doi: 10.4418/2021.76.1.11

DUPLICATE, BERNSTEIN ALGEBRAS AND EVOLUTION ALGEBRAS

A. CONSEIBO - S. SAVADOGO - M. OUATTARA

In this paper, we firstly study a commutative algebra $\mathcal E$ over a field F of $Char(F) \neq 2$ that satisfying $\dim(\mathcal E^2) = 1$. We show that, such an algebra is an evolution algebra. Afterwards, we pay attention to commutative duplicate of a commutative algebra $\mathcal E$. We find necessary and sufficient condition in which the duplicate $D(\mathcal E)$ is an evolution algebra. And, we finish by studying an evolution algebra that is a Bernstein algebra. We classify that algebras, up to isomorphism, in dimension ≤ 4 .

1. Introduction

Given a commutative field F and a finite dimensional algebra \mathcal{E} , we say that \mathcal{E} is an *evolution algebra* if it admits a basis $B = \{e_1, \dots, e_n\}$ such that

$$e_i e_j = 0$$
, for $1 \le i \ne j \le n$ and $e_i^2 = \sum_{k=1}^n a_{ik} e_k$, for $1 \le i \le n$. (1)

Such a basis is called a *natural basis* of \mathcal{E} . The matrix $M = (a_{ik})_{1 \leq i,k \leq n}$ is called *the matrix of structural constants* of \mathcal{E} relative to the natural basis B. Evolution algebras are commutative ([15]). The origin and the first study of the evolution algebras date from 1941 with the first formulation due to Etherington ([6,

Received on August 31, 2020

AMS 2010 Subject Classification: Primary 17D92, 17A05, Secondary 17D99, 17A60 Keywords: Evolution algebras, Bernstein algebras, Duplicate, natural basis.

Page 34]) of strict self-fertilization in the absence of mutation. Subsequently, Holgate extended Etherington's formulation to study the case of partial self-fertilization ([9]). It is from work of Tian ([14]) that these algebras were popularized and studied under the denomination of evolution algebras.

In section 2, we study *n*-dimensional commutative algebras \mathcal{E} satisfying $\dim(\mathcal{E}^2) = 1$. We show that such algebras are evolution algebras, then we give a classification in dimension 2, 3 and 4.

In section 3, we exhibit a necessary and sufficient condition for a commutative duplicate of commutative algebra to be an evolution algebra.

In section 4, we characterize the baric algebras that are Bernstein algebras and we give a classification in dimension 2, 3 and 4.

2. Quadratic forms and evolution algebras

In this section, we study finite dimensional commutative algebra \mathcal{E} over a commutative field F of $Char(F) \neq 2$ and satisfying $\dim(\mathcal{E}^2) = 1$.

2.1. Case of dimensions 2 and 3

Example 2.1. Let \mathcal{E} be a commutative 2-dimensional algebra such that $\dim(\mathcal{E}^2) = 1$. Then \mathcal{E} is an evolution algebra.

Proof. Let $\mathcal{E} = Fe_1 \oplus Fe_2$ with $\dim(\mathcal{E}^2) = 1$, i.e. $\mathcal{E}^2 = Fc$ for a certain $c \in \mathcal{E}$. The multiplication table of \mathcal{E} in the basis $\{e_1, e_2\}$ is given by $e_1^2 = \alpha c$, $e_2^2 = \beta c$ and $e_1e_2 = \gamma c$. We set $x = x_1e_1 + x_2e_2 \in \mathcal{E}$ and we have $x^2 = (\alpha x_1^2 + \beta x_2^2 + 2\gamma x_1x_2)c$. For the reduction of the quadratic form $q(x) = \alpha x_1^2 + \beta x_2^2 + 2\gamma x_1x_2$, we distinguish two cases

- $(\alpha, \beta) \neq 0$. Without loss of generality, we assume that $\alpha \neq 0$. Then $x^2 = (\alpha(x_1^2 + \frac{2\gamma}{\alpha}x_1x_2) + \beta x_2^2)c = (\alpha(x_1 + \frac{\gamma}{\alpha}x_2)^2 + (\beta \frac{\gamma^2}{\alpha})x_2^2)c$. By taking $e_2' = -\frac{\gamma}{\alpha}e_1 + e_2$, we get $e_1e_2' = 0$. Thus, \mathcal{E} is an evolution algebra in the natural basis $\{e_1, e_2'\}$.
- $\alpha = \beta = 0$. We have $x^2 = 2\gamma x_1 x_2 c = \frac{\gamma}{2}((x_1 + x_2)^2 (x_1 x_2)^2)c$. By setting $e'_1 = e_1 + e_2$ and $e'_2 = e_1 e_2$, we have $(e_1 + e_2)(e_1 e_2) = 0$. Consequently, \mathcal{E} is an evolution algebra in the natural basis $\{e'_1, e'_2\}$.

Example 2.2. Let \mathcal{E} be a commutative 3-dimensional algebra such that $\dim(\mathcal{E}^2) = 1$. Then \mathcal{E} is an evolution algebra.

Proof. Let $\mathcal{E} = Fe_1 \oplus Fe_2 \oplus Fe_3$ with $\dim(\mathcal{E}^2) = 1$, i.e. $\mathcal{E}^2 = Fc$ for a certain $c \in \mathcal{E}$. The multiplication table of \mathcal{E} in the basis $\{e_1, e_2, e_3\}$ is given by $e_1^2 = \alpha c$, $e_2^2 = \beta c$, $e_3^2 = \gamma c$, $e_1e_2 = \delta c$, $e_1e_3 = \mu c$ and $e_2e_3 = \lambda c$. Let $x = x_1e_1 + x_2e_2 + x_3e_3 \in \mathcal{E}$,

we have $x^2=(\alpha x_1^2+\beta x_2^2+\gamma x_3^2+2\delta x_1x_2+2\mu x_1x_3+2\lambda x_2x_3)c$. For the reduction of the quadratic form $q(x)=(\alpha x_1^2+\beta x_2^2+\gamma x_3^2+2\delta x_1x_2+2\mu x_1x_3+2\lambda x_2x_3)$, we distinguish the following cases

• $(\alpha, \beta, \gamma) \neq 0$. Without loss of generality, we assume that $\alpha \neq 0$. Then

$$x^{2} = \left(\alpha \left(x_{1}^{2} + 2\left(\frac{\delta}{\alpha}x_{2} + \frac{\mu}{\alpha}x_{3}\right)x_{1}\right) + \beta x_{2}^{2} + \gamma x_{3}^{2} + 2\lambda x_{2}x_{3}\right)c$$

$$= \left(\alpha \left(x_{1} + \frac{\delta}{\alpha}x_{2} + \frac{\mu}{\alpha}x_{3}\right)^{2} + \left(\beta - \frac{\delta^{2}}{\alpha}\right)x_{2}^{2} + \left(\gamma - \frac{\mu^{2}}{\alpha}\right)x_{3}^{2} + 2\lambda x_{2}x_{3}\right)c$$

$$2\left(\lambda - \frac{\delta\mu}{\alpha}\right)x_{2}x_{3}c$$

i) $\delta^2 - \beta \alpha \neq 0$ or $\mu^2 - \gamma \alpha \neq 0$. We can take $\delta^2 - \beta \alpha \neq 0$, without loss of generality.

$$x^{2} = \left(\alpha\left(x_{1} + \frac{\delta}{\alpha}x_{2} + \frac{\mu}{\alpha}x_{3}\right)^{2} + \left(\beta - \frac{\delta^{2}}{\alpha}\right)\left(x_{2}^{2} + 2\frac{\alpha\lambda - \delta\mu}{\alpha\beta - \delta^{2}}x_{2}x_{3}\right) + \left(\gamma - \frac{\mu^{2}}{\alpha}\right)x_{3}^{2}\right)c$$

$$= \left(\alpha\left(x_{1} + \frac{\delta}{\alpha}x_{2} + \frac{\mu}{\alpha}x_{3}\right)^{2} + \left(\beta - \frac{\delta^{2}}{\alpha}\right)\left(x_{2} + \frac{\alpha\lambda - \delta\mu}{\alpha\beta - \delta^{2}}x_{3}\right)^{2} + \frac{1}{\alpha}\left(\alpha\gamma - \mu^{2} - \frac{(\alpha\lambda - \delta\mu)^{2}}{\alpha\beta - \delta^{2}}\right)x_{3}^{2}\right)c$$

By setting $e_2' = -\frac{\delta}{\alpha}e_1 + e_2$ and $e_3' = \frac{1}{\alpha}\left(\frac{\lambda\delta}{\beta} - \frac{\delta^2\mu}{\alpha\beta} - \mu\right)e_1 - \frac{\alpha\lambda - \delta\mu}{\alpha\beta}e_2 + e_3$, we get $e_1e_2' = e_1e_3' = e_2'e_3' = 0$. So $\mathcal E$ is an evolution algebra in the natural basis $\{e_1, e_2', e_3'\}$.

ii) $\delta^2 - \beta \alpha = \mu^2 - \gamma \alpha = 0$. Then

$$x^{2} = \left(\alpha \left(x_{1} + \frac{\delta}{\alpha}x_{2} + \frac{\mu}{\alpha}x_{3}\right)^{2} + 2\left(\lambda - \frac{\delta\mu}{\alpha}\right)x_{2}x_{3}\right)c$$

$$= \left(\alpha \left(x_{1} + \frac{\delta}{\alpha}x_{2} + \frac{\mu}{\alpha}x_{3}\right)^{2} + \frac{1}{2}\left(\lambda - \frac{\delta\mu}{\alpha}\right)\right)c$$

$$\left((x_{2} + x_{3})^{2} - (x_{2} - x_{3})^{2}\right)c$$

By taking $e_2' = \frac{\delta + \mu}{2\alpha} e_1 + \frac{1}{2} e_2 + \frac{1}{2} e_3$ and $e_3' = \frac{\delta - \mu}{2\alpha} e_1 + \frac{1}{2} e_2 - \frac{1}{2} e_3$, we obtain $e_1 e_2' = e_1 e_3' = e_2' e_3' = 0$. So $\mathcal E$ is an evolution algebra in the natural basis $\{e_1, e_2', e_3'\}$.

• $\alpha = \beta = \gamma = 0$. Without loss of generality, we can take $\delta \neq 0$. Thus

$$x^{2} = 2\delta \left(x_{1}x_{2} + \frac{\mu}{\delta}x_{1}x_{3} + \frac{\lambda}{\delta}x_{2}x_{3}\right)c$$

$$= 2\delta \left(\left(x_{1} + \frac{\lambda}{\delta}x_{3}\right)\left(x_{2} + \frac{\mu}{\delta}x_{3}\right) - \frac{\lambda\mu}{\delta^{2}}x_{3}^{2}\right)c$$

$$= \left(\frac{\delta}{2}\left(x_{1} + x_{2} + \frac{\lambda + \mu}{\delta}x_{3}\right)^{2} - \frac{\delta}{2}\left(x_{1} - x_{2} + \frac{\lambda - \mu}{\delta}x_{3}\right)^{2} - \frac{2\lambda\mu}{\delta}x_{3}^{2}\right)c$$

By setting $e'_1 = e_1 + e_2$, $e'_2 = e_1 - e_2$ and $e'_3 = -\frac{\lambda}{\delta}e_1 - \frac{\mu}{\delta}e_2 + e_3$, we get $e'_1e'_2 = e'_1e'_3 = e'_2e'_3 = 0$. So $\mathcal E$ is an evolution algebra in the natural basis $\{e'_1, e'_2, e'_3\}$.

2.2. General case

Let (\mathcal{E},b) be a bilinear space. A vector $x \neq 0$ of \mathcal{E} is said to be *isotropic* if b(x,x) = 0. Otherwise x is said to be *anisotropic*. If (\mathcal{E},b) contains an isotropic vector, then (\mathcal{E},b) is also called *isotropic bilinear space*. Otherwise (\mathcal{E},b) is called *anisotropic*. A subspace W of \mathcal{E} is *totally isotropic* if b(W,W) = 0, i.e. b(x,y) = 0 for all $x,y \in W$. The *radical* of a symmetric bilinear form b(x,y) is the set of all x such that b(x,y) = 0, for all $y \in \mathcal{E}$.

Theorem 2.3 ([10, Theorem 4.1, Witt's Decomposition]). *In characteristic* \neq 2, any quadratic space (\mathcal{E} , q) admits orthogonal sum decomposition

$$\mathcal{E} = \mathcal{E}_t \perp \mathcal{E}_{hyp} \perp \mathcal{E}_{an}, \tag{2}$$

called Witt's decomposition, where $\mathcal{E}_t = rad(q)$ is totally isotropic, $\mathcal{E}_{hyp} = H_1 \perp \cdots \perp H_s$ is a hyperbolic space and \mathcal{E}_{an} is an anisotropic space.

Proposition 2.4. Any finite dimensional commutative algebra \mathcal{E} such that $\dim(\mathcal{E}^2) = 1$ is an evolution algebra. The natural basis being the orthogonal basis of Witt's decomposition of the induced bilinear form.

Proof. Let \mathcal{E} be such an algebra. We choose $c \in \mathcal{E}$ such that $\mathcal{E}^2 = Fc$. For $x,y \in \mathcal{E}$, xy = b(x,y)c where $b: \mathcal{E} \times \mathcal{E} \to F$ is a non-zero symmetric bilinear form. The corresponding quadratic form $q: \mathcal{E} \to F$ is defined by $x^2 = q(x)c$. If another c' is chosen as the generator of \mathcal{E}^2 , then $c' = \lambda c$, for a certain $\lambda \in F^*$. The corresponding bilinear form b' is $\lambda^{-1}b$. Since q is a quadratic form, Theorem 2.3 tell us, algebra \mathcal{E} admits an orthogonal basis given by Witt's decomposition. It follows that algebra \mathcal{E} is an evolution algebra and the natural basis being the orthogonal basis.

2.3. Classification

Let $\mathcal{E} = \mathcal{E}_t \perp \mathcal{E}_{hyp} \perp \mathcal{E}_{an}$ be Witt's decomposition of the finite dimensional evolution algebra \mathcal{E} satisfying $\dim(\mathcal{E}^2) = 1$ over a commutative field F of $Char(F) \neq 2$. The Proof of Proposition 2.4 tells us, there are a non-zero symmetric bilinear $b: \mathcal{E} \times \mathcal{E} \to F$ and $c \in \mathcal{E}$ such that $\mathcal{E}^2 = Fc$ and xy = b(x,y)c for all $x,y \in \mathcal{E}$. Let $q: \mathcal{E} \to F$ be the corresponding quadratic form of b. We choose a basis $\{u_1,\ldots,u_r\}$ of \mathcal{E}_{an} such that $b(u_i,u_j)=0$, for $i \neq j$, and $q(u_i)=d_i \neq 0$ $(i=1,\ldots,r)$. Then, we choose a basis $\{x_i,y_i\}$ of H_i such that $b(x_i,y_i)=0$, $q(x_i)=-q(y_i)=1$ and finally, we choose a basis $\{v_1,\ldots,v_t\}$ of $\mathcal{E}_t=rad(b)$. Since $x^2=q(x)c$, it follows that $x^3=q(x)b(x,c)c$, ..., $x^{k+2}=q(x)b(x,c)^kc$. If \mathcal{E} is a nil-algebra, then b(x,c)=0 for all $x\in \mathcal{E}$; in this case $c\in \mathcal{E}_t$. Let us suppose that \mathcal{E} is non-nil. There exists $z\in \mathcal{E}$ such that $b(z,c)\neq 0$. Thus three cases are to be considered.

• c belongs to $\mathcal{E}_t = rad(b)$, i.e. b(x,c) = 0 for all $x \in \mathcal{E}$. The multiplication table of \mathcal{E} in the basis $\{u_1, \dots, u_r, v_1, \dots, v_t\}$ is

$$u_i^2 = d_i c$$
 $(i = 1, ..., r)$, the others products are zero. (3)

• c is isotropic, i.e. b(c,c)=0 and $c^2=0$ but $b(z,c)\neq 0$, for some z. So $c\in \mathcal{E}_{hyp}$ and then there is an i such that $c=x_i+y_i$. Without loss of generality, we can assume that i=1. In this case $\mathcal{E}=\mathcal{E}_{hyp}\perp\mathcal{E}_{an}$, where $\mathcal{E}_{hyp}=H_1$ and the multiplication table of \mathcal{E} in the basis $\{u_1,\ldots,u_r,x_1,y_1,v_1,\ldots,v_t\}$ is

$$u_i^2 = d_i(x_1 + y_1)$$
 $(i = 1, ..., r),$ $x_1^2 = -y_1^2 = x_1 + y_1,$ the others products are zero. (4)

• c is anisotropic, i.e. $b(c,c) \neq 0$. We have $c^2 = q(c)c$ and by setting $c' = q(c)^{-1}c$, it follows that $c'^2 = c'$ is a non-zero idempotent. The multiplication table of \mathcal{E} in the basis $\{v_1, \ldots, v_t, u_1, \ldots, u_r\}$ is

$$u_1^2 = u_1, u_i^2 = d_i u_1$$
 $(i = 2, \dots, r)$, the others products are zero. (5)

Now, we give a low-dimensional classification of such algebras.

Proposition 2.5. [4, Theorem 4.1] Any 2-dimensional evolution algebra, over a commutative field F of $Char(F) \neq 2$, satisfying $\dim_F(\mathcal{E}^2) = 1$ is isomorphic to one of the following algebras:

•
$$\mathcal{E}_1: u_1^2 = u_2, u_2^2 = 0.$$

- $\mathcal{E}_2: u_1^2 = -u_2^2 = u_1 + u_2$.
- $\mathcal{E}_3: u_1^2 = u_1, u_2^2 = 0.$
- $\mathcal{E}_4(\alpha): u_1^2 = u_1, u_2^2 = \alpha u_1, \text{ with } \alpha \in F^*.$

Proposition 2.6. [3, Theorem 3.5(ii), Table 1] Any 3-dimensional evolution algebra, over a commutative field F of $Char(F) \neq 2$, satisfying $\dim_F(\mathcal{E}^2) = 1$ is isomorphic to one of the following algebras

- $\mathcal{E}_1: u_1^2 = u_1 + u_2, u_2^2 = -(u_1 + u_2), u_3^2 = 0.$
- $\mathcal{E}_2: u_1^2 = u_1 + u_2, u_2^2 = -(u_1 + u_2), u_3^2 = u_1 + u_2.$
- $\mathcal{E}_3: u_1^2 = u_3, u_2^2 = 0, u_3^2 = 0.$
- $\mathcal{E}_4(\alpha): u_1^2 = u_3, u_2^2 = \alpha u_3, u_3^2 = 0$, with $\alpha \in F^*$.
- $\mathcal{E}_5: u_1^2 = u_1, u_2^2 = u_3^2 = 0.$
- $\mathcal{E}_6(\alpha)$: $u_1^2 = u_1, u_2^2 = \alpha u_1, u_3^2 = 0$, with $\alpha \in F^*$.
- $\mathcal{E}_7(\alpha,\beta) : u_1^2 = u_1, u_2^2 = \alpha u_1, u_3^2 = \beta u_1 \text{ with } \alpha, \beta \in F^*.$

With regard to dimension 4, by varying the dimension of \mathcal{E}_t from 0 to 3 in the equation (2) and taking account the three cases defined above, we have

Proposition 2.7. Any 4-dimensional evolution algebra, over a commutative field F of $Char(F) \neq 2$, satisfying $\dim_F(\mathcal{E}^2) = 1$ is isomorphic to one of the following algebras

- $\mathcal{E}_1: u_1^2 = v_3, v_1^2 = v_2^2 = v_3^2 = 0;$
- $\mathcal{E}_2: x_1^2 = -y_1^2 = x_1 + y_1, v_1^2 = v_2^2 = 0;$
- $\mathcal{E}_3: x_1^2 = -y_1^2 = x_1 + y_1, u_1^2 = x_1 + y_1, v_1^2 = 0;$
- $\mathcal{E}_4(\alpha)$: $x_1^2 = -y_1^2 = x_1 + y_1, u_1^2 = \alpha(x_1 + y_1), u_2^2 = -\alpha(x_1 + y_1);$
- $\mathcal{E}_5(\alpha): u_1^2 = v_2, u_2^2 = \alpha v_2, v_1^2 = v_2^2 = 0;$
- $\mathcal{E}_6: u_1^2 = u_1, u_2^2 = u_3^2 = u_4^2 = 0;$
- $\mathcal{E}_7(\alpha)$: $u_1^2 = u_1, u_2^2 = \alpha u_1, u_3^2 = u_4^2 = 0$;
- $\mathcal{E}_8(\alpha,\beta): u_1^2 = u_1, u_2^2 = \alpha u_1, u_3^2 = \beta u_1, u_4^2 = 0;$

• $\mathcal{E}_9(\alpha,\beta,\gamma): u_1^2 = u_1, u_2^2 = \alpha u_1, u_3^2 = \beta u_1, u_4^2 = \gamma u_1;$

with $\alpha, \beta, \gamma \in F^*$.

Remark 2.8. If F is an algebraically closed field, in particular if any scalar α of F is a square, i.e. $F = F^2$, the scalars α , β and γ will be replaced by 1.

3. Duplicate and evolution algebras

Let \mathcal{E} be a commutative algebra over a commutative field of $Char(F) \neq 2$, not necessarily associative, nor having an unit element and let $S_F^2(\mathcal{E})$ be a second symmetric power of the F-linear space \mathcal{E} . Let I and J be two countable parts. The multiplication $\sum_{i \in I} (x_i.y_i) \sum_{j \in J} (x_j'.y_j') = \sum_{i \in I} x_iy_i. \sum_{j \in J} x_j'y_j'$, where x_i, y_i, x_j', y_j' in \mathcal{E} and $x_i.y_i$ denotes the symmetric product of x_i by y_i , defines on $S_F^2(\mathcal{E})$ a commutative F-algebra structure called a *commutative duplicate* of \mathcal{E} [11].

The duplicate will be denoted by $D(\mathcal{E})$. The F-linear map $\mu:D(\mathcal{E})\to\mathcal{E}^2$ defines by $x.y\mapsto xy$ is an onto F-algebra homomorphism called Etherington's homomorphism. We have $D(\mathcal{E})\ker(\mu)=0$ and $D(\mathcal{E})=\mathcal{E}^2\times\ker(\mu)$ (s.d. for semidirect) algebras isomorphism. The semi-direct product is given by $(x,x')(y,y')=(xy,\varphi(x,y))$ for all x,y in \mathcal{E}^2 ; x',y' in $\ker(\mu)$ and $\varphi:\mathcal{E}^2\times\mathcal{E}^2\to\ker(\mu)$ is a F-bilinear map. We set $N_F(\mathcal{E})=\ker(\mu)$. If the family $\{e_1,\cdots,e_n\}$ is a basis of \mathcal{E} , then $\{e_i.e_j\mid 1\leq i\leq j\leq n\}$ is a basis of $D(\mathcal{E})$, called the canonical basis of $D(\mathcal{E})$ and $\dim(D(\mathcal{E}))=\frac{n(n+1)}{2}$.

Let \mathcal{E} be an evolution algebra in the natural basis $\{e_1, \dots, e_n\}$. We suppose that $D(\mathcal{E})$ is an evolution algebra with the canonical basis as the natural basis.

For $i \neq j$, we have $e_i e_j = 0$, i.e. $e_i.e_j \in N_F(\mathcal{E})$. For $i \neq j$, we have $0 = (e_i.e_i)(e_j.e_j) = e_i^2.e_j^2$. Either $e_i^2 = 0$ for all $i \in \{1,\ldots,n\}$, i.e. $\mathcal{E}^2 = 0$, or there exists $i_0 \in \{1,\ldots,n\}$ such that $e_{i_0}^2 \neq 0$ and $e_j^2 = 0$ for all $j \neq i_0$. So either $\mathcal{E}^2 = 0$ or $\mathcal{E}^2 = Fe_{i_0}^2$, i.e. $\dim(\mathcal{E}^2) = 1$. The multiplication table of $D(\mathcal{E})$ in natural basis $\{e_i.e_j \mid 1 \leq i \leq j \leq n\}$ is given by $(e_{i_0}.e_{i_0})^2 = e_{i_0}^2.e_{i_0}^2$, the others products are zero.

The canonical basis of $D(\mathcal{E})$ is not always a natural basis.

Example 3.1. Let \mathcal{E}_2 : $e_1e_1=e_1, e_2e_2=e_1$ be an evolution algebra. By taking $e_{ij}:=e_i.e_j$, the multiplication table of $D(\mathcal{E}_2)$ in the canonical basis is given by $e_{11}^2=e_{11}, \ e_{11}e_{22}=e_{11}, \ e_{22}e_{22}=e_{11}$, the others products are zero. Since $e_{11}e_{22}\neq 0$, this basis is not a natural basis. By taking $u=e_{22}-e_{11}$, we get $e_{11}^2=e_{11}, \ e_{11}e_{12}=e_{11}u=e_{12}e_{12}=e_{12}u=u^2=0$. The duplicate algebra is an evolution algebra in the natural basis $\{e_{11},e_{12},u\}$.

For z and w in $D(\mathcal{E})$, we notice that the product in $D(\mathcal{E})$ is given by $zw = \mu(z).\mu(w)$. So, if \mathcal{E} is a zero algebra, then for all $z,w \in D(\mathcal{E})$, we have $zw = \mu(z).\mu(w) = 0$ because $\mu(z) = \mu(w) = 0$. Consequently, $D(\mathcal{E})$ is an evolution algebra.

Theorem 3.2. Let \mathcal{E} be a n-dimensional non zero commutative F-algebra and $D(\mathcal{E})$ its commutative duplicate. Then $D(\mathcal{E})$ is an evolution algebra if and only if $\dim(\mathcal{E}^2) = 1$.

Proof. Let us suppose that $D(\mathcal{E})$ is an evolution algebra in the natural basis $\{z_1,\ldots,z_s\}$, with $s=\frac{n(n+1)}{2}$. For $i\neq j$, the equality $z_iz_j=0$ is equivalent to $\mu(z_i).\mu(z_j)=0$. Since $\mathcal{E}^2\neq\{0\}$, it follows that there exists i_0 such that $\mu(z_{i_0})\neq 0$. Thus, $\mu(z_j)=0$ for all $j\neq i_0,\,z_j\in N_F(\mathcal{E})=\{x\in D(\mathcal{E})\mid x\cdot D(\mathcal{E})=0\}=ann(D(\mathcal{E}))$, where $ann(D(\mathcal{E}))$ is the *annihilator* of $D(\mathcal{E})$. So $\dim(N_F(\mathcal{E}))=s-1$ and $\dim(\mathcal{E}^2)=1$.

Conversely, let \mathcal{E} be a commutative F-algebra such that $\dim(\mathcal{E}^2)=1$. According to Proposition 2.4, such an algebra is an evolution algebra, the natural basis $\{e_1,e_2,\ldots,e_n\}$ being that orthogonal. Since $D(\mathcal{E})/N_F(\mathcal{E})\simeq \mathcal{E}^2$, it follows that $\dim(N_F(\mathcal{E}))=s-1$. If $e_{i_0}^2\neq 0$, then $(e_{i_0}\cdot e_{i_0})^2=e_{i_0}^2\cdot e_{i_0}^2\neq 0$, generates $D(\mathcal{E})^2$ and we always deduce from Proposition 2.4 that $D(\mathcal{E})$ is an evolution algebra.

4. Bernstein Algebra

A finite dimensional commutative algebra \mathcal{E} over a commutative field F is said to be baric, if there is nontrivial homomorphism $\omega : \mathcal{E} \longrightarrow F$ of algebras. The baric algebra (\mathcal{E}, ω) is called $Bernstein \ algebra$ if

$$x^2x^2 - \omega(x)^2x^2 = 0, \text{ for all } x \in \mathcal{E}.$$
 (6)

Bernstein algebras have their origins in genetics ([2]). Holgate was the first to use the language of non-associative algebras to translate Bernstein's problem ([8]).

We defined inductively *plenary powers* of an element $x \in \mathcal{E}$ by :

$$x^{(1)} = x$$
 and $x^{(k+1)} = x^{(k)}x^{(k)}, k \in \mathbb{N},$

while that of \mathcal{E} is defined by :

$$\mathcal{E}^{(1)} = \mathcal{E}$$
 and $\mathcal{E}^{(k+1)} = \mathcal{E}^{(k)} \mathcal{E}^{(k)}$, $k \in \mathbb{N}$.

4.1. Some properties of Bernstein algebras

Let (\mathcal{E}, ω) be a Bernstein algebra over a commutative field F of $Char(F) \neq 2$. The following results are well known ([16]).

- 1) The homomorphism $\omega : \mathcal{E} \longrightarrow F$ is the unique weight function of \mathcal{E} .
- 2) Algebra \mathcal{E} has at least one non-zero idempotent.
- 3) For an idempotent e of \mathcal{E} , the algebra \mathcal{E} admits the following Peirce decomposition $\mathcal{E} = Fe \oplus U_e \oplus V_e$, where $U_e = \{x \in \mathcal{E} \mid ex = \frac{1}{2}x\}$ and $V_e = \{x \in \mathcal{E} \mid ex = 0\}$. The subspaces U_e and V_e satisfy the relations

$$U_e V_e \subseteq U_e, \ V_e^2 \subseteq U_e, \ U_e^2 \subseteq V_e \ \text{and} \ U_e V_e^2 = 0$$

- 4) The set of idempotents of \mathcal{E} is given by $\mathcal{I}(\mathcal{E}) = \{e + \sigma + \sigma^2 \mid \sigma \in U_e\}$ for any idempotent e of \mathcal{E} .
- 5) Let $e_1 = e + \sigma + \sigma^2$, with $\sigma \in U_e$, be another idempotent of \mathcal{E} . We have the following relations $U_{e_1} = \{u + \sigma u \mid u \in U_e\}$ and $V_{e_1} = \{v 2(\sigma + \sigma^2)v \mid v \in V_e\}$. It follows that although the decomposition of the Bernstein algebra depends on the choice of the idempotent e, the dimension of the subspaces U_e and V_e of \mathcal{E} are invariants of \mathcal{E} . If $r = \dim U_e$ and $s = \dim V_e$, the pair (1+r,s) is called the type of \mathcal{E} . Also $\dim_F(U_e^2)$ and $\dim_F(U_eV_e + V_e^2)$ are invariants of the algebra \mathcal{E} .

In ([1]), the authors obtain the identities (7) and (8) by linearizing (6).

$$2x^{2}(xy) = \omega(xy)x^{2} + \omega(x^{2})(xy)$$
 (7)

$$4(xz)(xy) + 2x^{2}(zy) = \omega(zy)x^{2} + 2\omega(xy)(xz) + 2\omega(xz)(xy) + \omega(x^{2})(zy)$$
 (8)

for all $x, y, z \in \mathcal{E}$ and replacing y by z in (8), we get

$$4(xz)^{2} + 2x^{2}z^{2} = \omega(z)^{2}x^{2} + 4\omega(xz)(xz) + \omega(x^{2})z^{2}$$
(9)

for all $x, z \in \mathcal{E}$.

4.2. Characterization of Bernstein algebras that are evolution algebras

Let *F* be a commutative field of $Char(F) \neq 2$.

Theorem 4.1 ([13, Corollary 3.1.4]). A n-dimensional baric evolution algebra (\mathcal{E}, ω) admits a natural basis $\{e_1, e_2, \dots, e_n\}$ such that $\omega(e_1) = 1$ and $\omega(e_i) = 0$ for i > 1. Moreover $\mathcal{E} = Fe_1 \oplus \ker \omega$ with $e_1 \ker \omega = 0$.

We deduce from Theorem 4.1 that the algebra (\mathcal{E}, ω) admits a natural basis $\{e_1, e_2, \dots, e_n\}$ which multiplication table is given by

$$e_1^2 = e_1 + \sum_{k=2}^{n} a_{1k} e_k, \ e_j^2 = \sum_{k=2}^{n} a_{jk} e_k$$
 (10)

with
$$\omega(e_1) = 1$$
, $\omega(e_j) = 0$ and $2 \le j \le n$.

In the following, any finite *n*-dimensional baric evolution algebra will be provided with such a natural basis.

Theorem 4.2 (of characterization). A n-dimensional baric evolution algebra is a Bernstein algebra (\mathcal{E}, ω) if and only if the following conditions are satisfying

- i) $(e_1^2)^2 = e_1^2$;
- *ii*) $e_i^2 e_i^2 = 0$, for $2 \le i, j \le n$;
- *iii*) $e_1^2 e_i^2 = \frac{1}{2} e_i^2$, for $2 \le i \le n$.

Proof. Let us suppose that algebra (\mathcal{E}, ω) is a Bernstein algebra. Then

- (6) leads to i), we take $x = e_1$.
- (9) gives ii), we set $x = e_i$ and $z = e_j$ with $i, j \neq 1$.
- (9) gives *iii*), we take $x = e_1$ and $z = e_i$ with $i \neq 1$.

Conversely, it is assumed that conditions i), ii) and iii) are satisfied. Let $x = \sum_{k=1}^n x_k e_k$ be an element of \mathcal{E} with $\omega(x) = x_1$. We have the following equalities $x^2 = \sum_{k=1}^n x_k^2 e_k^2 = x_1^2 e_1^2 + \sum_{k=2}^n x_k^2 e_k^2$ and $x^2 x^2 = x_1^2 x_1^2 e_1^2 e_1^2 + 2x_1^2 \sum_{k=2}^n x_k^2 e_1^2 e_k^2 + \sum_{k,j=2}^n x_k^2 e_j^2 e_k^2 e_j^2 = x_1^2 (x_1^2 e_1^2 + \sum_{k=2}^n x_k^2 e_k^2) = \omega(x)^2 x^2$. So the baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebras.

We see that e_1^2 is a non-zero idempotent of \mathcal{E} and $e_i^2 \in U_{e_1^2}$ for $i \neq 1$. We deduce that $(\ker \omega)^2 \subseteq U_{e_1^2}$.

Proposition 4.3. If a n-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then

- i) $U_{e_1^2} = \{x \in \ker \omega \mid e_1^2 x = \frac{1}{2}x\} = (\ker \omega)^2$ and
- *ii*) $V_{e_1^2} = \{ x \in ker\omega \mid e_1^2 x = 0 \} = \langle e_i 2a_{1i}e_i^2 \mid 2 \le i \le n \rangle.$

Proof. i) Let us show that $(\ker \omega)^2 = U_{e_1^2}$. Since $(\ker \omega)^2 \subseteq U_{e_1^2}$, it remains to show that $U_{e_1^2} \subseteq (\ker \omega)^2$. Let $x = \sum_{i=2}^n x_i e_i \in U_{e_1^2}$,

then $x = 2e_1^{2x} = 2\sum_{i=2}^{n} x_i (a_{1i}e_i^2) \in (\ker \omega)^2$. Hence $U_{e_1^2} \subseteq (\ker \omega)^2$ and $U_{e_1^2} = (\ker \omega)^2$.

 $\begin{array}{l} \mbox{\it ii}) \mbox{ For } i \in \{2,\dots,n\}, \mbox{ we have } e_1^2(e_i - 2a_{1i}e_i^2) = 0 \mbox{ ; so } \left< e_i - 2a_{1i}e_i^2 \mbox{ } \right| \mbox{ } 2 \leq i \leq n \right> \subset V_{e_1^2}. \mbox{ Let } x = \sum_{i=2}^n x_i e_i \in V_{e_1^2}, \mbox{ then } 0 = e_1^2 x = \sum_{i=2}^n x_i a_{1i}e_i^2. \mbox{ Thus } x = \sum_{i=2}^n x_i (e_i - 2a_{1i}e_i^2) \mbox{ and we have } V_{e_1^2} \subset \left< e_i - 2a_{1i}e_i^2 \mbox{ } \right| \mbox{ } 2 \leq i \leq n \right>. \end{array}$

Remark 4.4. If the baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then $U_{e_1^2}^2 = (\ker \omega)^{(3)} = (\ker \omega)^2 (\ker \omega)^2 = 0$, i.e. \mathcal{E} is a *exceptional Bernstein* algebra ([7]).

Definition 4.5 ([17]). Let (\mathcal{E}, ω) be a (n+1)-dimensional Bernstein algebra of type (r+1,s). If ker ω is a *zero algebra*, i.e. $(\ker \omega)^2 = 0$, then the algebra \mathcal{E} is called a *trivial Bernstein algebra* of type (r+1,s).

Remark 4.6. In ([12]), the authors show that an algebra is a Jordan Bernstein algebra if and only if it is a train algebra of rank 3. We deduce that a finite dimensional evolution algebra (\mathcal{E}, ω) is a Jordan Bernstein algebra if and only if $(\ker \omega)^2 = 0$ ([13, Theorem 3.2.3]). Thus, the only finite dimensional evolution algebras (\mathcal{E}, ω) , that are Jordan Bernstein algebras, are evolution algebras, that are trivial Bernstein algebras.

Proposition 4.7. If a baric evolution algebra (\mathcal{E}, ω) is a 2-dimensional Bernstein algebra, then \mathcal{E} is a trivial Bernstein algebra.

Proof. Since $\ker \omega = \langle e_2 \rangle$, it follows that there are $\alpha \in F$ such that $e_2^2 = \alpha e_2$. $0 = (\ker \omega)^{(3)}$ leads to $0 = e_2^2 e_2^2 = \alpha^3 e_2$; hence $\alpha^3 = 0$, i.e. $\alpha = 0$. We deduce that $(\ker \omega)^2 = 0$ and the algebra \mathcal{E} is a trivial Bernstein algebra.

Proposition 4.8. If a finite-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then $U_{e_1^2}V_{e_1^2}$ is an invariant of \mathcal{E} . Moreover, if $U_{e_1^2} \neq 0$, then $U_{e_1^2}V_{e_1^2} \neq 0$.

Proof. Let $e = e_1^2 + \sigma + \sigma^2 \in \mathcal{I}(\mathcal{E})$, $u = u_1 + \sigma u_1 \in U_e$ and $v = v_1 - 2(\sigma + \sigma^2)v_1 \in V_e$ with $\sigma, u_1 \in U_{e_1^2}$ and $v_1 \in V_{e_1^2}$. Since $U_{e_1^2}^2 = 0$, we have $e = e_1^2 + \sigma$, $u = u_1$ and $v = v_1 - 2\sigma v_1$. We also have $uv = u_1(v_1 - 2\sigma v_1) = u_1v_1 - 2u_1(\sigma v_1) = u_1v_1$ because $U_{e_1^2}(U_{e_1^2}V_{e_1^2}) \subset U_{e_1^2}^2 = 0$. So $U_eV_e = U_{e_1^2}V_{e_1^2}$.

We assume that $dim_F(\ker\omega)^2=k\neq 0$. By renumbering the vectors of the family $\{e_2,\ldots,e_n\}$, we can assume that the family $\{e_j^2\mid 2\leq j\leq k+1\}$ is a basis of $(\ker\omega)^2$. Set $e_j^2=\sum_{t=2}^{k+1}\alpha_{jt}e_t^2$ with $k+2\leq j\leq n$. If $U_{e_1^2}V_{e_1^2}=0$, then we would have $e_2^2(e_j-2a_{1j}e_j^2)=0$ for $2\leq j\leq n$. What would result $\left\{\begin{array}{l} a_{2j}=0, 2\leq j\leq k+1\\ a_{2j}\alpha_{jt}=0, 2+k\leq j\leq n \text{ and } 2\leq t\leq k+1. \end{array}\right.$ Thus, we would have $\frac{1}{2}e_2^2=e_1^2e_2^2=e_1^2\sum_{j=2}^na_{2j}e_j=e_1^2\sum_{j=k+2}^na_{2j}e_j=$

Thus, we would have $\frac{1}{2}e_2^2 = e_1^2e_2^2 = e_1^2\sum_{j=2}^n a_{2j}e_j = e_1^2\sum_{j=k+2}^n a_{2j}e_j = \sum_{j=k+2}^n a_{2j}a_{1j}e_j^2 = \sum_{t=2}^{k+1}\sum_{j=k+2}^n a_{1j}(a_{2j}\alpha_{jt})e_t^2 = 0$, so, $e_2^2 = 0$. This would contradict linear independence of the family $\{e_j^2 \mid 2 \le j \le k+1\}$. We deduce that $U_{e_1^2}V_{e_1^2} \ne 0$.

Lemma 4.9. If a n-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra, then the family $\{e_i^2 \mid 2 \le i \le n\}$ is linear dependent.

Proof. We have $\ker \omega = \langle e_2, \dots, e_n \rangle$ and $(\ker \omega)^2 \subset \ker \omega$. We assume that the family is linear independent. Then $(\ker \omega)^2 = \ker \omega$; hence $0 = (\ker \omega)^{(3)} = \ker \omega$

 $(ker\omega)^2 = ker\omega$, this is impossible. We deduce that the family is linear dependent.

Theorem 4.10. If a n-dimensional baric evolution algebra (\mathcal{E}, ω) (with n > 2) is a non trivial Bernstein algebra, then $\dim_F(\ker \omega)^2 \leq \frac{1}{2}(n-1)$.

Proof. We have $0 \neq (\ker \omega)^2 \subsetneq \ker \omega$. We assume that $p = \dim_F(\ker \omega)^2$. By renumbering the basis vectors, we can assume that $(\ker \omega)^2 = \langle e_2^2, \dots, e_{p+1}^2 \rangle$. Let us show that the family $\{e_2, \dots, e_{p+1}, e_2^2, \dots, e_{p+1}^2\}$ is linear independent. Let $(\alpha_k, \beta_k)_{2 \leq k \leq p+1} \in F^p \times F^p$ such that

$$\sum_{k=2}^{p+1} (\alpha_k e_k + \beta_k e_k^2) = 0 \tag{11}$$

By multiplying (11) by e_i , we obtain $\alpha_i e_i^2 + \sum_{k=2}^{p+1} \beta_k e_i e_k^2 = \alpha_i e_i^2 + \sum_{k=2}^{p+1} \beta_k a_{ki} e_i^2 = 0$, either

$$\alpha_i + \sum_{k=2}^{p+1} \beta_k a_{ki} = 0$$
, for all $i \in \{2, \dots, p+1\}$. (12)

By squaring (11), we get

$$\sum_{k=2}^{p+1} \left(\alpha_k^2 e_k^2 + \sum_{j=2}^{p+1} 2\alpha_k \beta_j e_k e_j^2 \right) = \sum_{k=2}^{p+1} \alpha_k \left(\alpha_k + 2\sum_{j=2}^{p+1} \beta_j a_{jk} \right) e_k^2 = 0, \text{ either}$$

$$\alpha_i(\alpha_i + 2\sum_{j=2}^{p+1} \beta_j a_{ji}) = 0$$
, for all $i \in \{2, \dots, p+1\}$. (13)

By multiplying (12) by $2\alpha_i$ we get

$$\alpha_i(2\alpha_i + 2\sum_{i=2}^{p+1} \beta_j a_{ji}) = 0$$
, for all $i \in \{2, \dots, p+1\}$ (14)

and by making the difference of (13) and (14), we have $\alpha_i^2 = 0$. This leads to $\alpha_i = 0$, for all $i \in \{2, \dots, p+1\}$. Then (11) tell us that $\beta_i = 0, \forall i \in \{2, \dots, p+1\}$. We deduce that $\dim_F(\ker \omega)^2 \leq \frac{1}{2}(n-1)$.

Corollary 4.11. If a finite n-dimensional baric evolution algebra (\mathcal{E}, ω) is a Bernstein algebra such that $\dim(U_{e_i^2}) = p$, then $\dim(V_{e_i^2}) \geq p$.

Proof. We assume that $(\ker \omega)^2 = \langle e_2^2, \dots, e_{p+1}^2 \rangle$ and let us show that the family $\{e_2 - 2a_{12}e_2^2, \dots, e_{p+1} - 2a_{1,p+1}e_{p+1}^2\}$ is linear independent. Let $(\alpha_k)_{2 \le k \le p+1} \in F^p$ such that $\sum_{k=2}^{p+1} \alpha_k (e_k - 2a_{1k}e_k^2) = 0$.

 $F^{p} \text{ such that } \sum_{k=2}^{p+1} \alpha_{k}(e_{k} - 2a_{1k}e_{k}^{2}) = 0.$ We have $\sum_{k=2}^{p+1} \alpha_{k}(e_{k} - 2a_{1k}e_{k}^{2}) = \sum_{k=2}^{p+1} \alpha_{k}e_{k} - 2a_{1k}\alpha_{k}e_{k}^{2} = 0.$ So $\alpha_{k} = 0$, for all $k \in \{2, \ldots, p+1\}$ because $\{e_{2}, \ldots, e_{p+1}, e_{2}^{2}, \ldots, e_{p+1}^{2}\}$ is linear independent. Consequently, the family $\{e_{2} - 2a_{12}e_{2}^{2}, \ldots, e_{p+1} - 2a_{1,p+1}e_{p+1}^{2}\}$ is linear independent and $\dim(V_{e_{1}^{2}}) \geq p$.

4.3. Classification

Let (\mathcal{E}, ω) be a Bernstein algebra that is evolution algebra in natural basis $\{e_1, e_2, \dots, e_n\}$ such that $e_1^2 = e_1 + \sum_{k=2}^n a_{1k}e_k$ and $e_j^2 = \sum_{k=2}^n a_{jk}e_k$. For $(a_{12}, \dots, a_{1n}) = 0$, we have $e_1^2 = e_1$, i.e. e_1 is a non-zero idempotent of \mathcal{E} and $e_1 \ker \omega = 0$ leads to \mathcal{E} is of type (1, n-1), constant Bernstein algebra.

4.3.1. Three-dimensional Classification

Theorem 4.12. Let (\mathcal{E}, ω) be an evolution algebra that is a 3-dimensional non trivial Bernstein algebra with canonical basis $\{e, u, v\}$. Then, the algebra \mathcal{E} is isomorphic to \mathcal{E}_0 : $e^2 = e$, $eu = \frac{1}{2}u$, uv = u, the others products are zero.

Proof. Let (\mathcal{E}, ω) be a 3-dimensional non trivial Bernstein algebra that is evolution algebra in the natural basis $\{e_1, e_2, e_3\}$. The multiplication table of \mathcal{E} in the natural basis is given by $e_1^2 = e_1 + a_{12}e_2 + a_{13}e_3$, $e_2^2 = a_{22}e_2 + a_{23}e_3$ and $e_3^2 = a_{32}e_2 + a_{33}e_3$ with $\omega(e_1) = 1$ and $\omega(e_2) = \omega(e_3) = 0$. We have $(\ker \omega)^2 \neq 0$ and $1 \leq \dim(\ker \omega)^2 \leq \frac{1}{2}(3-1) = 1$. So $\dim(\ker \omega)^2 = 1$ and we set $(\ker \omega)^2 = Fe_2^2$. Then the vector $e_2 - 2a_{12}e_2^2$ is a non-zero vector of V_{e^2} and we set $e = e_1^2$, $u = e_2^2$, $v = e_2 - 2a_{12}e_2^2$. The multiplication table of \mathcal{E} in the canonical basis $\{e, u, v\}$ is $e^2 = e$, $eu = \frac{1}{2}u$, $uv = e_2^2(e_2 - 2a_{12}e_2^2) = a_{22}u$ and $v^2 = (e_2 - 2a_{12}e_2^2)^2 = e_2^2 - 4a_{12}e_2^2e_2 = (1 - 4a_{12}a_{22})u$. Since the algebra \mathcal{E} is a non trivial Bernstein algebra, it follows that $U_{e_1^2}V_{e_1^2}\neq 0$. Consequently, $a_{22} \neq 0$. Let us find a canonical basis $\{e', u', v'\}$ of \mathcal{E} such that u'v' = u' and $v'^2 = 0$. We set e' = e + au, u' = bu and $v' = cv - 2au(cv) = c(v - 2aa_{22}u)$ with $b, c \in F^*$. We have $u' = u'v' = bcuv = a_{22}bcu = a_{22}cu'$ leads to $c = a_{22}^{-1}$ and $0 = v'^2 = c^2(v - 2aa_{22}u)^2 = a_{22}^{-2}(v^2 - 4aa_{22}uv) = a_{22}^{-2}((1 - 4a_{12}a_{22}) - 4aa_{22}^{-2})u = a_{22}^{-2}(1 - 4aa_{22}uv) = a_{22}$ $a_{22}^{-2}b^{-1}((1-4a_{12}a_{22})-4aa_{22}^2)u'$ implies $0=(1-4a_{12}a_{22})-4aa_{22}^2$, i.e. a= $a_{22}^{-2}(\frac{1}{4}-a_{12}a_{22})$. We can take b=1 and we have $e'=e+a_{22}^{-2}(\frac{1}{4}-a_{12}a_{22})u$, u' = u and $v' = a_{22}^{-1}(v - a_{22}^{-1}(\frac{1}{2} - 2a_{12}a_{22})u)$. We deduce that algebra \mathcal{E} is isomorphic to \mathcal{E}_0 .

4.3.2. Four-dimensional Classification

Theorem 4.13. Let (\mathcal{E}, ω) be an evolution algebra that is 4-dimensional non trivial Bernstein algebra with canonical basis $\{e, u, v, w\}$. Then, \mathcal{E} is isomorphic to one and only one of the following algebras \mathcal{E}_1 : uv = u, $e^2 = e$, $eu = \frac{1}{2}u$; \mathcal{E}_2 : uv = uw = vw = u, $e^2 = e$, $eu = \frac{1}{2}u$ and the others products are zero.

The proof of the theorem uses the lemma below which follows from [5, Proof of Theorem, page 1435].

Lemma 4.14. Let \mathcal{E} be a 4-dimensional Bernstein algebra with a canonical basis $\{e,u,v,w\}$ such that $e^2=e$, $eu=\frac{1}{2}u$, uv=u, $v^2=\gamma u$, $w^2=\lambda u$, $vw=\mu u$ and the others products are zero.

- If $\lambda = \mu = 0$, then the algebra \mathcal{E} is isomorphic to \mathcal{E}_1 .
- If $\lambda \neq 0$, then the algebra \mathcal{E} is isomorphic to \mathcal{E}_2 .

Where the algebras \mathcal{E}_1 and \mathcal{E}_2 are defined in Theorem 4.13.

Proof of Theorem 4.13. Let (\mathcal{E}, ω) be a 4-dimensional non trivial Bernstein algebra that is evolution algebra with the natural basis $\{e_1, e_2, e_3, e_4\}$. The multiplication table of \mathcal{E} in the natural basis is given by $e_1^2 = e_1 + \sum_{k=2}^4 a_{1k} e_k$, $e_i^2 = \sum_{k=2}^4 a_{jk} e_k$ with $\omega(e_1) = 1$ and $\omega(e_j) = 0$ where $2 \le j \le 4$. We have $(\ker \omega)^2 \neq 0$ and $1 \leq \dim(\ker \omega)^2 \leq \frac{1}{2}(4-1) = 1.5$. So $\dim(\ker \omega)^2 = 1$ and we set $(\ker \omega)^2 = Fe_2^2$. Then $e_2 - 2a_{12}e_2^2$ is a non-zero vector of $V_{e_1^2}$ and there are scalars α_3 , α_4 such that $e_3^2 = \alpha_3 e_2^2$ and $e_4^2 = \alpha_4 e_2^2$. We assume that $a_{23} = a_{24} = 0$, then the equality $0 = e_2^2 e_2^2 = a_{22}^2 e_2^2$ leads to $a_{22} = 0$. Thus $e_2^2 = 0$, this is impossible and we deduce that $(a_{23}, a_{24}) \neq 0$. Since $V_{e_1^2}$ is generated by $(e_2 - 2a_{12}e_2^2), (e_3 - 2a_{13}e_3^2), (e_4 - 2a_{14}e_4^2),$ let us show that $(e_2 - 2a_{12}e_2^2), (e_3 - 2a_{13}e_3^2),$ $2a_{13}e_3^2$ or $\{e_2 - 2a_{12}e_2^2, e_4 - 2a_{14}e_4^2\}$ is a basis of $V_{e_1^2}$. For this reason, consider the scalars α , β and γ such that $0 = \alpha(e_2 - 2a_{12}e_2^2) + \beta(e_3 - 2a_{13}e_3^2) +$ $\gamma(e_4 - 2a_{14}e_4^2)$. Since $\alpha(e_2 - 2a_{12}e_2^2) + \beta(e_3 - 2a_{13}e_3^2) + \overline{\gamma}(e_4 - 2a_{14}e_4^2) = (\alpha - 2a_{14}e_4^2)$ $2(\alpha a_{12} + \beta a_{13}\alpha_3 + \gamma a_{14}\alpha_4)a_{22})e_2 + (\beta - 2(\alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{23})e_3 + (\gamma - \alpha a_{12} + \beta a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{13}\alpha_3\gamma a_{14}\alpha_4)a_{14}\alpha_4$ $2(\alpha a_{12} + \beta a_{13}\alpha_3 + \gamma a_{14}\alpha_4)a_{24})e_4$, it follows that the equality $0 = \alpha(e_2 - 2a_{12}e_2) + \beta(e_3 - 2a_{13}e_3^2) + \gamma(e_4 - 2a_{14}e_4^2)$ gives $(\alpha - 2(\alpha a_{12} + \beta a_{13}\alpha_3 + \gamma a_{14}\alpha_4)a_{22}) = (\beta - 2(\alpha a_{12} + \beta a_{13}\alpha_3 + \gamma a_{14}\alpha_4)a_{23}) =$ $(\gamma - 2(\alpha a_{12} + \beta a_{13}\alpha_3 + \gamma a_{14}\alpha_4)a_{24}) = 0.$

If $a_{23} \neq 0$, for $\beta = 0$, we have $\alpha a_{12} + \beta a_{13} \alpha_3 + \gamma a_{14} \alpha_4 = 0$ because $a_{23} \neq 0$. Hence $\alpha = \gamma = 0$ and $\{e_2 - 2a_{12}e_2^2, e_4 - 2a_{14}e_4^2\}$ is a basis of $V_{e_1^2}$.

If $a_{24} \neq 0$, for $\gamma = 0$, we have $\alpha = \beta = 0$ and we similarly conclude that $\{e_2 - 2a_{12}e_2^2, e_3 - 2a_{13}e_3^2\}$ is a basis of $V_{e_1^2}$.

- 1) The multiplication table of \mathcal{E} in the canonical basis $\{e_1^2, e_2^2, e_2 2a_{12}e_2^2, e_3 2a_{13}e_3^2\}$ is given by $e_1^2e_1^2 = e_1^2$, $e_1^2e_2^2 = \frac{1}{2}e_2^2$, $e_2^2(e_2 2a_{12}e_2^2) = e_2^2e_2 = a_{22}e_2^2$, $e_2^2(e_3 2a_{13}e_3^2) = e_2^2e_3 = a_{23}e_3^2 = a_{23}\alpha_3e_2^2$, $(e_2 2a_{12}e_2^2)^2 = e_2^2 4a_{12}e_2^2e_2 = (1 4a_{12}a_{22})e_2^2$, $(e_2 2a_{12}e_2^2)(e_3 2a_{13}\alpha_3e_2^2) = (2a_{12}a_{22}^2)(e_3 2a_{13}\alpha_3e_2^2) = -2a_{13}\alpha_3e_2^2e_2 2a_{12}e_2^2e_3 = -2a_{13}\alpha_3e_2^2e_2 2a_{12}a_{23}e_3^2 = -2\alpha_3(a_{13}a_{22} + a_{12}a_{23})e_2^2$, $(e_3 2a_{13}e_3^2)^2 = (e_3 2a_{13}\alpha_3e_2^2)^2 = e_3^2 4a_{13}\alpha_3e_2^2e_3 = e_3^2 4a_{13}a_{23}\alpha_3e_3^2 = \alpha_3(1 4a_{13}a_{23}\alpha_3)e_2^2$ and the others products are zero. Since algebra \mathcal{E} is a non trivial Bernstein algebra, we have $U_{e_1^2}V_{e_1^2} \neq 0$. Consequently, $(a_{22}, a_{23}\alpha_3) \neq 0$ and we set e_1^2 , e_2^2 . We distinguish the following three cases
 - a) $a_{22} = 0$, then $a_{23}\alpha_3 \neq 0$ and we set $v = a_{23}^{-1}\alpha_3^{-1}(e_3 2a_{13}e_3^2)$, $w = e_2 e_3$

- $2a_{12}e_2^2$. The multiplication table of $\mathcal E$ in the canonical basis $\{e,u,v,w\}$ is $e^2=e,\ eu=\frac{1}{2}u,\ uv=u,\ v^2=a_{23}^{-2}\alpha_3^{-1}(1-4a_{13}a_{23}\alpha_3)u,\ vw=-2a_{12}u,\ w^2=u$ and the others products are zero. We deduce from Lemma 4.14 that the algebra $\mathcal E$ is isomorphic to $\mathcal E_2$.
- b) $\alpha_3 a_{23} = 0$, then $a_{22} \neq 0$, we set $v = a_{22}^{-1}(e_2 2a_{12}e_2^2)$ and $w = e_3 2a_{13}e_3^2$. The multiplication table of \mathcal{E} in the canonical basis $\{e, u, v, w\}$ is given by $e^2 = e$, $eu = \frac{1}{2}u$, uv = u, $v^2 = a_{22}^{-2}(1 4a_{12}a_{22})u$, $vw = -2a_{13}\alpha_3u$, $w^2 = \alpha_3u$ and the others products are zero. Lemma 4.14 tells us that, for $\alpha_3 = 0$ we get algebra \mathcal{E}_1 and for $\alpha_3 \neq 0$, algebra \mathcal{E} is isomorphic to \mathcal{E}_2 .
- c) $a_{22}a_{23}\alpha_3 \neq 0$, then we set $v = a_{22}^{-1}(e_2 2a_{12}e_2^2)$ and $w = (e_3 2a_{13}e_3^2) a_{22}^{-1}a_{23}\alpha_3(e_2 2a_{12}e_2^2)$. The multiplication table of $\mathcal E$ in the canonical basis $\{e,u,v,w\}$ is $e^2 = e$, $eu = \frac{1}{2}u$, uv = u, $v^2 = a_{22}^{-2}(1 4a_{12}a_{22})u$, $vw = a_{22}^{-1}(e_2 2a_{12}e_2^2)(e_3 2a_{13}e_3^2) a_{22}^{-2}a_{23}\alpha_3(e_2 2a_{12}e_2^2)^2 = (-2\alpha_3a_{22}^{-1}(a_{13}a_{22} + a_{12}a_{23}) a_{22}^{-2}a_{23}\alpha_3(1 4a_{12}a_{22}))u = -a_{22}^{-2}a_{23}\alpha_3(2a_{13}a_{22}^2a_{23}^{-1} 2a_{12}a_{22} + 1)u$, $w^2 = (e_3 2a_{13}e_3^2)^2 + a_{22}^{-2}a_{23}^2\alpha_3^2(e_2 2a_{12}e_2^2)^2 2a_{21}^{-1}a_{23}\alpha_3(e_3 2a_{13}e_3^2)(e_2 2a_{12}e_2^2) = (\alpha_3(1 4a_{13}a_{23}\alpha_3) + a_{22}^{-2}a_{23}^2\alpha_3^2(1 4a_{12}a_{22}) + 4a_{21}^{-1}a_{23}\alpha_3^2(a_{13}a_{22} + a_{12}a_{23}))u = \alpha_3(1 + a_{22}^{-2}a_{23}^2\alpha_3)u$ and the others products are zero.
 - For $1 + a_{22}^{-2} a_{23}^2 \alpha_3 \neq 0$, algebra \mathcal{E} is isomorphic to \mathcal{E}_2 .
 - For $1 + a_{22}^{-2}a_{23}^{-2}\alpha_3 = 0$, $w^2 = \alpha_3(1 + a_{22}^{-2}a_{23}^2\alpha_3)u = 0$. We have $0 = e_2^2e_2^2 = a_{22}^2e_2^2 + a_{23}^2e_3^2 + a_{24}^2e_4^2 = (a_{22}^2 + a_{23}^2\alpha_3 + a_{24}^2\alpha_4)e_2^2 = a_{22}^2(1 + a_{22}^{-2}a_{23}^2\alpha_3 + a_{22}^{-2}a_{24}^2\alpha_4)e_2^2 = a_{24}^2\alpha_4e_2^2$ leads to $\alpha_4 = 0$ because $a_{24} \neq 0$. So $e_4^2 = 0$ and we have $\frac{1}{2}e_2^2 = e_1^2e_2^2 = a_{12}a_{22}e_2^2 + a_{13}a_{23}e_3^2 = (a_{12}a_{22} a_{13}a_{22}^2a_{23}^{-1})e_2^2$ gives $a_{12}a_{22} a_{13}a_{22}^2a_{23}^{-1} = \frac{1}{2}$. Therefore $vw = -a_{22}^{-2}a_{23}\alpha_3(2a_{13}a_{22}^2a_{23}^{-1} 2a_{12}a_{22} + 1)u = 0$ and we deduce that algebra \mathcal{E} is isomorphic to \mathcal{E}_1 .
- 2) The multiplication table of \mathcal{E} in the canonical basis $\{e_1^2, e_2^2, e_2 2a_{12}e_2^2, e_4 2a_{14}e_4^2\}$ is given by $e_1^2e_1^2 = e_1^2$, $e_1^2e_2^2 = \frac{1}{2}e_2^2$, $e_2^2(e_2 2a_{12}e_2^2) = e_2^2e_2 = a_{22}e_2^2$, $e_2^2(e_4 2a_{14}e_4^2) = e_2^2e_4 = a_{24}\alpha_4e_2^2$, $(e_2 2a_{12}e_2^2)^2 = e_2^2 4a_{12}e_2^2e_2 = (1 4a_{12}a_{22})e_2^2$, $(e_2 2a_{12}e_2^2)(e_4 2a_{14}e_4^2) = (e_2 2a_{12}e_2^2)(e_4 2a_{14}\alpha_4e_2^2) = -2a_{14}\alpha_4e_2^2e_2 2a_{12}e_2^2e_4 = -2a_{14}\alpha_4e_2^2e_2 2a_{12}a_{24}e_4^2 = -2\alpha_4(a_{14}a_{22} + a_{12}a_{24})e_2^2$, $(e_4 2a_{14}e_4^2)^2 = (e_4 2a_{14}\alpha_4e_2^2)^2 = e_4^2 4a_{14}\alpha_4e_2^2e_4 = e_4^2 4a_{14}a_{24}\alpha_4e_4^2 = \alpha_4(1 4a_{14}a_{24}\alpha_4)e_2^2$ and the others products are zero. We obtain the multiplication table of the algebra defined in 1). We deduce that, for $a_{22} = 0$ or for $a_{22}a_{24}\alpha_4(1 + a_{22}^{-2}a_{24}^2\alpha_4) \neq 0$, algebra \mathcal{E} is isomorphic to \mathcal{E}_2 . It is isomorphic to algebra \mathcal{E}_1 for $\alpha_4 = 0$ or for $a_{22}a_{24}\alpha_4 \neq 0$ and $a_{24} = 0$.

Acknowledgements

The second author thanks Professor Richard Varro for his remarks on the origin of evolution algebras.

REFERENCES

- [1] M. T. Alcalde, C. Burgueño, A. Labra and A. Micali, *Sur les algèbres de Bernstein.* (On Bernstein algebras), Proc. Lond. Math. Soc. (3), **58**, 1, 1989, 51–68.
- [2] S. Bernstein, Solution of a mathematical problem connected with the theory of heredity., Ann. Math. Stat., 13, 1942, 53–61.
- [3] Y. Cabrera Casado, M. Siles Molina and M.V. Velasco, *Classification of three-dimensional evolution algebras.*, Linear Algebra Appl., **524**, (2017), 68–108. doi.org/10.1016/j.laa.2017.02.015
- [4] J.M. Casas, M. Ladra, B.A. Omirov and U.A. Rozikov, On evolution algebras., Algebra Colloq. 21, 2 (2014), 331–342. doi.org/10.1142/ S1005386714000285
- [5] T. Cortés, *Classification of 4-dimensional Bernstein algebras*, Commun. Algebra, **19**, 5, 1991, 1429–1443.
- [6] I.M.H. Etherington, *Non-associative algebra and the symbolism of genetics*, Proc. R. Soc. Edinb., Sect. B, Biol., **61**, 1941, 24–42.
- [7] S. González and J. C. Gutiérrez and C. Martínez, *Classification of Bernstein algebras of type* (3, n-3), Commun. Algebra, **23**, 1, 1995, 201–213.
- [8] P. Holgate, Genetic algebras satisfying Bernstein's stationarity principle, J. Lond. Math. Soc., II. Ser., 9, 1975, 613–623.
- [9] P. Holgate, Selfing in genetic algebras, J. Math. Biol, 6, 1978, 197–206.
- [10] T. Y. Lam, *Introduction to quadratic forms over fields*. Graduate Studies in Mathematics **67**. American Mathematical Society *xxi*, 550 p. (2005).
- [11] A. Micali et M. Ouattara, *Dupliquée d'une algèbre et le théorème d'Etherington*, Linear Algebra Appl. **153**, (1991), 193–207.
- [12] M. Ouattara, *Sur les algèbres de Bernstein qui sont des T-algèbres.*, Linear Algebra Appl, ISSN = 0024-3795, **148**, 1991, 171–178.
- [13] M. Ouattara and S. Savadogo. (2020). Evolution train algebras. Gulf journal of Mathematics, 8(1), 37-51. https://gjom.org/index.php/gjom/article/view/299
- [14] J.P. Tian, Evolution algebras and their applications., Lect. Notes Math. **1921**, xi + 125, (2008). doi.org/10.1007/978-3-540-74284-5
- [15] J.P. Tian and P. Vojtěchovský, Mathematical concepts of evolution algebras in non-Mendelian genetics, Quasigroups Relat. Syst., 14, 1, 2006, 111–122.

- [16] A. Wörz-Busekros, Algebras in genetics, Lect. Notes Biomath, 36, 1980.
- [17] A. Wörz-Busekros, Further remarks on Bernstein algebras, Proc. Lond. Math. Soc. (3), **58**, 1, 1989, 69–73.

A. CONSEIBO

Université Norbert Zongo, BP 376 Koudougou, Burkina Faso e-mail: andreconsebo@yahoo.fr

S. SAVADOGO

Université Norbert Zongo, BP 376 Koudougou, Burkina Faso e-mail: sara01souley@yahoo.fr

M. OUATTARA

Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso e-mail: ouatt_ken@yahoo.fr