IRREDUCIBILITY OF HURWITZ SPACES OF COVERINGS OF AN ELLIPTIC CURVE OF PRIME DEGREE WITH ONE POINT OF TOTAL RAMIFICATION

FRANCESCA VETRO

Abstract

Let Y be an elliptic curve, p a prime number and $W H_{p, n}(Y)$ the Hurwitz space that parametrizes equivalence classes of p-sheeted branched coverings of Y, with n branch points, $n-1$ of which are points of simple ramification and one of total ramification. In this paper, we prove that $W H_{p, n}(Y)$ is irreducible if $n-1 \geq 2 p$.

Introduction.

In this paper we prove the irreducibility of the Hurwitz space $W H_{p, n}(Y)$ which parametrizes the equivalence classes of coverings of an elliptic curve Y, whose degree p is a prime number and which have $n-1 \geq 2 p$ points of simple ramification and one point of total ramification.

Most of the results on irreducibility of Hurwitz spaces obtained so far treat the case of coverings of \mathbb{P}^{1}. Hurwitz proved in [6] the irreducibility of $H_{d, n}\left(\mathbb{P}^{1}\right)$, the space which parametrizes simple coverings of degree d. Arbarello proved in [1] the irreducibility of any of the Hurwitz spaces which parametrize coverings of \mathbb{P}^{1} which have $n-1$ points of simple ramification and one point of total ramification. The case of coverings of \mathbb{P}^{1} with $n-1$ points of simple ramification and one point of arbitrary ramification was studied by Natanzon

Entrato in redazione il 30 Luglio 2003.
[9], Kluitmann [7] and Mochizuki [8], who proved the irreducibility of the corresponding Hurwitz spaces. Harris, Graber and Starr studied in [5] the Hurwitz spaces which parametrize simple degree d coverings of a positive genus curve Y whose monodromy group is the group S_{d}. They proved the irreducibility of these spaces when the number of branch points n satisfies $n \geq 2 d$.

1. Preliminaries.

Let Y be an elliptic curve, X be a compact, connected Riemann surface and $f: X \rightarrow Y$ be an analytic map onto Y. We recall some standard definitions (see e.g.[4]). A branch point $a \in Y$ is called a point of simple ramification for f if f is ramified at only one point $x \in f^{-1}(a)$ and the ramification index $e(x)$ of f at x is 2 . A branch point $a \in Y$ is called a point of total ramification for f if $\sharp f^{-1}(a)=1$. Two p-sheeted branched coverings $f: X_{1} \rightarrow Y$ and $g: X_{2} \rightarrow Y$ are said to be equivalent if there exist a biholomorphic map $\varphi: X_{1} \rightarrow X_{2}$ such that $g \circ \varphi=f$. The equivalence class containing f is denoted by $[f]$. Let S_{p} be the symmetric group on p letters acting on the set $\{1, \ldots, p\}$. Let us say that two homomorphisms φ and η from $\pi_{1}(Y \backslash A, y)$ to S_{p} are equivalent if they differ by a inner automorphism, i.e. there is a $\sigma \in S_{p}$ such that $\varphi([\alpha])=\sigma \eta[\alpha] \sigma^{-1}$ for any $[\alpha] \in \pi_{1}(Y \backslash A, y)$.

Let p be a prime number and let $W H_{p, n}(Y)$ be the Hurwitz space that parametrizes equivalence classes of p-sheeted branched coverings of Y, with n branch points, $n-1$ of which are points of simple ramification and one of total ramification. Let

$$
W H_{p, n}^{A}(Y)=\left\{[f] \in W H_{p, n}(Y): f \text { has discriminant locus } A=\left\{a_{1}, \ldots, a_{n}\right\}\right\}
$$

By Riemann's existence theorem the equivalence classes $[f] \in W H_{p, n}^{A}(Y)$ are in one-to-one correspondence with equivalence classes of homomorphisms $\mu: \pi_{1}(Y \backslash A, y) \rightarrow S_{p}$ whose images are transitive subgroups of S_{p}. Let $\gamma_{1}, \ldots, \gamma_{n}, \alpha, \beta$ be the generators of $\pi_{1}(Y \backslash A, y)$ represented in figure 1 .

The images via the homomorphisms μ of these generators determine a $(n+2)$-tuple of permutations of S_{p}

$$
\left(\mu\left(\gamma_{1}\right), \ldots, \mu\left(\gamma_{n}\right), \mu(\alpha), \mu(\beta)\right)=\left(t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right)
$$

such that the t_{i} with $1 \leq i \leq n$ are all transpositions except one that is a p cycle; t_{α}, t_{β} are any two permutations of S_{p} and $\prod_{i=1}^{n} t_{i}=\left[t_{\alpha}, t_{\beta}\right]$. Since one of t_{i} is a p-cycle and p is prime then, if $n \geq 2,<t_{1}, \ldots, t_{n}>=S_{p}$.

Figure 1.

Let S_{p}^{n+2} be $(n+2)$-fold product of S_{p}. Define in S_{p}^{n+2} an equivalence relation \sim as follows

$$
\left(t_{1}, \ldots, t_{n}, t_{n+1}, t_{n+2}\right) \sim\left(\mu_{1}, \ldots, \mu_{n}, \mu_{n+1}, \mu_{n+2}\right)
$$

$\Leftrightarrow \mu_{i}=s t_{i} s^{-1}$ for some $s \in S_{p}$ and for all $i(1 \leq i \leq n+2)$.
For the rest of the paper we suppose $n \geq 2$. Let $\left[t_{1}, \ldots, t_{n+2}\right]$ be the equivalence class containing $\left(t_{1}, \ldots, t_{n+2}\right)$ and let
$A_{p, n+2}=\left\{\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right]: t_{i}(i=1, \ldots, n)\right.$ are all transpositions except one that is a p-cycle, $\left.\prod_{i=1}^{n} t_{i}=\left[t_{\alpha}, t_{\beta}\right]\right\}$.

By Riemann's existence theorem it is possible to identify $W H_{p, n}^{A}(Y)$ with $A_{p, n+2}$ via the one-to-one map

$$
\omega: W H_{p, n}^{A}(Y) \rightarrow A_{p, n+2}
$$

defined by

$$
\omega([f])=\left[\mu\left(\gamma_{1}\right), \ldots, \mu\left(\gamma_{n}\right), \mu(\alpha), \mu(\beta)\right]
$$

Let $Y^{(n)}$ be the symmetric product of Y with itself n times and let Δ be the codimension 1 locus of $Y^{(n)}$ consisting of non simple divisors. Let δ : $W H_{p, n}(Y) \rightarrow Y^{(n)} \backslash \Delta$ be the map which assigns to each $[f] \in W H_{p, n}(Y)$ its discriminant locus.

It is well known (see [4]) that it is possible to define a topology on $W H_{p, n}(Y)$ in such a way that δ becomes a topological covering map. So the braid group $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$ acts on the fiber $\delta^{-1}(A)=W H_{p, n}^{A}(Y)$. Our aim is to prove that the action of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$ on this fiber is transitive. This
would imply $W H_{p, n}(Y)$ is connected. In order to prove that $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$ acts transitively on $A_{p, n+2}$, i.e. on $W H_{p, n}^{A}(Y)$, it is sufficient to prove that it is possible, acting successively by the elements of a system of generators of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$, to bring every $\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right] \in W H_{p, n}^{A}(Y)$ to the normal form

$$
\begin{equation*}
[(12 \ldots p),(12), \ldots,(12),(23), \ldots,(p-1 p), i d, i d] \tag{1}
\end{equation*}
$$

where the transpositions (12) are in odd number and each transposition (ii+1) with $i \neq 1$ is only present one time.

Remark. It is well known (see [2, 3]) that the generators of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right.$) are the elementary braids $\sigma_{i}(i=1, \ldots, n-1)$ and the braid moves ρ_{j}, τ_{j} ($j=1, \ldots, n$) relative respectively to the loops α and β. The elementary braids σ_{i} act on $A_{p, n+2}$ (see [6]) bringing the class

$$
\left[t_{1}, \ldots, t_{i-1}, t_{i}, t_{i+1}, \ldots, t_{\alpha}, t_{\beta}\right]
$$

to

$$
\left[t_{1}, \ldots, t_{i-1}, t_{i} t_{i+1} t_{i}^{-1}, t_{i}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right]
$$

The actions of ρ_{j} and τ_{j} were studied in [5]. The action of the generators τ_{j} $(j=1, \ldots, n)$ changes the loops α and γ_{j} while it leaves unchanged the loops γ_{i} (for every $i \neq j$) and β. When t_{n} is a transposition τ_{n} transforms t_{α} into t_{α}^{\prime} where

$$
\begin{equation*}
t_{\alpha}^{\prime}=t_{\alpha} t_{n} \tag{2}
\end{equation*}
$$

Analogously the action of $\rho_{j}(j=1, \ldots, n)$ changes γ_{j} and β, leaving unchanged the γ_{i} for every $i \neq j(i=1, \ldots, n)$ and α. When t_{1} is a transposition ρ_{1} transforms t_{β} into t_{β}^{\prime} where

$$
\begin{equation*}
t_{\beta}^{\prime}=t_{\beta} t_{1} \tag{3}
\end{equation*}
$$

2. Irreducibility of $\boldsymbol{W} \boldsymbol{H}_{\boldsymbol{p}, \boldsymbol{n}}(\boldsymbol{Y})$.

In this section we will prove that $W H_{p, n}(Y)$ is irreducible for $n-1 \geq 2 p$. Since $W H_{p, n}(Y)$ is smooth it suffices to prove that $W H_{p, n}(Y)$ is connected. Let

$$
\begin{equation*}
\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right] \tag{4}
\end{equation*}
$$

be an element of $\delta^{-1}(A)=W H_{p, n}^{A}(Y) \cong A_{p, n+2}$. To prove that (4) is in the orbit of (1) under the action of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right.$), it is sufficient to prove that there are braid moves transforming (4) into $\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}, i d, i d\right]$ where the t_{i}^{\prime} are all transpositions except one that is a p-cycle, $\prod_{i=1}^{n} t_{i}=i d$ and $<t_{1}^{\prime}, \ldots, t_{n}^{\prime}>=S_{p}$. In fact, once this is proved we observe that the equivalence class of $\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ can be thought as the Hurwitz-system relative to a branched covering of \mathbb{P}^{1} and utilizing the Arbarello's result $[1]$ we obtain that $\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}, i d, i d\right]$ is in the orbit of (1) under the action of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$. At first we will prove that (4) can be transformed, via the action of suitable σ_{i} and σ_{i}^{-1}, into $\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \tau, \tau, t_{\alpha}, t_{\beta}\right]$ where τ is a transposition of S_{p}. After we will prove that there are braid moves transforming $\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \tau, \tau, t_{\alpha}, t_{\beta}\right]$ into $\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \tau^{\prime}, \tau^{\prime}, t_{\alpha}, t_{\beta}\right]$ with τ^{\prime} arbitrary transposition of S_{p}. Once this is proved it is sufficient to act with suitable ρ_{i} and τ_{j} to conclude.
Lemma 1. Let $\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right]$ be an element of $W H_{p, n}^{A}(Y)$. Suppose $n-1 \geq$ $2 p$. Then there are braid moves transforming

$$
\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right] \text { into }\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \tau, \tau, t_{\alpha}, t_{\beta}\right]
$$

where τ is a transposition of S_{p}.
Proof. Acting with elementary braids it is possible to bring (4) to $\left[\bar{t}_{1}, \bar{t}_{2}, \ldots, \bar{t}_{n}\right.$, $\left.t_{\alpha}, t_{\beta}\right]$ where \bar{t}_{1} is a p-cycle. Let G be the group generated by the transpositions $\bar{t}_{2}, \ldots, \bar{t}_{n}$ and let D_{1}, \ldots, D_{r} be the domains of transitivity of G. Then

$$
G=S_{D_{1}} \times \ldots \times S_{D_{r}} .
$$

We observe that if \bar{t}_{j} and $\bar{t}_{j+1}(2 \leq j \leq n-1)$ are such that $\bar{t}_{j} \in S_{D_{h}}$ and $\bar{t}_{j+1} \in S_{D_{k}}$ with $h \neq k$ and $1 \leq h, k \leq r$, then operating with σ_{j} we obtain

$$
\left[\ldots, \bar{t}_{j}, \bar{t}_{j+1}, \ldots\right] \rightarrow\left[\ldots, \bar{t}_{j} \bar{t}_{j+1} \bar{t}_{j}^{-1}, \bar{t}_{j}, \ldots\right]
$$

where $\bar{t}_{j} \bar{t}_{j+1} \bar{t}_{j}^{-1}=\bar{t}_{j} \bar{t}_{j}^{-1} \bar{t}_{j+1}=\bar{t}_{j+1}$ because the $D_{i}(i=1, \ldots, r)$ are disjoint. So acting with elementary braids on transpositions in different domains of transitivity, the result is to interchange place. Then acting with appropriate σ_{i} and σ_{i}^{-1} it is possible to replace the sequence $\bar{t}_{2}, \ldots, \bar{t}_{n}$ with a new one in which, for every j, all transpositions moving elements of a D_{j} stay together. The assumption $n-1 \geq 2 p$ assures that the number of t_{i} belonging to $S_{D_{j}}$ is greater or equal to $2\left|D_{j}\right|$, for at least one $D_{j}(1 \leq j \leq r)$. Once this is achieved the proof is the same as the proof of Proposition 3.1 in [5].

Lemma 2. Let $\left[t_{1}, \ldots, t_{n-2}, \tau, \tau, t_{\alpha}, t_{\beta}\right]$ be an element of $W H_{p, n}^{A}(Y)$, where t_{1} is a $p-$ cycle and τ is a transposition of S_{p}. Then there are braid moves transforming

$$
\left[t_{1}, \ldots, t_{n-2}, \tau, \tau, t_{\alpha}, t_{\beta}\right] \text { into }\left[t_{1}, \ldots, t_{n-2}, \tau^{\prime}, \tau^{\prime}, t_{\alpha}, t_{\beta}\right]
$$

where τ^{\prime} is an arbitrary transposition of S_{p}.
Proof. Let $H=<t_{1}, \ldots, t_{n-2}>$, let $h \in H$ and let $h=h_{1} \cdots h_{s}$ where h_{i} or h_{i}^{-1} for $i=1, \ldots, s$ lies in the set $\left\{t_{1}, \ldots, t_{n-2}\right\}$. Define $\tau^{h}=h^{-1} \tau h$. We will prove that acting with braid moves and their inverses it is possible to bring $\left[t_{1}, \ldots, t_{n-2}, \tau, \tau, t_{\alpha}, t_{\beta}\right]$ to $\left[t_{1}, \ldots, t_{n-2}, \tau^{h}, \tau^{h}, t_{\alpha}, t_{\beta}\right]$.

We distinguish two cases. If h_{1} is equal to t_{i} for some $i=1, \ldots, n-2$, acting with suitable inverses of elementary braids move the pair (τ, τ) to the left of t_{i}. Applying σ_{i}^{-1} and σ_{i+1}^{-1} we bring $\left[t_{1}, \ldots, t_{i-1}, \tau, \tau, t_{i}, \ldots, t_{n-2}, t_{\alpha}, t_{\beta}\right]$ to $\left[t_{1}, \ldots, t_{i-1}, t_{i}, \tau^{t_{i}}, \tau^{t_{i}}, t_{i+1}, \ldots, t_{n-2}, t_{\alpha}, t_{\beta}\right]$. Now acting with the appropriate σ_{j} move ($\tau^{t_{i}}, \tau^{t_{i}}$) to the ($n-1$) -th and $n-t h$ place.

If h_{1} is equal to t_{i}^{-1} for some $i=1, \ldots, n-2$, we move (τ, τ) to the right of t_{i} and applying σ_{i} and σ_{i+1} we bring

$$
\left[t_{1}, \ldots, t_{i-1}, t_{i}, \tau, \tau, t_{i+1}, \ldots, t_{n-2}, t_{\alpha}, t_{\beta}\right]
$$

to

$$
\left[t_{1}, \ldots, t_{i-1}, \tau^{h_{1}}, \tau^{h_{1}}, t_{i}, \ldots, t_{n-2}, t_{\alpha}, t_{\beta}\right] .
$$

Now move ($\tau^{h_{1}}, \tau^{h_{1}}$) to the ($n-1$) - th and $n-t h$ place. Proceeding in this way successively for every $h_{i}(i=2, \ldots, s)$ we conclude.

So Lemma 1 and Lemma 2 assure that choosing h appropriately we may obtain among the first n permutations of (4) an arbitrary transposition of S_{p}.

Now we are ready to prove the following theorem.
Theorem 1. $W H_{p, n}(Y)$ is connected for $(n-1) \geq 2 p$.
Proof. Let $\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right] \in W H_{p, n}^{A}(Y)$. Let $t_{\alpha}=\lambda_{1} \lambda_{2} \cdots \lambda_{s}$ be a factorization of t_{α} as product of disjoint cycles such that $\sharp \lambda_{1} \geq \sharp \lambda_{2} \geq \ldots \geq \sharp \lambda_{s}$ and let $t_{\beta}=\mu_{1} \mu_{2} \cdots \mu_{t}$ be a factorization of t_{β} in the product of disjoint cycles such that $\sharp \mu_{1} \geq \sharp \mu_{2} \geq \ldots \geq \sharp \mu_{t}$. (Note that λ_{i} and μ_{j} may also be trivial).

Define the norm of t_{α} and t_{β} as follows

$$
\left|t_{\alpha}\right|:=\sum_{i=1}^{s}\left(\sharp \lambda_{i}-1\right) \text { and }\left|t_{\beta}\right|:=\sum_{j=1}^{t}\left(\sharp \mu_{j}-1\right)
$$

We will prove the transitivity of the action of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$ on $W H_{p, n}^{A}(Y)$ using induction on $\left|t_{\alpha}\right|+\left|t_{\beta}\right|$.

If (4) is such that $\left|t_{\alpha}\right|+\left|t_{\beta}\right|=0$ then $t_{\alpha}=t_{\beta}=i d$, i.e. $\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right]=$ $\left[t_{1}, \ldots, t_{n}, i d, i d\right]$. So applying the result of [1] we obtain that (4) is in the orbit of (1) under the action of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$.

Therefore suppose that $\left|t_{\alpha}\right|+\left|t_{\beta}\right|>0$ and suppose, by way of induction, that for each $\left[t_{1}, \ldots, t_{n}, t_{\alpha}^{\prime}, t_{\beta}^{\prime}\right]$ such that $\left|t_{\alpha}^{\prime}\right|+\left|t_{\beta}^{\prime}\right|<\left|t_{\alpha}\right|+\left|t_{\beta}\right|$ it is possible, acting with the braid moves $\sigma_{i}, \rho_{j}, \tau_{h}$ and their inverses, to bring $\left[t_{1}, \ldots, t_{n}, t_{\alpha}^{\prime}, t_{\beta}^{\prime}\right]$ to $\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}, i d, i d\right]$.
$\left|t_{\alpha}\right|+\left|t_{\beta}\right|>0$ implies that either $\left|t_{\alpha}\right|>0$ or $\left|t_{\beta}\right|>0$. Suppose first that $\left|t_{\alpha}\right|>0$. Let us choose a transposition σ such that $\sharp \lambda_{1} \sigma=\sharp \lambda_{1}-1$. By Lemma 1 and Lemma $2\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right]$ is in the orbit of $\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \sigma, \sigma, t_{\alpha}, t_{\beta}\right]$ under the action of $\pi_{1}\left(Y^{(n)} \backslash \Delta, A\right)$. Acting with the braid move τ_{n}, by (2), we obtain a new class $\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \sigma, t_{n}^{\prime}, t_{\alpha}^{\prime}, t_{\beta}\right]$ such that

$$
\left|t_{\alpha}^{\prime}\right|+\left|t_{\beta}\right|<\left|t_{\alpha}\right|+\left|t_{\beta}\right|
$$

By the induction assumption applied to $\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \sigma, t_{n}^{\prime}, t_{\alpha}^{\prime}, t_{\beta}\right]$ we conclude that there are braid moves transforming (4) into $\left[\bar{t}_{1}, \ldots, \bar{t}_{n}, i d, i d\right]$.

If instead it holds $\left|t_{\beta}\right|>0$ and $\left|t_{\alpha}\right|=0$, let σ be a transposition of S_{p} such that $\mu_{1} \sigma$ is a $\left(\sharp \mu_{1}-1\right)-$ cycle. By Lemma 1 and Lemma $2\left[t_{1}, \ldots, t_{n}, i d, t_{\beta}\right]$ is in the orbit of $\left[t_{1}^{\prime}, \ldots, t_{n-2}^{\prime}, \sigma, \sigma, i d, t_{\beta}\right]$.

Acting with $\sigma_{n-2}^{-1}, \sigma_{n-3}^{-1}, \ldots, \sigma_{1}^{-1}$ and $\sigma_{n-1}^{-1}, \ldots, \sigma_{2}^{-1}$ we bring $\left[t_{1}, \ldots\right.$, $\left.t_{n}, i d, t_{\beta}\right]$ to $\left[\sigma, \sigma, t_{3}^{\prime}, \ldots, t_{n}^{\prime}, i d, t_{\beta}\right]$. Applying ρ_{1}, by (3), we have $\left[t_{1}, \ldots\right.$, $\left.t_{n}, i d, t_{\beta}\right]$ is bringed to $\left[t_{1}^{\prime}, \sigma, t_{3}^{\prime}, \ldots, t_{n}^{\prime}, i d, t_{\beta}^{\prime}\right]$, with $\left|t_{\beta}^{\prime}\right|<\left|t_{\beta}\right|$. By the induction assumption we conclude $\left[t_{1}, \ldots, t_{n}, i d, t_{\beta}\right]$ is in the orbit of $\left[\bar{t}_{1}, \ldots\right.$, $\left.\bar{t}_{n}, i d, i d\right]$. In this way it is proved that there are braid moves transforming $\left[t_{1}, \ldots, t_{n}, t_{\alpha}, t_{\beta}\right]$ into $\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}, i d, i d\right]$. To conclude it is sufficient to apply the Arbarello's result [1].

REFERENCES

[1] E. Arbarello, On subvarieties of the moduli space of curves of genus g defined in terms of Weierstrass points, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur., Sez. Ia (8), 15 (1978), pp. 3-20.
[2] J.S. Birman, Braids, links and mapping class groups, Annals of Math. Studies, 82, Princeton Univ. Press, Princeton N. J. and Univ. of Tokyo Press, Tokyo, 1974.
[3] J.S. Birman, On Braid Groups, Comm. Pure Applied Math., 22 (1968), pp. 4172.
[4] W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Annals. of Math., 90 (1969), pp. 542-575.
[5] J. Harris - T. Graber - J. Starr, A note on Hurwitz schemes of covers of a positive genus curve, Prepint Math. AG/0205056 (2002).
[6] A. Hurwitz, Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Annalen, 39 (1891), pp. 1-61.
[7] P. Kluitmann, Hurwitz action and finite quotients of braid groups, Braids (Santa Cruz, CA, 1986), pp. 299-325, Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988.
[8] S. Mochizuki, The Geometry of the Compactification of the Hurwitz Scheme, Publ. RIMS, Kyoto Univ., 31 (1995), pp. 355-441.
[9] S.M. Natanzon, Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves, Selected translations., Selecta Math. Soviet., 12 n. 3 (1993), pp. 251-291.

Dipartimento di Matematica ed Applicazioni
Via Archirafi, 34
90123 Palermo (ITALY)
e-mail: fvetro@math.unipa.it

