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DUPLICATE, BERNSTEIN ALGEBRAS AND EVOLUTION
ALGEBRAS

A. CONSEIBO - S. SAVADOGO - M. OUATTARA

In this paper, we firstly study a commutative algebra E over a field F of
Char(F) 6= 2 that satisfying dim(E2) = 1. We show that, such an algebra
is an evolution algebra. Afterwards, we pay attention to commutative
duplicate of a commutative algebra E . We find necessary and sufficient
condition in which the duplicate D(E) is an evolution algebra. And, we
finish by studying an evolution algebra that is a Bernstein algebra. We
classify that algebras, up to isomorphism, in dimension ≤ 4.

1. Introduction

Given a commutative field F and a finite dimensional algebra E , we say that E
is an evolution algebra if it admits a basis B = {e1, . . . ,en} such that

eie j = 0, for 1≤ i 6= j ≤ n and e2
i =

n

∑
k=1

aikek, for 1≤ i≤ n. (1)

Such a basis is called a natural basis of E . The matrix M = (aik)1≤i,k≤n is called
the matrix of structural constants of E relative to the natural basis B. Evolution
algebras are commutative ([15]). The origin and the first study of the evolu-
tion algebras date from 1941 with the first formulation due to Etherington ([6,
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Page 34]) of strict self-fertilization in the absence of mutation. Subsequently,
Holgate extended Etherington’s formulation to study the case of partial self-
fertilization ([9]). It is from work of Tian ([14]) that these algebras were popu-
larized and studied under the denomination of evolution algebras.

In section 2, we study n-dimensional commutative algebras E satisfying
dim(E2) = 1. We show that such algebras are evolution algebras, then we give
a classification in dimension 2, 3 and 4.

In section 3, we exhibit a necessary and sufficient condition for a commuta-
tive duplicate of commutative algebra to be an evolution algebra.

In section 4, we characterize the baric algebras that are Bernstein algebras
and we give a classification in dimension 2, 3 and 4.

2. Quadratic forms and evolution algebras

In this section, we study finite dimensional commutative algebra E over a com-
mutative field F of Char(F) 6= 2 and satisfying dim(E2) = 1.

2.1. Case of dimensions 2 and 3

Example 2.1. Let E be a commutative 2-dimensional algebra such that
dim(E2) = 1. Then E is an evolution algebra.

Proof. Let E = Fe1⊕Fe2 with dim(E2) = 1, i.e. E2 = Fc for a certain c ∈ E .
The multiplication table of E in the basis {e1,e2} is given by e2

1 = αc, e2
2 = βc

and e1e2 = γc. We set x = x1e1 + x2e2 ∈ E and we have x2 = (αx2
1 + βx2

2 +
2γx1x2)c. For the reduction of the quadratic form q(x) = αx2

1 +βx2
2 + 2γx1x2,

we distinguish two cases
• (α,β ) 6= 0. Without loss of generality, we assume that α 6= 0. Then x2 =

(α(x2
1 +

2γ

α
x1x2) + βx2

2)c = (α(x1 +
γ

α
x2)

2 + (β − γ2

α
)x2

2)c. By taking e′2 =
− γ

α
e1 + e2, we get e1e′2 = 0. Thus, E is an evolution algebra in the natural

basis {e1,e′2}.
• α = β = 0. We have x2 = 2γx1x2c = γ

2((x1 + x2)
2− (x1− x2)

2)c. By setting
e′1 = e1 + e2 and e′2 = e1− e2, we have (e1 + e2)(e1− e2) = 0. Consequently,
E is an evolution algebra in the natural basis {e′1,e′2}.

Example 2.2. Let E be a commutative 3-dimensional algebra such that
dim(E2) = 1. Then E is an evolution algebra.

Proof. Let E = Fe1⊕Fe2⊕Fe3 with dim(E2) = 1, i.e. E2 = Fc for a certain c∈
E . The multiplication table of E in the basis {e1,e2,e3} is given by e2

1 =αc, e2
2 =

βc, e2
3 = γc, e1e2 = δc, e1e3 = µc and e2e3 = λc. Let x= x1e1+x2e2+x3e3 ∈E ,
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we have x2 =(αx2
1+βx2

2+γx2
3+2δx1x2+2µx1x3+2λx2x3)c. For the reduction

of the quadratic form q(x) = (αx2
1+βx2

2+γx2
3+2δx1x2+2µx1x3+2λx2x3), we

distinguish the following cases
• (α,β ,γ) 6= 0. Without loss of generality, we assume that α 6= 0. Then

x2 =

(
α

(
x2

1 +2
(

δ

α
x2 +

µ

α
x3

)
x1

)
+βx2

2 + γx2
3 +2λx2x3

)
c

=

(
α

(
x1 +

δ

α
x2 +

µ

α
x3

)2

+

(
β − δ 2

α

)
x2

2 +

(
γ− µ2

α

)
x2

3 +

2
(

λ − δ µ

α

)
x2x3

)
c

i) δ 2−βα 6= 0 or µ2− γα 6= 0. We can take δ 2−βα 6= 0, without loss of
generality.

x2 =

(
α

(
x1 +

δ

α
x2 +

µ

α
x3

)2

+

(
β − δ 2

α

)(
x2

2 +2
αλ −δ µ

αβ −δ 2 x2x3

)
+(

γ− µ2

α

)
x2

3

)
c

=

(
α

(
x1 +

δ

α
x2 +

µ

α
x3

)2

+

(
β − δ 2

α

)(
x2 +

αλ −δ µ

αβ −δ 2 x3

)2

+

1
α

(
αγ−µ

2− (αλ −δ µ)2

αβ −δ 2

)
x2

3

)
c

By setting e′2 =− δ

α
e1 + e2 and e′3 =

1
α

(
λδ

β
− δ 2µ

αβ
−µ

)
e1− αλ−δ µ

αβ
e2 +

e3, we get e1e′2 = e1e′3 = e′2e′3 = 0. So E is an evolution algebra in the
natural basis {e1,e′2,e

′
3}.

ii) δ 2−βα = µ2− γα = 0. Then

x2 =

(
α

(
x1 +

δ

α
x2 +

µ

α
x3

)2

+2
(

λ − δ µ

α

)
x2x3

)
c

=

(
α

(
x1 +

δ

α
x2 +

µ

α
x3

)2

+
1
2

(
λ − δ µ

α

)
(
(x2 + x3)

2− (x2− x3)
2
))

c

By taking e′2 =
δ+µ

2α
e1 +

1
2 e2 +

1
2 e3 and e′3 =

δ−µ

2α
e1 +

1
2 e2− 1

2 e3, we ob-
tain e1e′2 = e1e′3 = e′2e′3 = 0. So E is an evolution algebra in the natural
basis {e1,e′2,e

′
3}.
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• α = β = γ = 0. Without loss of generality, we can take δ 6= 0. Thus

x2 = 2δ

(
x1x2 +

µ

δ
x1x3 +

λ

δ
x2x3

)
c

= 2δ

((
x1 +

λ

δ
x3

)(
x2 +

µ

δ
x3

)
− λ µ

δ 2 x2
3

)
c

=

(
δ

2

(
x1 + x2 +

λ +µ

δ
x3

)2

− δ

2

(
x1− x2 +

λ −µ

δ
x3

)2

− 2λ µ

δ
x2

3

)
c

By setting e′1 = e1+e2, e′2 = e1−e2 and e′3 =−λ

δ
e1− µ

δ
e2+e3, we get e′1e′2 =

e′1e′3 = e′2e′3 = 0. So E is an evolution algebra in the natural basis {e′1,e′2,e′3}.

2.2. General case

Let (E ,b) be a bilinear space. A vector x 6= 0 of E is said to be isotropic if
b(x,x) = 0. Otherwise x is said to be anisotropic. If (E ,b) contains an isotropic
vector, then (E ,b) is also called isotropic bilinear space. Otherwise (E ,b) is
called anisotropic. A subspace W of E is totally isotropic if b(W,W ) = 0, i.e.
b(x,y) = 0 for all x,y ∈W . The radical of a symmetric bilinear form b(x,y) is
the set of all x such that b(x,y) = 0, for all y ∈ E .

Theorem 2.3 ([10, Theorem 4.1, Witt’s Decomposition]). In characteristic 6= 2,
any quadratic space (E ,q) admits orthogonal sum decomposition

E = Et ⊥ Ehyp ⊥ Ean, (2)

called Witt’s decomposition, where Et = rad(q) is totally isotropic, Ehyp = H1 ⊥
·· · ⊥ Hs is a hyperbolic space and Ean is an anisotropic space.

Proposition 2.4. Any finite dimensional commutative algebra E such that
dim(E2) = 1 is an evolution algebra. The natural basis being the orthogonal
basis of Witt’s decomposition of the induced bilinear form.

Proof. Let E be such an algebra. We choose c ∈ E such that E2 = Fc. For
x,y ∈ E , xy = b(x,y)c where b : E ×E → F is a non-zero symmetric bilinear
form. The corresponding quadratic form q : E → F is defined by x2 = q(x)c. If
another c′ is chosen as the generator of E2, then c′ = λc, for a certain λ ∈ F∗.
The corresponding bilinear form b′ is λ−1b. Since q is a quadratic form, The-
orem 2.3 tell us, algebra E admits an orthogonal basis given by Witt’s decom-
position. It follows that algebra E is an evolution algebra and the natural basis
being the orthogonal basis.
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2.3. Classification

Let E = Et ⊥Ehyp⊥Ean be Witt’s decomposition of the finite dimensional evolu-
tion algebra E satisfying dim(E2) = 1 over a commutative field F of Char(F) 6=
2. The Proof of Proposition 2.4 tells us, there are a non-zero symmetric bi-
linear b : E × E → F and c ∈ E such that E2 = Fc and xy = b(x,y)c for all
x,y ∈ E . Let q : E → F be the corresponding quadratic form of b. We choose
a basis {u1, . . . ,ur} of Ean such that b(ui,u j) = 0, for i 6= j, and q(ui) = di 6= 0
(i = 1, . . . ,r). Then, we choose a basis {xi,yi} of Hi such that b(xi,yi) = 0,
q(xi) = −q(yi) = 1 and finally, we choose a basis {v1, . . . ,vt} of Et = rad(b).
Since x2 = q(x)c, it follows that x3 = q(x)b(x,c)c, ..., xk+2 = q(x)b(x,c)kc. If E
is a nil-algebra, then b(x,c) = 0 for all x ∈ E ; in this case c ∈ Et . Let us suppose
that E is non-nil. There exists z ∈ E such that b(z,c) 6= 0. Thus three cases are
to be considered.

• c belongs to Et = rad(b), i.e. b(x,c) = 0 for all x ∈ E . The multiplication
table of E in the basis {u1, . . . ,ur,v1, . . . ,vt} is

u2
i = dic (i = 1, . . . ,r), the others products are zero. (3)

• c is isotropic, i.e. b(c,c) = 0 and c2 = 0 but b(z,c) 6= 0, for some z. So c∈
Ehyp and then there is an i such that c = xi+yi. Without loss of generality,
we can assume that i = 1. In this case E = Ehyp ⊥ Ean, where Ehyp = H1
and the multiplication table of E in the basis {u1, . . . ,ur,x1,y1,v1, . . . ,vt}
is

u2
i = di(x1 + y1) (i = 1, . . . ,r), x2

1 =−y2
1 = x1 + y1,

the others products are zero.
(4)

• c is anisotropic, i.e. b(c,c) 6= 0. We have c2 = q(c)c and by setting
c′ = q(c)−1c, it follows that c′2 = c′ is a non-zero idempotent. The multi-
plication table of E in the basis {v1, . . . ,vt ,u1, . . . ,ur} is

u2
1 = u1,u2

i = diu1 (i = 2, . . . ,r), the others products are zero. (5)

Now, we give a low-dimensional classification of such algebras.

Proposition 2.5. [4, Theorem 4.1] Any 2-dimensional evolution algebra, over
a commutative field F of Char(F) 6= 2, satisfying dimF(E2) = 1 is isomorphic
to one of the following algebras :

• E1 : u2
1 = u2,u2

2 = 0.
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• E2 : u2
1 =−u2

2 = u1 +u2.

• E3 : u2
1 = u1,u2

2 = 0.

• E4(α) : u2
1 = u1,u2

2 = αu1, with α ∈ F∗.

Proposition 2.6. [3, Theorem 3.5(ii), Table 1] Any 3-dimensional evolution
algebra, over a commutative field F of Char(F) 6= 2, satisfying dimF(E2) = 1
is isomorphic to one of the following algebras

• E1 : u2
1 = u1 +u2,u2

2 =−(u1 +u2),u2
3 = 0.

• E2 : u2
1 = u1 +u2,u2

2 =−(u1 +u2),u2
3 = u1 +u2.

• E3 : u2
1 = u3,u2

2 = 0,u2
3 = 0.

• E4(α) : u2
1 = u3,u2

2 = αu3,u2
3 = 0, with α ∈ F∗.

• E5 : u2
1 = u1,u2

2 = u2
3 = 0.

• E6(α) : u2
1 = u1,u2

2 = αu1,u2
3 = 0, with α ∈ F∗.

• E7(α,β ) : u2
1 = u1,u2

2 = αu1,u2
3 = βu1 with α,β ∈ F∗.

With regard to dimension 4, by varying the dimension of Et from 0 to 3 in
the equation (2) and taking account the three cases defined above, we have

Proposition 2.7. Any 4-dimensional evolution algebra, over a commutative
field F of Char(F) 6= 2, satisfying dimF(E2) = 1 is isomorphic to one of the
following algebras

• E1 : u2
1 = v3,v2

1 = v2
2 = v2

3 = 0;

• E2 : x2
1 =−y2

1 = x1 + y1,v2
1 = v2

2 = 0;

• E3 : x2
1 =−y2

1 = x1 + y1,u2
1 = x1 + y1,v2

1 = 0;

• E4(α) : x2
1 =−y2

1 = x1 + y1,u2
1 = α(x1 + y1),u2

2 =−α(x1 + y1);

• E5(α) : u2
1 = v2,u2

2 = αv2,v2
1 = v2

2 = 0;

• E6 : u2
1 = u1,u2

2 = u2
3 = u2

4 = 0;

• E7(α) : u2
1 = u1,u2

2 = αu1,u2
3 = u2

4 = 0;

• E8(α,β ) : u2
1 = u1,u2

2 = αu1,u2
3 = βu1,u2

4 = 0;
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• E9(α,β ,γ) : u2
1 = u1,u2

2 = αu1,u2
3 = βu1,u2

4 = γu1;

with α,β ,γ ∈ F∗.

Remark 2.8. If F is an algebraically closed field, in particular if any scalar α

of F is a square, i.e. F = F2, the scalars α , β and γ will be replaced by 1.

3. Duplicate and evolution algebras

Let E be a commutative algebra over a commutative field of Char(F) 6= 2, not
necessarily associative, nor having an unit element and let S2

F(E) be a sec-
ond symmetric power of the F-linear space E . Let I and J be two countable
parts. The multiplication ∑i∈I(xi.yi)∑ j∈J(x′j.y

′
j) = ∑i∈I xiyi.∑ j∈J x′jy

′
j, where

xi,yi,x′j,y
′
j in E and xi.yi denotes the symmetric product of xi by yi, defines

on S2
F(E) a commutative F-algebra structure called a commutative duplicate of

E [11].
The duplicate will be denoted by D(E). The F-linear map µ : D(E)→E2 de-

fines by x.y 7→ xy is an onto F-algebra homomorphism called Etherington’s ho-
momorphism. We have D(E)ker(µ) = 0 and D(E) = E2×

s.d
ker(µ) (s.d. for semi-

direct) algebras isomorphism. The semi-direct product is given by (x,x′)(y,y′)=
(xy,ϕ(x,y)) for all x,y in E2 ; x′,y′ in ker(µ) and ϕ : E2×E2→ ker(µ) is a F-
bilinear map. We set NF(E) = ker(µ). If the family {e1, · · · ,en} is a basis of
E , then {ei.e j | 1≤ i≤ j ≤ n} is a basis of D(E), called the canonical basis of
D(E) and dim(D(E)) = n(n+1)

2 .
Let E be an evolution algebra in the natural basis {e1, · · · ,en}. We suppose

that D(E) is an evolution algebra with the canonical basis as the natural basis.
For i 6= j, we have eie j = 0, i.e. ei.e j ∈ NF(E). For i 6= j, we have 0 =

(ei.ei)(e j.e j) = e2
i .e

2
j . Either e2

i = 0 for all i ∈ {1, . . . ,n}, i.e. E2 = 0, or there
exists i0 ∈ {1, . . . ,n} such that e2

i0 6= 0 and e2
j = 0 for all j 6= i0. So either E2 = 0

or E2 = Fe2
i0 , i.e. dim(E2) = 1. The multiplication table of D(E) in natural basis

{ei.e j | 1 ≤ i ≤ j ≤ n} is given by (ei0 .ei0)
2 = e2

i0 .e
2
i0 , the others products are

zero.
The canonical basis of D(E) is not always a natural basis.

Example 3.1. Let E2 : e1e1 = e1,e2e2 = e1 be an evolution algebra. By taking
ei j := ei.e j, the multiplication table of D(E2) in the canonical basis is given
by e2

11 = e11, e11e22 = e11, e22e22 = e11, the others products are zero. Since
e11e22 6= 0, this basis is not a natural basis. By taking u = e22− e11, we get
e2

11 = e11, e11e12 = e11u = e12e12 = e12u = u2 = 0. The duplicate algebra is an
evolution algebra in the natural basis {e11,e12,u}.
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For z and w in D(E), we notice that the product in D(E) is given by zw =
µ(z).µ(w). So, if E is a zero algebra, then for all z,w ∈ D(E), we have zw =
µ(z).µ(w) = 0 because µ(z) = µ(w) = 0. Consequently, D(E) is an evolution
algebra.

Theorem 3.2. Let E be a n-dimensional non zero commutative F-algebra and
D(E) its commutative duplicate. Then D(E) is an evolution algebra if and only
if dim(E2) = 1.

Proof. Let us suppose that D(E) is an evolution algebra in the natural basis
{z1, . . . ,zs}, with s = n(n+1)

2 . For i 6= j, the equality ziz j = 0 is equivalent to
µ(zi).µ(z j) = 0. Since E2 6= {0}, it follows that there exists i0 such that µ(zi0) 6=
0. Thus, µ(z j) = 0 for all j 6= i0, z j ∈ NF(E) = {x ∈ D(E) | x ·D(E) = 0} =
ann(D(E)), where ann(D(E)) is the annihilator of D(E). So dim(NF(E)) =
s−1 and dim(E2) = 1.

Conversely, let E be a commutative F-algebra such that dim(E2) = 1. Ac-
cording to Proposition 2.4, such an algebra is an evolution algebra, the natural
basis {e1,e2, . . . ,en} being that orthogonal. Since D(E)/NF(E)' E2, it follows
that dim(NF(E)) = s− 1. If e2

i0 6= 0, then (ei0 · ei0)
2 = e2

i0 · e
2
i0 6= 0, generates

D(E)2 and we always deduce from Proposition 2.4 that D(E) is an evolution
algebra.

4. Bernstein Algebra

A finite dimensional commutative algebra E over a commutative field F is said
to be baric, if there is nontrivial homomorphism ω : E −→ F of algebras. The
baric algebra (E ,ω) is called Bernstein algebra if

x2x2−ω(x)2x2 = 0, for all x ∈ E . (6)

Bernstein algebras have their origins in genetics ([2]). Holgate was the first to
use the language of non-associative algebras to translate Bernstein’s problem
([8]).
We defined inductively plenary powers of an element x ∈ E by :

x(1) = x and x(k+1) = x(k)x(k), k ∈ N,

while that of E is defined by :

E (1) = E and E (k+1) = E (k)E (k), k ∈ N.
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4.1. Some properties of Bernstein algebras

Let (E ,ω) be a Bernstein algebra over a commutative field F of Char(F) 6= 2.
The following results are well known ([16]).
1) The homomorphism ω : E −→ F is the unique weight function of E .
2) Algebra E has at least one non-zero idempotent.
3) For an idempotent e of E , the algebra E admits the following Peirce decom-

position E = Fe⊕Ue⊕Ve, where Ue = {x ∈ E | ex = 1
2 x} and Ve = {x ∈ E |

ex = 0}. The subspaces Ue and Ve satisfy the relations

UeVe ⊆Ue, V 2
e ⊆Ue, U2

e ⊆Ve and UeV 2
e = 0

4) The set of idempotents of E is given by I(E) = {e+σ +σ2 | σ ∈Ue} for
any idempotent e of E .

5) Let e1 = e+σ +σ2, with σ ∈ Ue, be another idempotent of E . We have
the following relations Ue1 = {u+σu | u ∈Ue} and Ve1 = {v−2(σ +σ2)v |
v ∈Ve}. It follows that although the decomposition of the Bernstein algebra
depends on the choice of the idempotent e, the dimension of the subspaces
Ue and Ve of E are invariants of E . If r = dimUe and s = dimVe, the pair
(1+ r,s) is called the type of E . Also dimF(U2

e ) and dimF(UeVe +V 2
e ) are

invariants of the algebra E .
In ([1]), the authors obtain the identities (7) and (8) by linearizing (6).

2x2(xy) = ω(xy)x2 +ω(x2)(xy) (7)

4(xz)(xy)+2x2(zy) = ω(zy)x2 +2ω(xy)(xz)+2ω(xz)(xy)+ω(x2)(zy) (8)

for all x,y,z ∈ E and replacing y by z in (8), we get

4(xz)2 +2x2z2 = ω(z)2x2 +4ω(xz)(xz)+ω(x2)z2 (9)

for all x,z ∈ E .

4.2. Characterization of Bernstein algebras that are evolution alge-
bras

Let F be a commutative field of Char(F) 6= 2.

Theorem 4.1 ([13, Corollary 3.1.4]). A n-dimensional baric evolution algebra
(E ,ω) admits a natural basis {e1,e2, . . . ,en} such that ω(e1) = 1 and ω(ei) = 0
for i > 1. Moreover E = Fe1⊕kerω with e1 kerω = 0.

We deduce from Theorem 4.1 that the algebra (E ,ω) admits a natural basis
{e1,e2, . . . ,en} which multiplication table is given by

e2
1 = e1 +

n

∑
k=2

a1kek, e2
j =

n

∑
k=2

a jkek (10)
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with ω(e1) = 1, ω(e j) = 0 and 2≤ j ≤ n.
In the following, any finite n-dimensional baric evolution algebra will be

provided with such a natural basis.

Theorem 4.2 (of characterization). A n-dimensional baric evolution algebra is
a Bernstein algebra (E ,ω) if and only if the following conditions are satisfying

i) (e2
1)

2 = e2
1 ;

ii) e2
i e2

j = 0, for 2≤ i, j ≤ n ;
iii) e2

1e2
i =

1
2 e2

i , for 2≤ i≤ n.

Proof. Let us suppose that algebra (E ,ω) is a Bernstein algebra. Then
(6) leads to i), we take x = e1.
(9) gives ii), we set x = ei and z = e j with i, j 6= 1.
(9) gives iii), we take x = e1 and z = ei with i 6= 1.

Conversely, it is assumed that conditions i), ii) and iii) are satisfied. Let
x = ∑

n
k=1 xkek be an element of E with ω(x) = x1. We have the following equali-

ties x2 = ∑
n
k=1 x2

ke2
k = x2

1e2
1 +∑

n
k=2 x2

ke2
k and x2x2 = x2

1x2
1e2

1e2
1 +2x2

1 ∑
n
k=2 x2

ke2
1e2

k +

∑
n
k, j=2 x2

kx2
je

2
ke2

j = x2
1(x

2
1e2

1 +∑
n
k=2 x2

ke2
k) = ω(x)2x2. So the baric evolution alge-

bra (E ,ω) is a Bernstein algebras.

We see that e2
1 is a non-zero idempotent of E and e2

i ∈ Ue2
1

for i 6= 1. We
deduce that (kerω)2 ⊆Ue2

1
.

Proposition 4.3. If a n-dimensional baric evolution algebra (E ,ω) is a Bern-
stein algebra, then

i) Ue2
1
= {x ∈ kerω | e2

1x = 1
2 x}= (kerω)2 and

ii) Ve2
1
= {x ∈ kerω | e2

1x = 0}=
〈
ei−2a1ie2

i | 2≤ i≤ n
〉
.

Proof. i) Let us show that (kerω)2 = Ue2
1
. Since (kerω)2 ⊆Ue2

1
, it remains to

show that Ue2
1
⊆ (kerω)2. Let x = ∑

n
i=2 xiei ∈Ue2

1
,

then x = 2e2
1x = 2∑

n
i=2 xi(a1ie2

i ) ∈ (kerω)2. Hence Ue2
1
⊆ (kerω)2 and Ue2

1
=

(kerω)2.
ii) For i ∈ {2, . . . ,n}, we have e2

1(ei− 2a1ie2
i ) = 0 ; so

〈
ei− 2a1ie2

i | 2 ≤
i ≤ n

〉
⊂ Ve2

1
. Let x = ∑

n
i=2 xiei ∈ Ve2

1
, then 0 = e2

1x = ∑
n
i=2 xia1ie2

i . Thus x =

∑
n
i=2 xi(ei− 2a1ie2

i ) and we have Ve2
1
⊂

〈
ei− 2a1ie2

i | 2 ≤ i ≤ n
〉
. We deduce

that Ve2
1
=
〈
ei−2a1ie2

i | 2≤ i≤ n
〉
.

Remark 4.4. If the baric evolution algebra (E ,ω) is a Bernstein algebra, then
U2

e2
1
= (kerω)(3) = (kerω)2(kerω)2 = 0, i.e. E is a exceptional Bernstein alge-

bra ([7]).
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Definition 4.5 ([17]). Let (E ,ω) be a (n+1)-dimensional Bernstein algebra of
type (r+1,s). If kerω is a zero algebra, i.e. (kerω)2 = 0, then the algebra E is
called a trivial Bernstein algebra of type (r+1,s).

Remark 4.6. In ([12]), the authors show that an algebra is a Jordan Bernstein
algebra if and only if it is a train algebra of rank 3. We deduce that a finite
dimensional evolution algebra (E ,ω) is a Jordan Bernstein algebra if and only if
(kerω)2 = 0 ([13, Theorem 3.2.3]). Thus, the only finite dimensional evolution
algebras (E ,ω), that are Jordan Bernstein algebras, are evolution algebras, that
are trivial Bernstein algebras.

Proposition 4.7. If a baric evolution algebra (E ,ω) is a 2-dimensional Bern-
stein algebra, then E is a trivial Bernstein algebra.

Proof. Since kerω =
〈
e2
〉
, it follows that there are α ∈ F such that e2

2 = αe2.
0 = (kerω)(3) leads to 0 = e2

2e2
2 = α3e2 ; hence α3 = 0, i.e. α = 0. We deduce

that (kerω)2 = 0 and the algebra E is a trivial Bernstein algebra.

Proposition 4.8. If a finite-dimensional baric evolution algebra (E ,ω) is a
Bernstein algebra, then Ue2

1
Ve2

1
is an invariant of E . Moreover, if Ue2

1
6= 0, then

Ue2
1
Ve2

1
6= 0.

Proof. Let e = e2
1 + σ + σ2 ∈ I(E), u = u1 + σu1 ∈ Ue and v = v1− 2(σ +

σ2)v1 ∈Ve with σ ,u1 ∈Ue2
1

and v1 ∈Ve2
1
. Since U2

e2
1
= 0, we have e= e2

1+σ , u=
u1 and v = v1− 2σv1. We also have uv = u1(v1− 2σv1) = u1v1− 2u1(σv1) =
u1v1 because Ue2

1
(Ue2

1
Ve2

1
)⊂U2

e2
1
= 0. So UeVe =Ue2

1
Ve2

1
.

We assume that dimF(kerω)2 = k 6= 0. By renumbering the vectors of the
family {e2, . . . ,en}, we can assume that the family {e2

j | 2 ≤ j ≤ k + 1} is
a basis of (kerω)2. Set e2

j = ∑
k+1
t=2 α jte2

t with k + 2 ≤ j ≤ n. If Ue2
1
Ve2

1
= 0,

then we would have e2
2(e j − 2a1 je2

j) = 0 for 2 ≤ j ≤ n. What would result{
a2 j = 0, 2≤ j ≤ k+1
a2 jα jt = 0, 2+ k ≤ j ≤ n and 2≤ t ≤ k+1.

Thus, we would have 1
2 e2

2 = e2
1e2

2 = e2
1 ∑

n
j=2 a2 je j = e2

1 ∑
n
j=k+2 a2 je j =

∑
n
j=k+2 a2 ja1 je2

j = ∑
k+1
t=2 ∑

n
j=k+2 a1 j(a2 jα jt)e2

t = 0, so, e2
2 = 0. This would con-

tradict linear independence of the family {e2
j | 2≤ j ≤ k+1}. We deduce that

Ue2
1
Ve2

1
6= 0.

Lemma 4.9. If a n-dimensional baric evolution algebra (E ,ω) is a Bernstein
algebra, then the family {e2

i | 2≤ i≤ n} is linear dependent.

Proof. We have kerω =< e2, . . . ,en > and (kerω)2 ⊂ kerω . We assume that
the family is linear independent. Then (kerω)2 = kerω ; hence 0 = (kerω)(3) =
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(kerω)2 = kerω , this is impossible. We deduce that the family is linear depen-
dent.

Theorem 4.10. If a n-dimensional baric evolution algebra (E ,ω) (with n > 2)
is a non trivial Bernstein algebra, then dimF(kerω)2 ≤ 1

2(n−1).

Proof. We have 0 6= (kerω)2 ( kerω . We assume that p = dimF(kerω)2. By
renumbering the basis vectors, we can assume that (kerω)2 =< e2

2, . . . ,e
2
p+1 >.

Let us show that the family {e2, . . . ,ep+1,e2
2, . . . ,e

2
p+1} is linear independent.

Let (αk,βk)2≤k≤p+1 ∈ F p×F p such that

p+1

∑
k=2

(αkek +βke2
k) = 0 (11)

By multiplying (11) by ei, we obtain αie2
i +∑

p+1
k=2 βkeie2

k =αie2
i +∑

p+1
k=2 βkakie2

i =
0, either

αi +
p+1

∑
k=2

βkaki = 0, for all i ∈ {2, . . . , p+1}. (12)

By squaring (11), we get

∑
p+1
k=2

(
α2

k e2
k +∑

p+1
j=2 2αkβ jeke2

j

)
= ∑

p+1
k=2 αk

(
αk +2∑

p+1
j=2 β ja jk

)
e2

k = 0, either

αi(αi +2
p+1

∑
j=2

β ja ji) = 0, for all i ∈ {2, . . . , p+1}. (13)

By multiplying (12) by 2αi we get

αi(2αi +2
p+1

∑
j=2

β ja ji) = 0, for all i ∈ {2, . . . , p+1} (14)

and by making the difference of (13) and (14), we have α2
i = 0. This leads to

αi = 0, for all i∈{2, . . . , p+1}. Then (11) tell us that βi = 0, ∀i∈{2, . . . , p+1}.
We deduce that dimF(kerω)2 ≤ 1

2(n−1).

Corollary 4.11. If a finite n-dimensional baric evolution algebra (E ,ω) is a
Bernstein algebra such that dim(Ue2

1
) = p, then dim(Ve2

1
)≥ p.

Proof. We assume that (kerω)2 =
〈
e2

2, . . . ,e
2
p+1

〉
and let us show that the family

{e2−2a12e2
2, . . . ,ep+1−2a1,p+1e2

p+1} is linear independent. Let (αk)2≤k≤p+1 ∈
F p such that ∑

p+1
k=2 αk(ek−2a1ke2

k) = 0.
We have ∑

p+1
k=2 αk(ek − 2a1ke2

k) = ∑
p+1
k=2 αkek − 2a1kαke2

k = 0. So αk = 0, for
all k ∈ {2, . . . , p+1} because {e2, . . . ,ep+1,e2

2, . . . ,e
2
p+1} is linear independent.

Consequently, the family {e2− 2a12e2
2, . . . ,ep+1− 2a1,p+1e2

p+1} is linear inde-
pendent and dim(Ve2

1
)≥ p.
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4.3. Classification

Let (E ,ω) be a Bernstein algebra that is evolution algebra in natural basis
{e1,e2, . . . ,en} such that e2

1 = e1 +∑
n
k=2 a1kek and e2

j = ∑
n
k=2 a jkek. For

(a12, . . . ,a1n) = 0, we have e2
1 = e1, i.e. e1 is a non-zero idempotent of E and

e1 kerω = 0 leads to E is of type (1,n−1), constant Bernstein algebra.

4.3.1. Three-dimensional Classification

Theorem 4.12. Let (E ,ω) be an evolution algebra that is a 3-dimensional non
trivial Bernstein algebra with canonical basis {e,u,v}. Then, the algebra E is
isomorphic to E0 : e2 = e, eu = 1

2 u, uv = u, the others products are zero.

Proof. Let (E ,ω) be a 3-dimensional non trivial Bernstein algebra that is evo-
lution algebra in the natural basis {e1,e2,e3}. The multiplication table of E
in the natural basis is given by e2

1 = e1 + a12e2 + a13e3, e2
2 = a22e2 + a23e3

and e2
3 = a32e2 + a33e3 with ω(e1) = 1 and ω(e2) = ω(e3) = 0. We have

(kerω)2 6= 0 and 1 ≤ dim(kerω)2 ≤ 1
2(3− 1) = 1. So dim(kerω)2 = 1 and

we set (kerω)2 = Fe2
2. Then the vector e2− 2a12e2

2 is a non-zero vector of Ve2
1

and we set e = e2
1, u = e2

2, v = e2− 2a12e2
2. The multiplication table of E in

the canonical basis {e,u,v} is e2 = e, eu = 1
2 u, uv = e2

2(e2− 2a12e2
2) = a22u

and v2 = (e2− 2a12e2
2)

2 = e2
2− 4a12e2

2e2 = (1− 4a12a22)u. Since the algebra
E is a non trivial Bernstein algebra, it follows that Ue2

1
Ve2

1
6= 0. Consequently,

a22 6= 0. Let us find a canonical basis {e′,u′,v′} of E such that u′v′ = u′ and
v′2 = 0. We set e′ = e+au, u′ = bu and v′ = cv−2au(cv) = c(v−2aa22u) with
b,c ∈ F∗. We have u′ = u′v′ = bcuv = a22bcu = a22cu′ leads to c = a−1

22 and
0= v′2 = c2(v−2aa22u)2 = a−2

22 (v
2−4aa22uv)= a−2

22 ((1−4a12a22)−4aa2
22)u=

a−2
22 b−1((1− 4a12a22)− 4aa2

22)u
′ implies 0 = (1− 4a12a22)− 4aa2

22, i.e. a =
a−2

22 (
1
4 − a12a22). We can take b = 1 and we have e′ = e+ a−2

22 (
1
4 − a12a22)u,

u′ = u and v′ = a−1
22 (v− a−1

22 (
1
2 − 2a12a22)u). We deduce that algebra E is iso-

morphic to E0.

4.3.2. Four-dimensional Classification

Theorem 4.13. Let (E ,ω) be an evolution algebra that is 4-dimensional non
trivial Bernstein algebra with canonical basis {e,u,v,w}. Then, E is isomorphic
to one and only one of the following algebras E1 : uv = u, e2 = e, eu = 1

2 u ;
E2 : uv = uw = vw = u, e2 = e, eu = 1

2 u and the others products are zero.

The proof of the theorem uses the lemma below which follows from [5,
Proof of Theorem, page 1435].



206 A. CONSEIBO - S. SAVADOGO - M. OUATTARA

Lemma 4.14. Let E be a 4-dimensional Bernstein algebra with a canonical
basis {e,u,v,w} such that e2 = e, eu = 1

2 u, uv = u, v2 = γu, w2 = λu, vw = µu
and the others products are zero.
• If λ = µ = 0, then the algebra E is isomorphic to E1.
• If λ 6= 0, then the algebra E is isomorphic to E2.
Where the algebras E1 and E2 are defined in Theorem 4.13.

Proof of Theorem 4.13. Let (E ,ω) be a 4-dimensional non trivial Bernstein al-
gebra that is evolution algebra with the natural basis {e1,e2,e3,e4}. The mul-
tiplication table of E in the natural basis is given by e2

1 = e1 + ∑
4
k=2 a1kek,

e2
j = ∑

4
k=2 a jkek with ω(e1) = 1 and ω(e j) = 0 where 2 ≤ j ≤ 4. We have

(kerω)2 6= 0 and 1 ≤ dim(kerω)2 ≤ 1
2(4− 1) = 1.5. So dim(kerω)2 = 1 and

we set (kerω)2 = Fe2
2. Then e2− 2a12e2

2 is a non-zero vector of Ve2
1

and there
are scalars α3, α4 such that e2

3 = α3e2
2 and e2

4 = α4e2
2. We assume that a23 =

a24 = 0, then the equality 0 = e2
2e2

2 = a2
22e2

2 leads to a22 = 0. Thus e2
2 = 0,

this is impossible and we deduce that (a23,a24) 6= 0. Since Ve2
1

is generated by
(e2− 2a12e2

2),(e3− 2a13e2
3),(e4− 2a14e2

4), let us show that {e2− 2a12e2
2,e3−

2a13e2
3} or {e2− 2a12e2

2,e4− 2a14e2
4} is a basis of Ve2

1
. For this reason, con-

sider the scalars α , β and γ such that 0 = α(e2− 2a12e2
2)+ β (e3− 2a13e2

3)+
γ(e4−2a14e2

4). Since α(e2−2a12e2
2)+β (e3−2a13e2

3)+γ(e4−2a14e2
4) = (α−

2(αa12+βa13α3+γa14α4)a22)e2+(β−2(αa12+βa13α3γa14α4)a23)e3+(γ−
2(αa12 +βa13α3 + γa14α4)a24)e4, it follows that the equality
0 = α(e2−2a12e2)+β (e3−2a13e2

3)+ γ(e4−2a14e2
4) gives

(α−2(αa12+βa13α3+γa14α4)a22) = (β−2(αa12+βa13α3+γa14α4)a23) =
(γ−2(αa12 +βa13α3 + γa14α4)a24) = 0.

If a23 6= 0, for β = 0, we have αa12+βa13α3+γa14α4 = 0 because a23 6= 0.
Hence α = γ = 0 and {e2−2a12e2

2,e4−2a14e2
4} is a basis of Ve2

1
.

If a24 6= 0, for γ = 0, we have α = β = 0 and we similarly conclude that
{e2−2a12e2

2,e3−2a13e2
3} is a basis of Ve2

1
.

1) The multiplication table of E in the canonical basis {e2
1,e

2
2,e2−2a12e2

2,e3−
2a13e2

3} is given by e2
1e2

1 = e2
1, e2

1e2
2 =

1
2 e2

2, e2
2(e2− 2a12e2

2) = e2
2e2 = a22e2

2,
e2

2(e3−2a13e2
3) = e2

2e3 = a23e2
3 = a23α3e2

2, (e2−2a12e2
2)

2 = e2
2−4a12e2

2e2 =
(1−4a12a22)e2

2, (e2−2a12e2
2)(e3−2a13e2

3) =
(e2−2a12e2

2)(e3−2a13α3e2
2) = −2a13α3e2

2e2−2a12e2
2e3 = −2a13α3e2

2e2−
2a12a23e2

3 =−2α3(a13a22 +a12a23)e2
2, (e3−2a13e2

3)
2 = (e3−2a13α3e2

2)
2 =

e2
3− 4a13α3e2

2e3 = e2
3− 4a13a23α3e2

3 = α3(1− 4a13a23α3)e2
2 and the others

products are zero. Since algebra E is a non trivial Bernstein algebra, we have
Ue2

1
Ve2

1
6= 0. Consequently, (a22,a23α3) 6= 0 and we set e = e2

1, u = e2
2. We

distinguish the following three cases
a) a22 = 0, then a23α3 6= 0 and we set v = a−1

23 α
−1
3 (e3−2a13e2

3), w = e2−
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2a12e2
2. The multiplication table of E in the canonical basis {e,u,v,w} is

e2 = e, eu = 1
2 u, uv = u, v2 = a−2

23 α
−1
3 (1− 4a13a23α3)u, vw = −2a12u,

w2 = u and the others products are zero. We deduce from Lemma 4.14
that the algebra E is isomorphic to E2.

b) α3a23 = 0, then a22 6= 0, we set v= a−1
22 (e2−2a12e2

2) and w= e3−2a13e2
3.

The multiplication table of E in the canonical basis {e,u,v,w} is given
by e2 = e, eu = 1

2 u, uv = u, v2 = a−2
22 (1− 4a12a22)u, vw = −2a13α3u,

w2 = α3u and the others products are zero. Lemma 4.14 tells us that, for
α3 = 0 we get algebra E1 and for α3 6= 0, algebra E is isomorphic to E2.

c) a22a23α3 6= 0, then we set v = a−1
22 (e2−2a12e2

2) and w = (e3−2a13e2
3)−

a−1
22 a23α3(e2− 2a12e2

2). The multiplication table of E in the canonical
basis {e,u,v,w} is e2 = e, eu = 1

2 u, uv = u, v2 = a−2
22 (1− 4a12a22)u,

vw = a−1
22 (e2−2a12e2

2)(e3−2a13e2
3)−a−2

22 a23α3(e2−2a12e2
2)

2 =
(−2α3a−1

22 (a13a22 +a12a23)−a−2
22 a23α3(1−4a12a22))u =

−a−2
22 a23α3(2a13a2

22a−1
23 −2a12a22 +1)u, w2 = (e3−2a13e2

3)
2+

a−2
22 a2

23α2
3 (e2−2a12e2

2)
2−2a−1

22 a23α3(e3−2a13e2
3)(e2−2a12e2

2) =
(α3(1−4a13a23α3)+a−2

22 a2
23α2

3 (1−4a12a22)+
4a−1

22 a23α2
3 (a13a22+a12a23))u=α3(1+a−2

22 a2
23α3)u and the others prod-

ucts are zero.
• For 1+a−2

22 a2
23α3 6= 0, algebra E is isomorphic to E2.

• For 1+ a−2
22 a2

23α3 = 0, w2 = α3(1+ a−2
22 a2

23α3)u = 0. We have 0 =
e2

2e2
2 = a2

22e2
2 +a2

23e2
3 +a2

24e2
4 = (a2

22 +a2
23α3 +a2

24α4)e2
2 =

a2
22(1+ a−2

22 a2
23α3 + a−2

22 a2
24α4)e2

2 = a2
24α4e2

2 leads to α4 = 0 because
a24 6= 0. So e2

4 = 0 and we have 1
2 e2

2 = e2
1e2

2 = a12a22e2
2 + a13a23e2

3 =
(a12a22−a13a2

22a−1
23 )e

2
2 gives a12a22−a13a2

22a−1
23 = 1

2 . Therefore vw =
−a−2

22 a23α3(2a13a2
22a−1

23 −2a12a22 +1)u = 0 and we deduce that alge-
bra E is isomorphic to E1.

2) The multiplication table of E in the canonical basis {e2
1,e

2
2,e2−2a12e2

2,e4−
2a14e2

4} is given by e2
1e2

1 = e2
1, e2

1e2
2 =

1
2 e2

2, e2
2(e2− 2a12e2

2) = e2
2e2 = a22e2

2,
e2

2(e4− 2a14e2
4) = e2

2e4 = a24α4e2
2, (e2− 2a12e2

2)
2 = e2

2− 4a12e2
2e2 = (1−

4a12a22)e2
2, (e2 − 2a12e2

2)(e4 − 2a14e2
4) = (e2 − 2a12e2

2)(e4 − 2a14α4e2
2) =

−2a14α4e2
2e2−2a12e2

2e4 =−2a14α4e2
2e2−2a12a24e2

4 =
−2α4(a14a22 +a12a24)e2

2, (e4−2a14e2
4)

2 = (e4−2a14α4e2
2)

2 =
e2

4− 4a14α4e2
2e4 = e2

4− 4a14a24α4e2
4 = α4(1− 4a14a24α4)e2

2 and the others
products are zero. We obtain the multiplication table of the algebra de-
fined in 1). We deduce that, for a22 = 0 or for α4 6= 0 and a24 = 0 or for
a22a24α4(1+a−2

22 a2
24α4) 6= 0, algebra E is isomorphic to E2. It is isomorphic

to algebra E1 for α4 = 0 or for a22a24α4 6= 0 and 1+a−2
22 a2

24α4 = 0.
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Linear Algebra Appl. 153, (1991), 193–207.
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