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DUPLICATE, BERNSTEIN ALGEBRAS AND EVOLUTION
ALGEBRAS

A. CONSEIBO - S. SAVADOGO - M. OUATTARA

In this paper, we firstly study a commutative algebra £ over a field F' of
Char(F) # 2 that satisfying dim(E2) = 1. We show that, such an algebra
is an evolution algebra. Afterwards, we pay attention to commutative
duplicate of a commutative algebra £. We find necessary and sufficient
condition in which the duplicate D(£) is an evolution algebra. And, we
finish by studying an evolution algebra that is a Bernstein algebra. We
classify that algebras, up to isomorphism, in dimension < 4.

1. Introduction

Given a commutative field F and a finite dimensional algebra £, we say that £
is an evolution algebra if it admits a basis B = {ey,...,e, } such that

n
eiej=0, for 1 <i#j<nandef =Y ape, forl <i<n. (1)
k=1

Such a basis is called a natural basis of £. The matrix M = (a;x)1<i k<, is called
the matrix of structural constants of £ relative to the natural basis B. Evolution
algebras are commutative ([15]). The origin and the first study of the evolu-
tion algebras date from 1941 with the first formulation due to Etherington ([6,
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Page 34]) of strict self-fertilization in the absence of mutation. Subsequently,
Holgate extended Etherington’s formulation to study the case of partial self-
fertilization ([9]). It is from work of Tian ([14]) that these algebras were popu-
larized and studied under the denomination of evolution algebras.

In section 2, we study n-dimensional commutative algebras £ satisfying
dim(E?) = 1. We show that such algebras are evolution algebras, then we give
a classification in dimension 2, 3 and 4.

In section 3, we exhibit a necessary and sufficient condition for a commuta-
tive duplicate of commutative algebra to be an evolution algebra.

In section 4, we characterize the baric algebras that are Bernstein algebras
and we give a classification in dimension 2, 3 and 4.

2. Quadratic forms and evolution algebras

In this section, we study finite dimensional commutative algebra £ over a com-
mutative field F of Char(F) # 2 and satisfying dim(£?) = 1.

2.1. Case of dimensions 2 and 3

Example 2.1. Let £ be a commutative 2-dimensional algebra such that
dim(£2) = 1. Then & is an evolution algebra.

Proof. Let & = Fe; @ Fe, with dim(£?) = 1, i.e. £2 = Fc for a certain ¢ € £.

The multiplication table of £ in the basis {e},e,} is given by e% = o, e% = Bc

and ejes = yc. We set x = xje| +x2e2 € € and we have x> = (ch% +Bx§ +

27yx1x2)c. For the reduction of the quadratic form g(x) = ox? + B3 + 2yx1x2,

we distinguish two cases

e (a,B) # 0. Without loss of generality, we assume that o # 0. Then x> =
(a(x?+ %yxlxz) + Bx3)c = (at(x1 + Lx)? + (B — g)xg)c By taking ¢} =
—%el + ey, we get ele’2 = 0. Thus, £ is an evolution algebra in the natural
basis {ej, €} }.

e o =3 =0. We have x> = 2yx;xp¢c = %’((xl +x2)? — (x1 —x2)?)c. By setting
¢} =ej+ep and €, = e] — e, we have (e +¢;)(e] —e2) = 0. Consequently,
£ is an evolution algebra in the natural basis {¢},¢}}.

L]

Example 2.2. Let £ be a commutative 3-dimensional algebra such that
dim(£?) = 1. Then & is an evolution algebra.

Proof. Let £ =Fe| ® Fey® Fes with dim(Sz) =1,1i.e. £2 = Fcfor a certain ¢ €
&. The multiplication table of € in the basis {e},e2,e3} is given by e = ac, 3 =
Be, e% =1Yc, e1ep = 0c, ere3 = licand exe; = Ac. Letx =xje1 +x2e0 +x3e3 €E,
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we have x? = ((xx% + ,Bx% + yx% +20x1x2+2x1x3 +2Ax2x3 ) . For the reduction
of the quadratic form g(x) = (0x? + Bx3 -+ yx3 +28x1x2 + 2x1 X3+ 2Ax2%3 ), We

distinguish the following cases
e (a,B,7) # 0. Without loss of generality, we assume that o # 0. Then

2 = (a(x%—l—Z(sz%—g)@)xl)—|—ﬁx%+yx%—|—2),xzx3)c

) 2 §2 2
= <a<x1+ax2+gx3> +<ﬁ—a>x%+<7— ‘;)x%—l-
2(%—6'u>x2x3>c
(04

i) 8% —Ba #0or u> —ya # 0. We can take 8 — Ba # 0, without loss of
generality.

5 2 52 al—§
2 = ((x(xl—i—axz—i—g)@) +<[3—a><2+2 13 65362x3>+
52 ar—su \?
_E xZ—I-m)Q +

Bysettinge’zz—gel—i-ezandeg 1</153_§[§1_“>el_ aﬁ Eer+

e3, we get ejey, = ejey = ehel, = 0. So & is an evolution algebra in the
natural basis {e;, e, €5}
i) 82— Ba =u*>—ya=0. Then

2
P2 = <Oc<x1+6xz+“X3> +2<7L—6“)x2X3>c
a a a
2
1
= <Ot<x1+5xZ+'uX3> +<7L—5'u>
a l04 2 o
((X2+X3)2—()€2—X3)2>>C

. S
By taking e’2 = ;a“e] + ez +5 63 and eg m Rei+ ez — 183, we ob-

tain e 16/2 =e 163 = eze3 0. So £ is an evolution algebra in the natural
basis {ey,€5,€5}.
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e a = f3 =y=0. Without loss of generality, we can take 0 # 0. Thus

A
2 = 28 <x1x2 + %XNQ + 6}@)(3) c

A A
= 20 ( <X1 + 6)63) <X2 + gx;) — 6!;)6%) c

5 A 205 A— Y
= <2<X1+X2+ +#x3> —<x1—Xz+uX3> —MX%>C

) 2 ) )
By setting ¢} = e +e, €5 =e; —ey and € = —%el — %ez +e3, we get €} ¢), =
e\ ey = éhel;, = 0. So £ is an evolution algebra in the natural basis {], €}, €5 }.
0

2.2. General case

Let (£,b) be a bilinear space. A vector x # 0 of £ is said to be isotropic if
b(x,x) = 0. Otherwise x is said to be anisotropic. If (€,b) contains an isotropic
vector, then (£,b) is also called isotropic bilinear space. Otherwise (£,b) is
called anisotropic. A subspace W of £ is totally isotropic it b(W,W) =0, i.e.
b(x,y) = 0 for all x,y € W. The radical of a symmetric bilinear form b(x,y) is
the set of all x such that b(x,y) =0, forall y € £.

Theorem 2.3 ([10, Theorem 4.1, Witt’s Decomposition]). In characteristic # 2,
any quadratic space (€,q) admits orthogonal sum decomposition

&= gt 1 ghyp 1 gana (2)

called Witt’s decomposition, where & = rad(q) is totally isotropic, Enp=H, L
.-+ | Hy is a hyperbolic space and &, is an anisotropic space.

Proposition 2.4. Any finite dimensional commutative algebra € such that
dim(E?) = 1 is an evolution algebra. The natural basis being the orthogonal
basis of Witt’s decomposition of the induced bilinear form.

Proof. Let £ be such an algebra. We choose ¢ € £ such that £2 = Fc. For
x,y € E, xy = b(x,y)c where b: £ x £ — F is a non-zero symmetric bilinear
form. The corresponding quadratic form ¢ : £ — F is defined by x> = g(x)c. If
another ¢ is chosen as the generator of &2, then ¢ = Ac, for a certain A € F*.
The corresponding bilinear form 4 is A ~'b. Since g is a quadratic form, The-
orem 2.3 tell us, algebra £ admits an orthogonal basis given by Witt’s decom-
position. It follows that algebra £ is an evolution algebra and the natural basis
being the orthogonal basis. O
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2.3. Classification

Let £ =& L Enyp L Ean be Witt’s decomposition of the finite dimensional evolu-
tion algebra & satisfying dim(£?) = 1 over a commutative field F of Char(F) #
2. The Proof of Proposition 2.4 tells us, there are a non-zero symmetric bi-
linear b: £ x & — F and ¢ € & such that £2 = Fc and xy = b(x,y)c for all
x,y € E. Let g : £ — F be the corresponding quadratic form of b. We choose
a basis {ui,...,u,} of &, such that b(u;,u;) =0, for i # j, and g(u;) = d; #0
(i=1,...,r). Then, we choose a basis {x;,y;} of H; such that b(x;,y;) =0,
q(xi) = —q(yi) = 1 and finally, we choose a basis {vi,...,v;} of & = rad(b).
Since x? = g(x)c, it follows that x> = g(x)b(x,c)c, ..., X*T2 = q(x)b(x,c)*c. If €
is a nil-algebra, then b(x,c) = 0 for all x € £ ; in this case ¢ € &. Let us suppose
that £ is non-nil. There exists z € £ such that b(z,c¢) # 0. Thus three cases are
to be considered.

* cbelongs to & = rad(b), i.e. b(x,c) = 0 for all x € £. The multiplication
table of £ in the basis {uj,...,u;,vy,...,v} is

u,-2 =dic (i=1,...,r), the others products are zero. 3)

* cis isotropic, i.e. b(c,c) =0and ¢ = 0 but b(z,c) # 0, for some z. So ¢ €
Enyp and then there is an i such that ¢ = x; +y;. Without loss of generality,
we can assume that 7 = 1. In this case £ = &pyp L Ean, Where Eqyp = H
and the multiplication table of £ in the basis {uy,...,ur,x1,y1,V1,...,Vs}
is

Ltl2 :di(x]+yl) (izla"'vr)v X%Z_Y%:xl‘ﬂm (4)

the others products are zero.

* ¢ is anisotropic, i.e. b(c,c) #0. We have ¢?> = g(c)c and by setting
¢’ = q(c) ¢, it follows that ¢ = ¢’ is a non-zero idempotent. The multi-
plication table of £ in the basis {vi,..., v, uy,...,u } is

ut =up,ul =duy (i=2,...,r), the others products are zero.  (5)

Now, we give a low-dimensional classification of such algebras.

Proposition 2.5. [4, Theorem 4.1] Any 2-dimensional evolution algebra, over
a commutative field F of Char(F) # 2, satisfying dimp(E?) = 1 is isomorphic
to one of the following algebras :

o & 1l =uy,u5=0.
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° Ez:u%:fu§:u1+u2.
° 53:u%:u1,u§:0.

o &)t uy 2 — 141,142 oy, with o € F*.

Proposition 2.6. [3, Theorem 3.5(ii), Table 1] Any 3-dimensional evolution
algebra, over a commutative field F of Char(F) # 2, satisfying diimp(E?) = 1

is isomorphic to one of the following algebras
o & u —ul—i-uz,u% (u1+u2) % 0.

2

u3

. 52:u%:u1+u2,u%:—(u1+u2) =uy+us.

) 2 2
& tuy =uz,u; =0,u5 =0.

o &y(a):u? =uz,ul = aus,u} =0, with a € F*.

Es:ut=up,u3 =13 =0.
o S(a): u%—ul,uz—aul,% 0, with o € F*.
o &(a,B):uf =uy,u3 = auy,ui = Buy with o, € F*.

With regard to dimension 4, by varying the dimension of & from 0 to 3 in
the equation (2) and taking account the three cases defined above, we have

Proposition 2.7. Any 4-dimensional evolution algebra, over a commutative
field F of Char(F) # 2, satisfying dimg(£2) = 1 is isomorphic to one of the
following algebras

) Slzu%ZV3,v%:v2:v§:0;

e & :xt =y =x1+y,» =3 =0;

o &ixt=—yl=xi+y,ui =x1+y1,vi=0;

o Ey(@):x] = —y] =x1+y1,ui = ot(x; +y1),u5 = —a(x1 +y1);

2 2 2_ 2.
o &s(at) tuy =wvo,u5 = 0wy, vi =v; =0;

o Eo:ud =upu5=ui=uj=0;
) 2 2_.,2_q.
o &) ruy =uy,u5 = auy,u; =u; =0;

o &(a,B):ud =uy,u3 = owy,u3 = Buy,ul = 0;
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e &(a,B,y): u1 —ul,uz—aul,u3 Bul,u%:yul;
with o, B,y € F*.

Remark 2.8. If F is an algebraically closed field, in particular if any scalar o
of F is a square, i.e. F = FZ, the scalars «, B and y will be replaced by 1.

3. Duplicate and evolution algebras

Let £ be a commutative algebra over a commutative field of Char(F) # 2, not
necessarily associative, nor having an unit element and let S%(&) be a sec-
ond symmetric power of the F-linear space £. Let [ and J be two countable
parts. The multiplication Yc;(xi-yi) ¥ jes (X)) = YierXivi- X jes XY, where
Xi, y,-,x’j, y’j in £ and x;.y; denotes the symmetric product of x; by y;, defines
on $%(&) a commutative F-algebra structure called a commutative duplicate of
E11].

The duplicate will be denoted by D(E). The F-linear map p : D(E) — £2 de-
fines by x.y — xy is an onto F-algebra homomorphism called Etherington’s ho-
momorphism. We have D(£)ker(u) = 0and D(E) = £? >< ker( ) (s.d. for semi-

direct) algebras isomorphism. The semi-direct product is glven by (x,x)(y,y) =
(xy, @(x,y)) for all x,yin £2; X',y in ker(u) and @ : £* x £2 — ker(u) is a F-
bilinear map. We set Np(E) = ker(u). If the family {ey,--- ,e,} is a basis of
&, then {e;.e; | 1 <i< j<n}isabasisof D(E), called the canonical basis of
D(€) and dim(D(€)) = "1,

Let £ be an evolution algebra in the natural basis {ej,- - ,e,}. We suppose
that D(€) is an evolution algebra with the canonical basis as the natural basis.

For i # j, we have eiej —0 ie. ej.ej € Np(E). Fori# j, we have 0 =
(ei.ei)(ej.ej) =e? e . Either ¢ =0 for all i € {1,...,n}, i.e. £2 =0, or there
exists ip € {1,.. n} such that elo # 0 and e] =0 for all j # iy. So either £2 =0
or &2 =F el-zo, i.e. dim(£?) = 1. The multiplication table of D(€) in natural basis
{eiej | 1 <i< j<n}isgiven by (e.€;)* = e2 .}
zero.

The canonical basis of D(E) is not always a natural basis.

io» the others products are

Example 3.1. Let & : eje; = e, exea = e be an evolution algebra. By taking
ejj '= ej.ej, the multiplication table of D(&;) in the canonical basis is given
by e%l = ey, e11ex = e11, exnexn = e1], the others products are zero. Since
er1ex # 0, this basis is not a natural basis. By taking u = ey — e, we get
e%l =ey1, e11€12 = e U = eppeyr = ejpu = u> = 0. The duplicate algebra is an
evolution algebra in the natural basis {e;1,e12,u}.
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For z and w in D(&), we notice that the product in D(E) is given by zw =
1(z).u(w). So, if € is a zero algebra, then for all z,w € D(E), we have zw =
u(z).u(w) = 0 because u(z) = u(w) = 0. Consequently, D(E) is an evolution
algebra.

Theorem 3.2. Let £ be a n-dimensional non zero commutative F-algebra and
D(E) its commutative duplicate. Then D(E) is an evolution algebra if and only
ifdim(€?) = 1.

Proof. Let us suppose that D(&) is an evolution algebra in the natural basis
{z1,...,2s}, with s = w For i # j, the equality z;z; = 0 is equivalent to
1 (z:).14(zj) = 0. Since £2 # {0}, it follows that there exists iy such that {1(z;,) #
0. Thus, u(z;) =0 forall j # iy, z; € Nr(E) ={x € D(E) | x-D() =0} =
ann(D(E)), where ann(D(E)) is the annihilator of D(E). So dim(Ng(€)) =
s— 1 and dim(£?) = 1.

Conversely, let £ be a commutative F-algebra such that dim(£2) = 1. Ac-
cording to Proposition 2.4, such an algebra is an evolution algebra, the natural
basis {ey,ez,...,e,} being that orthogonal. Since D(E)/Nr(E) ~ &2, it follows
that dim(Np(€)) =s—1. If €2 # 0, then (e;, - ¢;,)> = €} - ez # 0, generates
D(€)? and we always deduce from Proposition 2.4 that D(£) is an evolution
algebra. 0

4. Bernstein Algebra

A finite dimensional commutative algebra £ over a commutative field F is said
to be baric, if there is nontrivial homomorphism ® : £ — F of algebras. The
baric algebra (€, @) is called Bernstein algebra if

i w(x)2x2 =0, forallxe &. (6)

Bernstein algebras have their origins in genetics ([2]). Holgate was the first to
use the language of non-associative algebras to translate Bernstein’s problem
([81).
We defined inductively plenary powers of an element x € £ by :

x1) = xand x1) = x®x® ke N,

while that of £ is defined by :

EW =¢gand eWH) = gWe® e N.
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4.1. Some properties of Bernstein algebras

Let (£, ) be a Bernstein algebra over a commutative field F' of Char(F) # 2.

The following results are well known ([16]).

1) The homomorphism @ : £ — F is the unique weight function of £.

2) Algebra & has at least one non-zero idempotent.

3) For an idempotent e of £, the algebra £ admits the following Peirce decom-
position £ = Fe U, ®V,, where U, = {x €€ | ex=1x}andV, = {x €& |
ex = 0}. The subspaces U, and V, satisfy the relations

u\v,cu, V?CU, U?CV,and U,V? =0

4) The set of idempotents of € is given by Z(£) = {e+ 0o +0? | o € U,} for
any idempotent e of £.

5) Letej =e+0+ o2, with ¢ € U,, be another idempotent of £. We have
the following relations U,, = {u+ou| u€ U,} and V,, = {v—2(c+0?)v |
v € V, }. It follows that although the decomposition of the Bernstein algebra
depends on the choice of the idempotent e, the dimension of the subspaces
U, and V, of £ are invariants of £. If r = dimU, and s = dimV,, the pair
(1+7,s) is called the type of £. Also dimp(U2) and dimg(U,V, +V?) are
invariants of the algebra &.

In ([1]), the authors obtain the identities (7) and (8) by linearizing (6).

2 (xy) = () + 0 () (xy) (7)

4(xz) (xy) +22% (29) = 0(2y)2* +20(xy) (x2) +20 (x2) (xy) + 0 () () (®)
for all x,y,z € £ and replacing y by z in (8), we get

4(xz)* +24°2% = 0(2)*%* + 4o (xz) (x2) + 0 (62 )

forall x,z € €.

4.2. Characterization of Bernstein algebras that are evolution alge-
bras

Let F be a commutative field of Char(F) # 2.

Theorem 4.1 ([13, Corollary 3.1.4]). A n-dimensional baric evolution algebra
(€, ®) admits a natural basis {ey,e, ... ey} such that ®(e;) =1 and ®(e;) =0
fori> 1. Moreover £ = Fe| ®ker w with e; ker 0 = 0.

We deduce from Theorem 4.1 that the algebra (£, @) admits a natural basis
{e1,e2,...,e,} which multiplication table is given by

n

n
2 2
el =e1+ ) ayer, e =Y aje (10)
k=2 k=2
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with w(e1) =1, w(ej) =0and 2 < j <n.
In the following, any finite n-dimensional baric evolution algebra will be
provided with such a natural basis.

Theorem 4.2 (of characterization). A n-dimensional baric evolution algebra is
a Bernstein algebra (€, ®) if and only if the following conditions are satisfying
D) (ef)* =ef;
ii) e*e? —0f0r2<ij<n'

iii) ele? =52, for2<i<n.

TN~

21’

Proof. Let us suppose that algebra (£, ®) is a Bernstein algebra. Then
(6) leads to i), we take x = ej.
(9) gives ii), we set x = ¢; and z = e; with i, j # 1.
(9) gives iii), we take x = ej and z = ¢; with i # 1.
Conversely, it is assumed that conditions i), ii) and iii) are satisfied. Let
x= ZZZI Xiey be an element of £ With co( )= x1 We have the following equali-

tiesx* =Y}, xres —)cle1 +Yi zxkek and x*x —xzx%eze1 +2x3 Y}, xiefer +
szzzx,%xze,%ez =x3(x3e? +Y1_,x2e?) = (x)%x%. So the baric evolution alge-
bra (£, ) is a Bernstein algebras. O

We see that 7 is a non-zero idempotent of € and e? € Ue% for i # 1. We
deduce that (ker 0)? C Ug.

Proposition 4.3. If a n-dimensional baric evolution algebra (€,®) is a Bern-
stein algebra, then
i) Up ={xckero | e3x = Ix} = (kerw)? and
ii) Vz—{xeker(o | elx =0} = (e; —2aye} | 2<i<n).

Proof. i) Let us show that (kerm)? = U,. Since (ker o) C U, it remains to
show that U, 2 C (kerw)?. Letx = Y" , xe; € Ua,
then x = 2e1x =2¥" ,xi(ae?) € (kerw)?. Hence Up C (ker w)? and Up =
(ker m)?.

ii) For i € {2,...,n}, we have ef(e; — 2aje?) = 0 ; so {e; —2ay;e} | 2 <
1 < n> - Ve%. Let x =Y ,xie; € Ve%, then 0 = e%x =Y, xiaje; e?. Thus x =
Y ,xi(e; — 2aj;e?) and we have Vz C < —2ape? | 2<i< n> We deduce
thatVe%_< 261], ‘ 2<z<n> ]

Remark 4.4. If the baric evolution algebra (£, ®) is a Bernstein algebra, then

Uez2 = (ker)®) = (kerw)?(kerw)> =0, i.e. £ is a exceptional Bernstein alge-
1

bra ([7]).



DUPLICATE, BERNSTEIN ALGEBRAS AND EVOLUTION ALGEBRAS 203

Definition 4.5 ([17]). Let (£, ) be a (n+ 1)-dimensional Bernstein algebra of
type (r+1,s). If ker @ is a zero algebra, i.e. (ker®)? = 0, then the algebra & is
called a trivial Bernstein algebra of type (r+1,s).

Remark 4.6. In ([12]), the authors show that an algebra is a Jordan Bernstein
algebra if and only if it is a train algebra of rank 3. We deduce that a finite
dimensional evolution algebra (£, ) is a Jordan Bernstein algebra if and only if
(ker 60)2 =0 ([13, Theorem 3.2.3]). Thus, the only finite dimensional evolution
algebras (£, ), that are Jordan Bernstein algebras, are evolution algebras, that
are trivial Bernstein algebras.

Proposition 4.7. If a baric evolution algebra (€,®) is a 2-dimensional Bern-
stein algebra, then £ is a trivial Bernstein algebra.

Proof. Since kerw = <e2>, it follows that there are & € F such that e% = tey.
0 = (ker®)®) leads to 0 = e3¢ = &’e; ; hence a® = 0, i.e. o = 0. We deduce
that (ker ®)? = 0 and the algebra £ is a trivial Bernstein algebra. [l

Proposition 4.8. If a finite-dimensional baric evolution algebra (£,®) is a
Bernstein algebra, then UK%VE% is an invariant of €. Moreover, if Ue% %0, then

UpaV,a #0.

Proof. Lete=e?+0+0> € Z(E), u=u; +ou; €U, and v =v; —2(0 +
62)1/1 eV, witho,u; € Ue% and v, € VE%. Since Uez% =0, wehave e = e%—i-O', u=
uj and v =v; —20v;. We also have uv = u; (v —20v)) = ujvy —2ui(ovy) =
urvy because U, (UpV,2) C Uezl =0.SoU,Ve =U,V,z.

We assume that dimp (ker @)? = k # 0. By renumbering the vectors of the
family {e,,...,e,}, we can assume that the family {e? | 2<j<k+1}is
a basis of (kerw)”. Set ¢f = L) o] withk+2 < j < n. If UV, =0,
then we would have €3(e; — 2a1.,-e§) =0 for 2 < j < n. What would result
{ a;=0,2<j<k+1

azjocjt:0,2+k§j§nand2§t§k—|—1.

Thus, we would have 13 = efe} = ¢} Yiomje;= el Yk mje; =

Y amjarjel =Y Y ar(azo)et =0, so, €3 = 0. This would con-
tradict linear independence of the family {e? | 2 < j<k+1}. We deduce that
Ue%Ve% #0. O

Lemma 4.9. If a n-dimensional baric evolution algebra (£,®) is a Bernstein
algebra, then the family {e? | 2 < i < n} is linear dependent.

Proof. We have ker® =< e;,...,e, > and (ker®)? C ker @. We assume that
the family is linear independent. Then (ker @) = ker @ ; hence 0 = (kerm)®) =
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(ker®)? = ker, this is impossible. We deduce that the family is linear depen-
dent. O

Theorem 4.10. If a n-dimensional baric evolution algebra (€, ®) (withn > 2)
is a non trivial Bernstein algebra, then dimp (ker ®)? < 1(n—1).

Proof. We have 0 # (ker w)? C ker . We assume that p = dimp (ker ®)?. By
renumbering the basis vectors, we can assume that (ker ®)? =< €3, ... ,e% >
Let us show that the family {es,...,e,11,€3,... ,ef, .1} is linear independent.
Let (ak,ﬁk)2§k§p+1 € FP x F? such that

p+1
Y (auer+Brer) =0 (11)
k=2

By multiplying (11) by e;, we obtain Oz,e —|—Z Bke ek = Oc,e +): ﬁkak,-e% =

0, either
p+1

o+ Y Brai =0, foralli € {2,....p+1}. (12)
k=2

By squaring (11), we get
5 (et + X073 20uBjene? ) = ) o (o + 22773 B ) e = O, either

p+1
o;(e;+2 Y Bjaj) =0, forallie {2,...,p+1}. (13)
=2

By multiplying (12) by 2¢; we get

p+1
0;(20;+2 Y Bjaj) =0, foralli€ {2,...,p+1} (14)
j=2

and by making the difference of (13) and (14), we have Ot,-z = 0. This leads to
o; =0, foralli€{2,...,p+1}. Then(11)tellusthat §; =0,Vie {2,...,p+1}.
We deduce that dimp (kerw)? < I(n—1). O

Corollary 4.11. If a finite n-dimensional baric evolution algebra (£,®) is a
Bernstein algebra such that dim(U,z) = p, then dim(V,2) > p.

Proof. We assume that (ker 0)? = (e3, ... ,ef, +1) and let us show that the family
{er —2a1€3,...,ept1 — 2a17p+1e§+1} is linear independent. Let (0% )o<k<p+1 €
F7 such that z,’j*zl o (ex — 2apel) = 0.

We have Zk 5 (Xk(ek 2a1kek) i+21 oger — 2a1k06ke]% =0. So o =0, for
allk € {2,...,p+ 1} because {ea,...,ept1,€3,. .,e12,+1} is linear independent.
Consequently, the family {e; — 2a126%, e €pl — 2a17p+1e§ 41} is linear inde-

pendent and dim(VE%) > p. O
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4.3. Classification

Let (£,w) be a Bernstein algebra that is evolution algebra in natural basis
{e1,e2,...,e,} such that e? = e; + Y7, ajey and e? =Y/ _,ajcex. For
(a12,...,a1,) = 0, we have 2 = ey, i.e. e; is a non-zero idempotent of £ and

erkerw = 0 leads to £ is of type (1,n— 1), constant Bernstein algebra.

4.3.1. Three-dimensional Classification

Theorem 4.12. Let (£, ) be an evolution algebra that is a 3-dimensional non
trivial Bernstein algebra with canonical basis {e,u,v}. Then, the algebra & is

isomorphic to & : ¢ =e, eu= Lu, uv = u, the others products are zero.
P 0 ) ) p

Proof. Let (£, ®) be a 3-dimensional non trivial Bernstein algebra that is evo-
lution algebra in the natural basis {e;,e,,e3}. The multiplication table of &
in the natural basis is given by e% = ey +aper + ajzes, e% = aypes + axze;

and €3 = aner + azze; with w(e)) = 1 and w(ez) = w(e3) = 0. We have
(ker®)? # 0 and 1 < dim(kerw)? < 3(3—1) = 1. So dim(ker®)> = 1 and

we set (ker@)? = F. e%. Then the vector e; — 2a 126% is a non-zero vector of Ve%
and we set e = e%, u= e%, V=-ep)— 2a12e%. The multiplication table of £ in

the canonical basis {e,u,v} is ¢ = e, eu = %u, uy = e%(ez — 2alze%) = anu

and v? = (e; — 20126%)2 = e% — 4a12e%ez = (1 —4ajpaz;)u. Since the algebra
£ is a non trivial Bernstein algebra, it follows that UpVe # (0. Consequently,
ayp # 0. Let us find a canonical basis {¢/,u’,v'} of £ such that /v = ' and
V2 =0. We set ¢ = e+au, u' = buand v = cv—2au(cv) = c(v —2aaxu) with
b,c € F*. We have ' = u'vV' = bcuv = axbcu = aycu' leads to ¢ = az’zl and
0=1v"2=c?(v—2aanu)? = ay} (v} —daapuv) = ay} (1 —daan) —4aal,)u =
a522b_1((1 —daypax) — 4aad,)u’ implies 0 = (1 — 4apaxn) —4aas,, ie. a=
a;zz(d% —ajpay). We can take b = 1 and we have ¢ = e +a£22(£ —apan)u,
u' =uand Vv = a5, (v—ay, (3 —2aiax)u). We deduce that algebra £ is iso-
morphic to &. O

4.3.2. Four-dimensional Classification

Theorem 4.13. Let (£,®) be an evolution algebra that is 4-dimensional non
trivial Bernstein algebra with canonical basis {e,u,v,w}. Then, £ is isomorphic
to one and only one of the following algebras £ : uv = u, e* =e, eu = %u ;
S:uw=uw=vw=u e’ =e, eu= %u and the others products are zero.

The proof of the theorem uses the lemma below which follows from [5,
Proof of Theorem, page 1435].
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Lemma 4.14. Let £ be a 4-dimensional Bernstein algebra with a canonical
basis {e,u,v,w} such that e =e eu= %u, wy = u, V¢ = Yu, w2 = Au, vw = Uu
and the others products are zero.

o IfA =u =0, then the algebra & is isomorphic to £;.

e If A #0, then the algebra & is isomorphic to &.

Where the algebras £ and &, are defined in Theorem 4.13.

Proof of Theorem 4.13. Let (£, ®) be a 4-dimensional non trivial Bernstein al-
gebra that is evolution algebra with the natural basis {e;,ez,e3,e4}. The mul-
tiplication table of £ in the natural basis is given by e% =e + Zizzalkek,
e? = Zﬁzzajkek with w(e;) = 1 and w(e;) = 0 where 2 < j < 4. We have
(kerw)* # 0 and 1 < dim(kerw)? < $(4—1) = 1.5. So dim(ker®)? = 1 and
we set (ker )? = Fe%. Then e, — 2a12e% is a non-zero vector of Ve% and there

are scalars o3, oy such that e% = a3e2 and e4 = OC4€2 We assume that a23 =

ays = 0, then the equality 0 = e%e% = a22€2 leads to ay» = 0. Thus e2 =0,

this is impossible and we deduce that (a3,a24) # 0. Since Vz is generated by

(e2 —2ape3), (e3 — 2alge§) (eq 2a14e4) let us show that {ez —2ae3,e; —

2alge§} or {e; — 2alze%,e4 2a14e4} is a basis of Ve%. For this reason, con-

sider the scalars o, B and 7y such that 0 = a(e; — 2a12e2) +B(es — 2a13e3) +

Y(es —2ayse3). Since a(ex —2ane3) + ez —2arzel) +y(es —2aise;) = (o —

2(aan+Baizaz+yajaou)az)er+ (B —2(aain+ Paizozyaisos)azs)es+(y—

2(066112 + Ba13063 + Ya14064)a24)e4, it follows that the equality

0=oa(ex —2amper)+P(es— 2a13e§) +v(es — 2a14ei) gives

(OC — 2(06(,112 +[3a13063 + 76114064)6122) = (ﬁ — 2(066112 +[3a13063 + }/a14064)a23) =

(v—2(aaip + Baizos + ya404)az) = 0.

If ap3 # 0, for B =0, we have aai, + Bajza3 + yaja s = 0 because ayz # 0.

Hence o = y=0and {e; — 2alze%,e4 — 2a14e£} is a basis of Ve%.

If apq # 0, for y =0, we have @ = 8 = 0 and we similarly conclude that

{e2— Zalze%, ez — 2a13e§} is a basis of Ve%.

1) The multiplication table of £ in the canonical basis {e%, e%, ey — 2a12e%7 ez —
2a13¢3} is given by ele? = e%, eles = ;e%, e3(ex —2anel) = e%ez = azze%,
e%(e3 - 20138%) = 6263 = a23e3 =axn 06362, (e — 20126%) = ez 40128262 =
(1 — 461126122)6%, (62 — 20126%)(63 — 261136%) =
(62 — 2a126%)(€3 — 2a13053e%) = —2a13063e%€2 — 2a126’%e3 = —2a13063€%eg —
2a12az3e§ = —2063(0130122 +a12a23)e§, (e3—2a13¢3)> = (e3 —2a13053¢3)* =

461130638283 = 83 4(,113(,12306383 = 063(1 — 4a13a23063)ez and the others
products are zero. Since algebra £ is a non trivial Bernstein algebra, we have
Ue%Ve% # 0. Consequently, (az,a2303) # 0 and we set e = e%, u= e%. We
distinguish the following three cases
a) ayp =0, then axzaz # 0 and we set v = a2’31 a;l(e3 — 2alge§), w=ey—
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2ajz€3. The multiplication table of € in the canonical basis {e,u,v,w} is
2 =e, eu= %u, w = u, V* = ag3za;1(1 —dajzapon)u, vw = —2au,
w? = u and the others products are zero. We deduce from Lemma 4.14
that the algebra £ is isomorphic to &;.
b) ozays =0, then axy # 0, we setv = 02_21 (62 —20126%) andw=e3— 261136%.
The multiplication table of £ in the canonical basis {e,u,v,w} is given
by 2 =e, eu= %u, wv = u, V¢ = a2_22(1 —dayaxn)u, vw = —2a1303u,
w? = azu and the others products are zero. Lemma 4.14 tells us that, for
=0 we get algebra & and for o3 # 0, algebra £ is isomorphic to &;.
¢) anay3as # 0, then we set v = a;zl (e2 — 2a12e%) and w = (e3 — 2alge§) —
a521a23 os(ex — 261126%) The multiplication table of £ in the canonical
basis {e,u,v,w} is €* = e, eu = 214 w = u, v} = a5 (1 — dapan)u,
W = 5122l (er — 2a12e2)(e3 2a1363) a22 axoz(ey — Zalzeg)z =
(=203, (a13a22 + a1nan) — ayranos(1 —danan))u =
—a522a23a3 (2a13a%2a531 —2appax + l)u, w? = (63 — 261136%)24‘
612_2261%3 0632(62 — 2a126%)2 — 2a2_21 ayoz(e3 — 261136%)(82 — 2alze%) =
(a3(1 —4dajzaxon) + a£22a33 0632(1 —4daaxn)+
402_21 ar 0532(a13a22 +apax))u=oas(1 +a2_22a%3 o )u and the others prod-
ucts are zero.
e For 1+ az_zzcz%3 o # 0, algebra & is isomorphic to &;.
e For 1 +a522a%3a3 =0, w* = o3 (1 +a522a%3a3)u = 0. We have 0 =
€363 = a3 +azyes +aye; = (agz +a3y05 + a3, 0u)e3 =
a22(1 + a222a23 o3+ a222a24064) e5 = a%4(x4e% leads to oc4 = 0 because
arq # 0. So e4 = 0 and we have ;e% = e%e% alzazzez + a13a23e% =
(arpax — a13a22a23 )62 gives ajpaz — a13a22a23 = 5. Therefore vw =
—a;22a23 o (2a13a52a2’31 —2ajax + 1)u = 0 and we deduce that alge-
bra &£ is isomorphic to &;.
2) The multiplication table of & in the canonical basis {e7,e3,e; —2ai23, €4 —

2\ e ot 222 292 12 2 2 2 2
2a14¢€;} is given by eje] = e, eje; = 5€3, e5(ex — 2aze5) = e3e3 = anes,

e%(e4 — 2a14e£) = e%e4 = a24oc4e%, (ez - 2alze%)2 = e% — 4a12e%ez =(1-
46[126[22)6%, (62 — 261126%)(6‘4 — 2a14e421) = (62 — 2alze§)(e4 — 2a14064€%) =
—2a14(x4e%ez — 2a12e%e4 = —2a140546%62 — 2a12a24eﬁ =
—2064(61146122 + a12a24)e%, (64 261146%)2 (84 — 261140(46%)2 =
4a14a462e4 = 64 4a14a24a4e4 = 064(1 — 4a14a24064)62 and the others
products are zero. We obtain the multiplication table of the algebra de-
fined in 1). We deduce that, for ay; = 0 or for g # 0 and ap4 = 0 or for
ana o (1+ a;zza%4a4) 20, algebra & is isomorphic to &. It is isomorphic
to algebra & for oy = 0 or for apparq0ty # 0 and 1+ a2‘22a§4oc4 =0.
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