding as for estimating (3.22) we
have, in view of (3.18) and (3.19),

lim / o) Vh, - Edxdt = lim [f Jp@)Vh,, - Edxdt
m—0o0 Q m—0oQ

(3.26)
/(N/,o(um —w/,o(u) dedt /w/,o(u )Vh - Edxdt.
On the other hand

f 0@ V> = p)| VAP |dxds
0

= /Q [P Vin = Vo@Vh] - [Vp@n) Vi + /@) Vh]|dxds
=Cl V PUm)Vhy, — v ,O(M)VhHLz(Q).

Hence (3.24) follows from (3.25) and (3.26). U

We are now in a position to obtain (3.8). To this goal we fix an integer N
and choose a function n(x, ¢) having the form

N
(3.27) n=_ dnw(x),

k=1
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where {dk(t)},'(\’:1 are given smooth functions. We choose m > N, multiply
(3.12) by di(t), sum for k = 1, .., N and then integrate with respect to ¢ to find

T T T
/ (u;n,n)dt+/ (Vum,Vn)dt=/ /p(um)Ith|2ndxdt.
0 0 0 Q

Letting m — oo we have, recalling (3.19), (3.20) and (3.24),

T T T
(3.28) / <u',n>dt —I—/ (Vu, Vn)dt = f f o(w)|Vh|*ndxdt.
0 0 0o Jo

Since functions of the form (3.27) are dense in L*(0, T; H, (<)), the identity
(3.28) holds for all n € L*(0, T; HOI(Q)) and thus, in particular, we have (3.8).
This proves the existence of a weak solution to problem (3.3)-(3.9).

Final Remark. Since u, — Au = p(u)|Vh|*> € L>(Q), we have
ueH'0,T; Hy(Q) N H*Q)), and he H'O,T; Hy N HX(Q)).

Taking into account this result of regularity, we can prove that the solution is
unique proceeding, with minor changes, as in [2].
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